Skip to main content
Log in

The neuroprotective factor Wlds does not attenuate mutant SOD1-mediated motor neuron disease

  • Original Article
  • Published:
NeuroMolecular Medicine Aims and scope Submit manuscript

Abstract

Selective degeneration and death of motor neurons in SOD1 mutant-mediated amyotrophic lateral sclerosis (ALS) is accompanied by axonal disorganization and reduced slow axonal transport in the three most frequently used mouse models of mutant SOD1-mediated ALS. To test whether suppression of axonal degeneration (frequently known as Wallerian degeneration) could slow disease development, we took advantage of a spontaneous mouse mutant Wld s (Wallerian degeneration slow) in which the programmed axonal degenerative process that is normally activated after axonal injury is significantly delayed. Despite its effectiveness in delaying axonal loss in other neurodegenerative models, the presence of Wlds did not slow disease onset, ameliorate mutant motor neuron death, axonal degeneration, or preserve synaptic attachments in mice that develop disease from ALS-linked SOD1 mutants SOD1G37R or SOD1G85R. However, presynaptic endings in both the presence and absence of Wlds showed high accumulations of mitochondria and synaptic vesicles, implicating errors of retrograde transport as a consequence of SOD1-mutant damage to axons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Araki T., Sasaki Y., and Milbrandt J. (2004) Increased nuclear NAD biosynthesis and SIRT1 activation prevent axonal degeneration. Science 305, 1010–1013.

    Article  PubMed  CAS  Google Scholar 

  • Bruijn L. I., Becher M. W., Lee M. K., et al. (1997) ALS-linked SOD1 mutant G85R mediates damage to astrocytes and promotes rapidly progressive disease with SOD1-containing inclusions. Neuron 18, 327–338.

    Article  PubMed  CAS  Google Scholar 

  • Clement A. M., Nguyen M. D., Roberts E. A., et al. (2003) Wild-type nonneuronal cells extend survival of SOD1 mutant motor neurons in ALS mice. Science 302, 113–117.

    Article  PubMed  CAS  Google Scholar 

  • Cleveland D. W. and Rothstein J. D. (2001) From Charcot to Lou Gehrig: deciphering selective motor neuron death in ALS. Nat. Rev. Neurosci. 2, 806–819.

    Article  PubMed  CAS  Google Scholar 

  • Coleman M. P. and Perry V. H. (2002) Axon pathology in neurological disease: a neglected therapeutic target. Trends Neurosci. 25, 532–537.

    Article  PubMed  CAS  Google Scholar 

  • Conforti L., Tarlton A., Mack T. G., et al. (2000) A Ufd2/D4Cole1e chimeric protein and overexpression of Rbp7 in the slow Wallerian degeneration (Wlds) mouse. Proc. Natl. Acad. Sci. USA 97, 11,377–11,382.

    Article  CAS  Google Scholar 

  • Crawford T. O., Hsieh S. T., Schryer B. L., and Glass J. D. (1995) Prolonged axonal survival in transected nerves of C57BL/Ola mice is independent of age. J. Neurocytol. 24, 333–340.

    Article  PubMed  CAS  Google Scholar 

  • Ferri A., Sanes J. R., Coleman M. P., Cunningham J. M., and Kato A. C. (2003) Inhibiting axon degeneration and synapse loss attenuates apoptosis and disease progression in a mouse model of motoneuron disease. Curr. Biol. 13, 669–673.

    Article  PubMed  CAS  Google Scholar 

  • Fischer L. R., Culver D. G., Tennant P., et al. (2004) Amyotrophic lateral sclerosis is a distal axonopathy: evidence in mice and man. Exp. Neurol. 185, 232–240.

    Article  PubMed  Google Scholar 

  • Gillingwater T. H., Ingham C. A., Coleman M. P., and Ribchester R. R. (2003) Ultrastructural correlates of synapse withdrawal at axotomized neuromuscular junctions in mutant and transgenic mice expressing the Wld gene. J. Anat. 203, 265–276.

    Article  PubMed  Google Scholar 

  • Gillingwater T. H. and Ribchester R. R. (2001) Compartmental neurodegeneration and synaptic plasticity in the Wld(s) mutant mouse. J. Physiol 534, 627–639.

    Article  PubMed  CAS  Google Scholar 

  • Gillingwater T. H., Thomson D., Mack T. G., et al. (2002) Age-dependent synapse withdrawal at axotomised neuromuscular junctions in Wld(s) mutant and Ube4b/Nmnat transgenic mice. J. Physiol 543, 739–755.

