NeuroMolecular Medicine

, Volume 4, Issue 1–2, pp 59–72 | Cite as

Protein accumulation in traumatic brain injury

  • Douglas H. Smith
  • Kunihiro Uryu
  • Kathryn E. Saatman
  • John Q. Trojanowski
  • Tracy K. McIntosh
Article

Abstract

Traumatic brain injury (TBI) is one of the most devastating diseases in our society, accounting for a high percentage of mortality and disability. A major consequence of TBI is the rapid and long-term accumulation of proteins. This process largely reflects the interruption of axonal transport as a result of extensive axonal injury. Although many proteins are found accumulating after TBI, three have received particular attention; β-amyloid precursor protein and its proteolytic products, amyloid-β (Aβ) peptides, neurofilament proteins, and synuclein proteins. Massive coaccumulations of all of these proteins are found in damaged axons throughout the white matter after TBI. Additionally, these proteins form aggregates in other neuronal compartments and in brain parenchyma after brain trauma. Interestingly, TBI is also an epigenetic risk factor for developing neurodegenerative disorders, such as Alzheimer’s disease and Parkinson’s disease. Here, the similarities and differences of these accumulations with pathologies of neurodegenerative diseases will be explored. In addition, the potential deleterious roles of protein accumulations on functional outcome and progressive neurodegeneration following TBI will be examined.

