Skip to main content
Log in

Neuroprotective effects of oral administration of triacetyluridine against MPTP neurotoxicity

  • Original Article
  • Published:
NeuroMolecular Medicine Aims and scope Submit manuscript

Abstract

Administration of triacetyluridine (TAU) is a means of delivering exogenous pyrimidines to the brain, which may help to compensate for bioenergetic defects. TAU has previously been shown to be neuroprotective in animal models of Huntington’s and Alzheimer’s diseases. We examined whether oral administration of TAU in the diet could exert significant neuroprotective effects against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) neurotoxicity model of Parkinson’s disease. Administration of TAU significantly attenuated MPTP-induced depletion of striatal dopamine and loss of tyrosine-hydroxylase-positive neurons in the substantia nigra. These findings suggest that administration of TAU may be a novel approach for treating neurodegenerative diseases associated with impaired mitochondrial function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aussedat J. (1983) Effect of uridine supply on glycogen resynthesis after ischaemia in the isolated perfused rat heart. Cardiovasc. Res. 17, 145–151.

    Article  PubMed  CAS  Google Scholar 

  • Beal M. F. (2001) Experimental models of Parkinson’s disease. Nat. Rev. Neurosci. 2, 325–334.

    Article  PubMed  CAS  Google Scholar 

  • Beal M. F., Matthews R. T., Tieleman A., and Shults C. W. (1998) Coenzyme Q10 attenuates the 1-methyl-4-phenyl-1,2,3, tetrahydropyridine (MPTP) induced loss of striatal dopamine axons in aged mice. Brain Res. 157, 142–149.

    Google Scholar 

  • Beuneu C., Auger R., Loffler M., Guissani A., Lemaire G., and Lepoivre M. (2000) Indirect inhibition of mitochondrial dihydroorotate dehydrogenase activity by nitric oxide. Free Radic. Biol. Med. 28, 1206–1213.

    Article  PubMed  CAS  Google Scholar 

  • Connolly G. P. and Duley J. A. (1999) Uridine and its nucleotides: biological actions, therapeutic potentials. Trends Pharmacol. Sci. 20, 218–225.

    Article  PubMed  CAS  Google Scholar 

  • Cornford E. M. and Oldendorf W. H. (1975) Independent blood-brain barrier transport systems for nucleicacid precursors. Biochim. Biophys. Acta 394, 211–219.

    Article  PubMed  CAS  Google Scholar 

  • Forman J. H. and Kennedy J. (1975) Superoxide production and electron transport in mitochondrial oxidation of dihydroorotic acid. J. Biol. Chem. 250, 4322–4326.

    PubMed  CAS  Google Scholar 

  • Garcia R. A. G., Hu Z. Y., Liu L. S., Noble M., von Borstel R. W., and Saydoff J. A. (2002) Neuroprotective doses of PN401 that produce supraphysiological levels of uridine are greater than the dose of PN401 required to correct a pyrimidine deficiency. Soc. Neurosci. 27, 685.615.

    Google Scholar 

  • Geiger A. and Yamasaki S. (1956) Cytidine and uridine requirement of the brain. J. Neurochem. 18, 93–100.

    Article  Google Scholar 

  • Hogans A. F., Guroff G., and Udenfriend S. (1971) Studies on the origin of pyrimidines for biosynthesis of neural RNA in the rat. J. Neurochem. 18, 1699–1710.

    Article  PubMed  CAS  Google Scholar 

  • Horvath T. L., Diano S., Leranth C., et al. (2003) Coenzyme Q introduces nigral mitochondrial upcoupling and prevents dopamine cell loss in a primate model of Parkinson’s disease. Endocrinology 144, 2757–2760.

    Article  PubMed  CAS  Google Scholar 

  • Kelsen D. P., Martin D., O’Neil J., et al. (1997) Phase 1 trial of PN401, an oral prodrug of uridine, to prevent toxicity from fluorouracil in patients with advanced cancer. J. Clin. Oncol. 15, 1511–1517.

    PubMed  CAS  Google Scholar 

  • King M. P. and Attardi G. (1989) Human cells lacking mtDNA: repopulation with exogenous mitochondria by complementation. Science 246, 500–503.

    Article  PubMed  CAS  Google Scholar 

  • Lin Z., Richards S., Rosenfeldt F., and Pepe S. (1997) Uridine preserves ATP during hypoxic perfusion of the rat heart. Asia Pac. Heart 6, 190–196.

    Article  Google Scholar 

  • Loffler M., Jockel J., Schuster G., and Becker C. (1997) Dihydroorotate-ubiquinone oxidoreductase links mitochondria in the biosynthesis of pyrimidine nucleotides. Mol. Cell Biochem. 174, 125–129.

    Article  PubMed  CAS  Google Scholar 

  • Matthews R. T., Ferrante R. J., Klivenyi P., et al. (1999) Creatine and cyclocreatine attenuate MPTP neurotoxicity. Exp. Neurol. 157, 142–149.

    Article  PubMed  CAS  Google Scholar 

  • Saydoff J. A., Liu L. S., Garcia R. A. G., Hu Z., Li D., and von Borstel R.W. (2003) Oral uridine pro-drug PN401 decreases neurodegeneration, behavioral impairment, weight loss and mortality in the 3-nitropropionic acid mitochondrial toxin model of Huntington’s Disease. Brain Res. 994, 44–54.

    Article  PubMed  CAS  Google Scholar 

  • Saydoff J. A., Liu L. S., Hu Z. Y., et al. (2001) Oral uridine Pro-drug P N 401 protects against azide toxicity in vivo: studies on the mechanism of uridine neuroprotection in vitro. Soc. Neurosci. 27, 2360.

    Google Scholar 

  • Tieu K., Perier C., Caspersen C., et al. (2003) D-β Hydroxybutyrate rescues mitochondrial respiration and mitigates features of Parkinson disease. J. Clin. Invest. 112, 892–901.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Flint Beal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klivenyi, P., Gardian, G., Calingasan, N.Y. et al. Neuroprotective effects of oral administration of triacetyluridine against MPTP neurotoxicity. Neuromol Med 6, 87–92 (2004). https://doi.org/10.1385/NMM:6:2-3:087

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/NMM:6:2-3:087

Index Entries

Navigation