    Article  PubMed  CAS  Google Scholar 

  • Glass J. D., Brushart T. M., George E. B., and Griffin J. W. (1993) Prolonged survival of transected nerve fibres in C57BL/Ola mice is an intrinsic characteristic of the axon. J. Neurocytol. 22, 311–321.

    Article  PubMed  CAS  Google Scholar 

  • Hafezparast M., Klocke R., Ruhrberg C., et al. (2003) Mutations in dynein link motor neuron degeneration to defects in retrograde transport. Science 300, 808–812.

    Article  PubMed  CAS  Google Scholar 

  • Hirano A., Donnenfeld H., Sasaki S., and Nakano I. (1984) Fine structural observations of neurofilamentous changes in amyotrophic lateral sclerosis. J. Neuropathol. Exp. Neurol. 43, 461–470.

    PubMed  CAS  Google Scholar 

  • Kawabuchi M., He J. W., Ting L. W., Zhou C. J., Wang S., and Hirata K. (2000) Morphological features of nerve terminal degeneration as part of the remodeling process in the motor endplate in adult muscles. Ultrastruct. Pathol. 24, 279–289.

    Article  PubMed  CAS  Google Scholar 

  • Kawamura Y., Dyck P. J., Shimono M., Okazaki H., Tateishi J., and Doi H. (1981) Morphometric comparison of the vulnerability of peripheral motor and sensory neurons in amyotrophic lateral sclerosis. J. Neuropathol. Exp. Neurol. 40, 667–675.

    PubMed  CAS  Google Scholar 

  • Kokubo Y., Kuzuhara S., Narita Y., et al. (1999) Accumulation of neurofilaments and SOD1-immunoreactive products in a patient with familial amyotrophic lateral sclerosis with I113T SOD1 mutation. Arch. Neurol. 56, 1506–1508.

    Article  PubMed  CAS  Google Scholar 

  • Krajewski S., Tanaka S., Takayama S., Schibler M. J., Fenton W., and Reed J. C. (1993) Investigation of the subcellular distribution of the bcl-2 oncoprotein: residence in the nuclear envelope, endoplasmic reticulum, and outer mitochondrial membranes. Canc. Res. 53, 4701–4714.

    CAS  Google Scholar 

  • LaMonte B. H., Wallace K. E., Holloway B. A., et al. (2002) Disruption of dynein/dynactin inhibits axonal transport in motor neurons causing late-onset progressive degeneration. Neuron 34, 715–727.

    Article  PubMed  CAS  Google Scholar 

  • Liu J., Lillo C., Jonsson P. A., et al. (2004) Toxicity of familial ALS-linked SOD1 mutants from selective recruitment to spinal mitochondria. Neuron 43, 5–17.

    Article  PubMed  CAS  Google Scholar 

  • Lunn E. R., Perry V. H., Brown M. C., Rosen H., and Gordon S. (1989) Absence of Wallerian degeneration does not hinder regeneration in peripheral nerve. Eur. J. Neurosci. 1, 27–33.

    Article  PubMed  Google Scholar 

  • Mack T. G., Reiner M., Beirowski B., et al. (2001) Wallerian degeneration of injured axons and synapses is delayed by a Ube4b/Nmnat chimeric gene. Nat. Neurosci. 4, 1199–1206.

    Article  PubMed  CAS  Google Scholar 

  • Mi W., Conforti L., and Coleman M. P. (2002) Genotyping methods to detect a unique neuroprotective factor (Wld(s)) for axons. J. Neurosci. Meth. 113, 215–218.

    Article  CAS  Google Scholar 

  • Morris R. L. and Hollenbeck P. J. (1995) Axonal transport of mitochondria along microtubules and F-actin in living vertebrate neurons. J. Cell Biol. 131, 1315–1326.

    Article  PubMed  CAS  Google Scholar 

  • Nangaku M., Sato-Yoshitake R., Okada Y., et al. (1994) KIF1B, a novel microtubule plus end-directed monomeric motor protein for transport of mitochondria. Cell 79, 1209–1220.

    Article  PubMed  CAS  Google Scholar 

  • Pardo C. A., Xu Z. S., Borchelt D. R., Price D. L., Sisodia S. S., and Cleveland D. W. (1995) Superoxide-dismutase is an abundant component in cell-bodies, dendrites, and axons of motor-neurons and in a subset of other neurons. Proc. Natl. Acad. Sci. USA 92, 954–958.

    Article  PubMed  CAS  Google Scholar 

  • Pasinelli P., Belford M. E., Lennon N., et al. (2004) Amyotrophic lateral sclerosis-associated SOD1 mutant proteins bind and aggregate with Bcl-2 in spinal cord mitochondria. Neuron 43, 19–30.

