Advertisement

NeuroMolecular Medicine

, Volume 6, Issue 2–3, pp 87–92 | Cite as

Neuroprotective effects of oral administration of triacetyluridine against MPTP neurotoxicity

  • Peter Klivenyi
  • Gabrielle Gardian
  • Noel Y. Calingasan
  • Lichuan Yang
  • Reid von Borstel
  • Joel Saydoff
  • Susan E. Browne
  • M. Flint BealEmail author
Original Article

Abstract

Administration of triacetyluridine (TAU) is a means of delivering exogenous pyrimidines to the brain, which may help to compensate for bioenergetic defects. TAU has previously been shown to be neuroprotective in animal models of Huntington’s and Alzheimer’s diseases. We examined whether oral administration of TAU in the diet could exert significant neuroprotective effects against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) neurotoxicity model of Parkinson’s disease. Administration of TAU significantly attenuated MPTP-induced depletion of striatal dopamine and loss of tyrosine-hydroxylase-positive neurons in the substantia nigra. These findings suggest that administration of TAU may be a novel approach for treating neurodegenerative diseases associated with impaired mitochondrial function.

Index Entries

Parkinson’s disease mitochondria MPTP triacetyluridine dopamine 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aussedat J. (1983) Effect of uridine supply on glycogen resynthesis after ischaemia in the isolated perfused rat heart. Cardiovasc. Res. 17, 145–151.PubMedCrossRefGoogle Scholar
  2. Beal M. F. (2001) Experimental models of Parkinson’s disease. Nat. Rev. Neurosci. 2, 325–334.PubMedCrossRefGoogle Scholar
  3. Beal M. F., Matthews R. T., Tieleman A., and Shults C. W. (1998) Coenzyme Q10 attenuates the 1-methyl-4-phenyl-1,2,3, tetrahydropyridine (MPTP) induced loss of striatal dopamine axons in aged mice. Brain Res. 157, 142–149.Google Scholar
  4. Beuneu C., Auger R., Loffler M., Guissani A., Lemaire G., and Lepoivre M. (2000) Indirect inhibition of mitochondrial dihydroorotate dehydrogenase activity by nitric oxide. Free Radic. Biol. Med. 28, 1206–1213.PubMedCrossRefGoogle Scholar
  5. Connolly G. P. and Duley J. A. (1999) Uridine and its nucleotides: biological actions, therapeutic potentials. Trends Pharmacol. Sci. 20, 218–225.PubMedCrossRefGoogle Scholar
  6. Cornford E. M. and Oldendorf W. H. (1975) Independent blood-brain barrier transport systems for nucleicacid precursors. Biochim. Biophys. Acta 394, 211–219.PubMedCrossRefGoogle Scholar
  7. Forman J. H. and Kennedy J. (1975) Superoxide production and electron transport in mitochondrial oxidation of dihydroorotic acid. J. Biol. Chem. 250, 4322–4326.PubMedGoogle Scholar
  8. Garcia R. A. G., Hu Z. Y., Liu L. S., Noble M., von Borstel R. W., and Saydoff J. A. (2002) Neuroprotective doses of PN401 that produce supraphysiological levels of uridine are greater than the dose of PN401 required to correct a pyrimidine deficiency. Soc. Neurosci. 27, 685.615.Google Scholar
  9. Geiger A. and Yamasaki S. (1956) Cytidine and uridine requirement of the brain. J. Neurochem. 18, 93–100.CrossRefGoogle Scholar
  10. Hogans A. F., Guroff G., and Udenfriend S. (1971) Studies on the origin of pyrimidines for biosynthesis of neural RNA in the rat. J. Neurochem. 18, 1699–1710.PubMedCrossRefGoogle Scholar
  11. Horvath T. L., Diano S., Leranth C., et al. (2003) Coenzyme Q introduces nigral mitochondrial upcoupling and prevents dopamine cell loss in a primate model of Parkinson’s disease. Endocrinology 144, 2757–2760.PubMedCrossRefGoogle Scholar
  12. Kelsen D. P., Martin D., O’Neil J., et al. (1997) Phase 1 trial of PN401, an oral prodrug of uridine, to prevent toxicity from fluorouracil in patients with advanced cancer. J. Clin. Oncol. 15, 1511–1517.PubMedGoogle Scholar
  13. King M. P. and Attardi G. (1989) Human cells lacking mtDNA: repopulation with exogenous mitochondria by complementation. Science 246, 500–503.PubMedCrossRefGoogle Scholar
  14. Lin Z., Richards S., Rosenfeldt F., and Pepe S. (1997) Uridine preserves ATP during hypoxic perfusion of the rat heart. Asia Pac. Heart 6, 190–196.CrossRefGoogle Scholar
  15. Loffler M., Jockel J., Schuster G., and Becker C. (1997) Dihydroorotate-ubiquinone oxidoreductase links mitochondria in the biosynthesis of pyrimidine nucleotides. Mol. Cell Biochem. 174, 125–129.PubMedCrossRefGoogle Scholar
  16. Matthews R. T., Ferrante R. J., Klivenyi P., et al. (1999) Creatine and cyclocreatine attenuate MPTP neurotoxicity. Exp. Neurol. 157, 142–149.PubMedCrossRefGoogle Scholar
  17. Saydoff J. A., Liu L. S., Garcia R. A. G., Hu Z., Li D., and von Borstel R.W. (2003) Oral uridine pro-drug PN401 decreases neurodegeneration, behavioral impairment, weight loss and mortality in the 3-nitropropionic acid mitochondrial toxin model of Huntington’s Disease. Brain Res. 994, 44–54.PubMedCrossRefGoogle Scholar
  18. Saydoff J. A., Liu L. S., Hu Z. Y., et al. (2001) Oral uridine Pro-drug P N 401 protects against azide toxicity in vivo: studies on the mechanism of uridine neuroprotection in vitro. Soc. Neurosci. 27, 2360.Google Scholar
  19. Tieu K., Perier C., Caspersen C., et al. (2003) D-β Hydroxybutyrate rescues mitochondrial respiration and mitigates features of Parkinson disease. J. Clin. Invest. 112, 892–901.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc 2004

Authors and Affiliations

  • Peter Klivenyi
    • 1
  • Gabrielle Gardian
    • 1
  • Noel Y. Calingasan
    • 1
  • Lichuan Yang
    • 1
  • Reid von Borstel
    • 2
  • Joel Saydoff
    • 2
  • Susan E. Browne
    • 1
  • M. Flint Beal
    • 1
    Email author
  1. 1.Department of Neurology and NeuroscienceWeill Medical College of Cornell University, New York-Presbyterian HospitalNew YorkUSA
  2. 2.Wellstat TherapeuticsGaithersburgUSA

Personalised recommendations