Index Entries

Traumatic brain injury TBI, brain trauma diffuse axonal injury DAI, amyloid precursor protein APP, amyloid-β Aβ neurofilament proteins synuclein proteins accumulation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams J. H., Graham D. I., and Gennarelli T. A. (1991) Diffuse axonal injury in non-missile head injury. J. Neurol. Neurosurg. Psychiatry 54, 481–483.PubMedGoogle Scholar
  2. Adams J. H., Doyle D., Ford I., et al. (1989) Diffuse axonal injury in head injury: definition, diagnosis, and grading. Histopathology 15, 49–59.PubMedGoogle Scholar
  3. Adams J. H., Graham D. I., Murray L. S., and Scott G. (1982) Diffuse axonal injury due to nonmissile head injury in humans: an analysis of 45 cases. Ann. Neurol. 12, 557–563.PubMedCrossRefGoogle Scholar
  4. Arawaka S., Saito Y., Murayama S., and Mori H. (1998) Lewy body in neurodegeneration with brain iron accumulation type 1 is immunoreactive for alpha-synuclein. Neurology 51, 887–889.PubMedGoogle Scholar
  5. Arima K., Ueda K., Sunohara N., et al. (1998) Immunoelectron-microscopic demonstration of NACP/alpha-synuclein-epitopes on the filamentous component of Lewy bodies in Parkinson’s disease and in dementia with Lewy bodies. Brain Res. 808, 93–100.PubMedCrossRefGoogle Scholar
  6. Auluck P. K., Chan H. Y., Trojanowski J. Q., Lee V. M., and Bonini N. M. (2002) Chaperone suppression of alpha-synuclein toxicity in a Drosophila model for Parkinson’s disease. Science 295, 865–868.PubMedCrossRefGoogle Scholar
  7. Baba M., Nakajo S., Tu P. H., et al. (1998) Aggregation of alpha-synuclein in Lewy bodies of sporadic Parkinson’s disease and dementia with Lewy bodies. Am. J. Pathol. 152, 879–884.PubMedGoogle Scholar
  8. Ben Shlomo Y. (1997) The epidemiology of Parkinson’s disease. Baillieres Clin. Neurol. 6, 55–68.Google Scholar
  9. Betarbet R., Sherer T. B., MacKenzie G., et al. (2000) Chronic systemic pesticide exposure reproduces features of Parkinson’s disease. Nat. Neurosci 3, 1301–1306.PubMedCrossRefGoogle Scholar
  10. Blumbergs P. C., Scott G., Manavis J., et al. (1995) Axonal injury in longterm survivors of traumatic head injury. J. Neurotrauma 12, 353.Google Scholar
  11. Braak H., Del Tredici K., Rub U., et al. (2003) Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol. Aging 24, 197–211.PubMedCrossRefGoogle Scholar
  12. Braak H., Sandmann-Keil D., Gai W., and Braak E. (1999) Extensive axonal Lewy neurites in Parkinson’s disease: a novel pathological feature revealed by alpha-synuclein immunocytochemistry. Neurosci. Lett. 265, 67–69.PubMedCrossRefGoogle Scholar
  13. Bramlett H. M., Kraydieh S., Green E. J., and Dietrich W. D. (1997) Temporal and regional patterns of axonal damage following traumatic brain injury: a beta-amyloid precursor protein immunocytochemical study in rats. J. Neuropathol. Exp. Neurol. 56, 1132–1141.PubMedGoogle Scholar
  14. Chen X.-H., Meaney D. F., Xu B.-N., et al. (1999) Evolution of neurofilament subtype accumulation in axons following diffuse brain injury in the pig. J. Neuropathol. Exp. Neurol. 58, 588–596.PubMedGoogle Scholar
  15. Christman C. W., Grady M. S., Walker S. A., Holloway K. L., and Povlishock J. T. (1994) Ultrastructural studies of diffuse axonal injury in humans. J. Neurotrauma 11, 173–186.PubMedGoogle Scholar
  16. Ciallella J. R., Ikonomovic M. D., Paljug W. R., et al. (2002) Changes in expression of amyloid precursor protein and interleukin-1beta after experimental traumatic brain injury in rats. J. Neurotrauma 19, 1555–1567.PubMedCrossRefGoogle Scholar
  17. Clark R. S.B., Chen M., Kochanek P. M., et al. (2001) Detection of single- and double-strand DNA breaks after traumatic brain injury in rats: comparison of in situ labeling techniques using DNA polymerase I, the Klenow fragment of DNA polymerase I, and terminal deoxynucleotidyl transferase. J. Neurotrauma 18, 675–689.PubMedCrossRefGoogle Scholar
  18. Conway K. A., Harper J. D., and Lansbury P. T. (1998) Accelerated in vitro fibril formation by a mutant alpha-synuclein linked to early-onset Parkinson disease. Nat. Med. 4, 1318–1320.PubMedCrossRefGoogle Scholar
  19. Cote F., Collard J. F., and Julien J.-P. (1993) Progressive neuronopathy in transgenic mice expressing the human neurofilament heavy gene: A mouse model of amyotrophic lateral sclerosis. Cell 73, 35–46.PubMedCrossRefGoogle Scholar
  20. De Strooper B., Saftig P., Craessaerts K., et al. (1998) Deficiency of presenilin-1 inhibits the normal cleavage of amyloid precursor protein. Nature 391, 387–390.PubMedCrossRefGoogle Scholar
  21. DeKosky S. T., Goss J. R., Miller P. D., et al. (1994) Upregulation of nerve growth factor following cortical trauma. Exp. Neurol. 130, 173–177.PubMedCrossRefGoogle Scholar
  22. Duda J. E., Giasson B. I., Mabon M. E., Lee V. M., and Trojanowski J. Q. (2002) Novel antibodies to synuclein show abundant striatal pathology in Lewy body diseases. Ann. Neurol. 52, 205–210.PubMedCrossRefGoogle Scholar
  23. Emmerling M. R., Morganti-Kossmann M. C., Kossmann T., et al. (2000) Traumatic brain injury elevates the Alzheimer’s amyloid peptide A beta 42 in human CSF. A possible role for nerve cell injury. Ann. N.Y. Acad. Sci. 903, 118–122.PubMedCrossRefGoogle Scholar
  24. Esler W. P. and Wolfe M. S. (2001) A portrait of Alzheimer secretases—new features and familiar faces. Science 293, 1449–1454.PubMedCrossRefGoogle Scholar
  25. Eyer J. and Peterson A. (1994) Neurofilament-deficient axon and perikaryal aggregates in viable transgenic mice expressing a neurofilament-beta-galactosidase fusion protein. Neuron 12, 389–405.PubMedCrossRefGoogle Scholar
  26. Factor S. A. and Weiner W. J. (1991) Prior history of head trauma in Parkinson’s disease. Mov. Disord. 6, 225–229.PubMedCrossRefGoogle Scholar