    Article  PubMed  CAS  Google Scholar 

  • Perry V. H., Brown M. C., Lunn E. R., Tree P., and Gordon S. (1990) Evidence that very slow wallerian degeneration in C57BL/Ola mice is an intrinsic property of the peripheral nerve. Eur. J. Neurosci. 2, 802–808.

    Article  PubMed  Google Scholar 

  • Rao M. V., Garcia M. L., Miyazaki Y., et al. (2002) Gene replacement in mice reveals that the heavily phosphorylated tail of neurofilament heavy subunit does not affect axonal caliber or the transit of cargoes in slow axonal transport. J. Cell Biol. 158, 681–693.

    Article  PubMed  CAS  Google Scholar 

  • Rosen D. R., Siddique T., Patterson D., et al. (1993) Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 362, 59–62.

    Article  PubMed  CAS  Google Scholar 

  • Rouleau G. A., Clark A. W., Rooke K., et al. (1996) SOD1 mutation is associated with accumulation of neurofilaments in amyotrophic lateral sclerosis. Ann. Neurol. 39, 128–131.

    Article  PubMed  CAS  Google Scholar 

  • Samsam M., Mi W., Wessig C., et al. (2003) The Wlds mutation delays robust loss of motor and sensory axons in a genetic model for myelin-related axonopathy. J. Neurosci. 23, 2833–2839.

    PubMed  CAS  Google Scholar 

  • Shibata N., Hirano A., Kobayashi M., et al. (1996) Intense superoxide dismutase-1 immunoreactivity in intracytoplasmic hyaline inclusions of familial amyotrophic lateral sclerosis with posterior column involvement. J. Neuropathol. Exp. Neurol. 55, 481–490.

    PubMed  CAS  Google Scholar 

  • Waller A. V. (1850) Experiments on the section of glosso-pharyngeal and hypoglossal nerves of the frog, and observations on the alterations produced thereby in the structure of their primitive fibres. Phil. Trans. R. Soc. Lond. B. Biol. Sci. 140, 423–429.

    Google Scholar 

  • Wang M. S., Davis A. A., Culver D. G., and Glass J. D. (2002) Wlds mice are resistant to paclitaxel (taxol) neuropathy. Ann. Neurol. 52, 442–447.

    Article  PubMed  Google Scholar 

  • Wang M. S., Fang G., Culver D. G., Davis A. A., Rich M. M., and Glass J. D. (2001b) The Wlds protein protects against axonal degeneration: a model of gene therapy for peripheral neuropathy. Ann. Neurol. 50, 773–779.

    Article  PubMed  CAS  Google Scholar 

  • Wang M., Wu Y., Culver D. G., and Glass J. D. (2001a) The gene for slow Wallerian degeneration (Wld(s)) is also protective against vincristine neuropathy. Neurobiol. Dis. 8, 155–161.

    Article  PubMed  CAS  Google Scholar 

  • Williamson T. L., Bruijn L. I., Zhu Q. Z., et al. (1998) Absence of neurofilaments reduces the selective vulnerability of motor neurons and slows disease caused by a familial amyotrophic lateral sclerosis-linked superoxide dismutase 1 mutant. Proc. Natl. Acad. Sci. USA 95, 9631–9636.

    Article  PubMed  CAS  Google Scholar 

  • Williamson T. L. and Cleveland D. W. (1999) Slowing of axonal transport is a very early event in the toxicity of ALS-linked SOD1 mutants to motor neurons. Nat. Neurosci. 2, 50–56.

    Article  PubMed  CAS  Google Scholar 

  • Wong P. C., Pardo C. A., Borchelt D. R., et al. (1995) An adverse property of a familial ALS-linked SOD1 mutation causes motor-neuron disease characterized by vacuolar degeneration of mitochondria. Neuron 14, 1105–1116.

    Article  PubMed  CAS  Google Scholar 

  • Yin X., Kidd G. J., Pioro E. P., et al. (2004) Dysmyelinated lower motor neurons retract and regenerate dysfunctional synaptic terminals. J. Neurosci. 24, 3890–3898.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Don W. Cleveland.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vande Velde, C., Garcia, M.L., Yin, X. et al. The neuroprotective factor Wlds does not attenuate mutant SOD1-mediated motor neuron disease. Neuromol Med 5, 193–203 (2004). https://doi.org/10.1385/NMM:5:3:193

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/NMM:5:3:193

Index Entries

Navigation