  27. Feany M. B. and Bender W. W. (2000) A Drosophila model of Parkinson’s disease. Nature 404, 394–398.PubMedCrossRefGoogle Scholar
  28. Franz G., Beer R., Kampfl A., et al. (2003) Amyloid beta 1–42 and tau in cerebrospinal fluid after severe traumatic brain injury. Neurology 60, 1457–1461.PubMedCrossRefGoogle Scholar
  29. Fujiwara H., Hasegawa M., Dohmae N., et al. (2002) alpha-Synuclein is phosphorylated in synucleinopathy lesions. Nat. Cell Biol. 4, 160–164.PubMedCrossRefGoogle Scholar
  30. Galvin J. E., Nakamura M., McIntosh T. K., et al. (2000) Neurofilament-rich intraneuronal inclusions exacerbate neurodegenerative sequelae of brain trauma in NFH/LacZ transgenic mice. Exp. Neurol. 165, 77–89.PubMedCrossRefGoogle Scholar
  31. Galvin J. E., Lee V. M. Y., Schmidt M. L., et al. (1999) Pathobiology of the Lewy body (LB); studies of purified LBS, monoclonal antibodies and LB-like inclusions in transgenic animal models. Adv. Neurol. 80, 313–324.PubMedGoogle Scholar
  32. Galvan V., Chen S., Lu D., et al. (2002) Caspase cleavage of members of the amyloid precursor family of proteins. J. Neurochem. 82, 283–294.PubMedCrossRefGoogle Scholar
  33. Gennarelli T. A. (1993) Mechanisms of brain injury. J. Emerg. Med. 11(supp 1), 5–11.PubMedGoogle Scholar
  34. Gentleman S. M., Nash M. J., Sweeting C. J., et al. (1993) β-amyloid precursor protein (β-APP) as a marker for axonal injury after head injury. Neurosci. Lett. 160, 134–144.CrossRefGoogle Scholar
  35. Giasson B. I., Duda J. E., Quinn S. M., et al. (2002) Neuronal alpha-synucleinopathy with severe movement disorder in mice expressing A53T human alpha-synuclein. Neuron 34, 521–533.PubMedCrossRefGoogle Scholar
  36. Giasson B. I., Duda J. E., Murray I. V., et al. (2000a) Oxidative damage linked to neurodegeneration by selective alpha-synuclein nitration in synucleinopathy lesions (comment). Science 290, 985–989.PubMedCrossRefGoogle Scholar
  37. Giasson B. I., Jakes R., Goedert M., et al. (2000b) A panel of epitope-specific antibodies detects protein domains distributed throughout human alpha-synuclein in Lewy bodies of Parkinson’s disease. J. Neurosci. Res. 59, 528–533.PubMedCrossRefGoogle Scholar
  38. Gorrie C., Oakes S., Duflou J., Blumbergs P., and Waite P. M. (2002) Axonal injury in children after motor vehicle crashes: extent, distribution, and size of axonal swellings using beta-APP immunohistochemistry. J. Neurotrauma 19, 1171–1182.PubMedCrossRefGoogle Scholar
  39. Gottlieb S. (2000) Head injury doubles the risk of Alzheimer’s disease. Br. Med. J. 321, 1100.CrossRefGoogle Scholar
  40. Grady M. S., McLaughlin M. R., Christman C. W., et al. (1993) The use of antibodies targeted against the neurofilament subunits for the detection of diffuse axonal injury in humans. J. Neuropathol. Exp. Neurol. 52, 143–152.PubMedGoogle Scholar
  41. Graham D. I., Gentleman S. M., Lynch A., and Roberts G. W. (1995) Distribution of β-amyloid protein in the brain following severe head injury. Neuropath. Appl. Neurobiol. 21, 27–34.Google Scholar
  42. Hamberger A., Huang Y. L., Zhu H., et al. (2003) Redistribution of neurofilaments and accumulation of beta-amyloid protein after brain injury by rotational acceleration of the head. J. Neurotrauma 20, 169–178.PubMedCrossRefGoogle Scholar
  43. Hartman R. E., Laurer H., Longhi L., et al. (2002) Apolipoprotein E4 influences amyloid deposition but not cell loss after traumatic brain injury in a mouse model of Alzheimer’s disease. J. Neurosci. 22, 10083–10087.PubMedGoogle Scholar
  44. Higuchi M., Lee V. M., and Trojanowski J. Q. (2002) Tau and axonopathy in neurodegenerative disorders. Neuromol. Med. 2, 131–150.CrossRefGoogle Scholar
  45. Huh J. W., Laurer H. L., Raghupathi R., Helfaer M. A., and Saatman K. E. (2002) Rapid loss and partial recovery of neurofilament immunostaining following focal brain injury in mice. Exp. Neurol. 175, 198–208.PubMedCrossRefGoogle Scholar
  46. Hurtig H. I., Trojanowski J. Q., Galvin J., et al. (2000) Alpha-synuclein cortical Lewy bodies correlate with dementia in Parkinson’s disease. Neurology 54, 1916–1921.PubMedGoogle Scholar
  47. Irizarry M. C., Growdon W., Gomez-Isla T., et al. (1998) Nigral and cortical Lewy bodies and dystrophic nigral neurites in Parkinson’s disease and cortical Lewy body disease contain alpha-synuclein immunoreactivity. J. Neuropathol. Exp. Neurol. 57, 334–337.PubMedGoogle Scholar
  48. Iwata A., Chen X. H., McIntosh T. K., Browne K. D., and Smith D. H. (2002) Long-term accumulation of amyloid-beta in axons following brain trauma without persistent upregulation of amyloid precursor protein genes. J. Neuropathol. Exp. Neurol. 61, 1056–1068.PubMedGoogle Scholar
  49. Jellinger K. A., Paulus W., Wrocklage C., and Litvan I. (2001) Effects of closed traumatic brain injury and genetic factors on the development of Alzheimer’s disease. Eur. J. Neurol. 8, 707–710.PubMedCrossRefGoogle Scholar
  50. Julien J. P., Couillard-Despres S., and Meier J. (1998) Transgenic mice in the study of ALS: the role of neurofilaments. Brain Pathol. 8, 759–769.PubMedCrossRefGoogle Scholar
  51. Julien J. P. and Mushynski W. E. (1998) Neurofilaments in health and disease. Prog. Nucleic Acid Res. Mol. Biol. 61, 1–23.PubMedGoogle Scholar
  52. Julien J. P. and Mushynski W. E. (1983) The distribution of phosphorylation sites among identified proteolytic fragments of mammalian neurofilaments. J. Biol. Chem. 258, 4019–4025.PubMedGoogle Scholar
  53. Kamal A., Almenar-Queralt A., LeBlanc J. F., Roberts E. A., and Goldstein L. S. (2001) Kinesin-mediated axonal transport of a membrane compartment containing beta-secretase and presenilin-1 requires APP. Nature 414, 643–648.PubMedCrossRefGoogle Scholar
  54. Kamal A., Stokin G. B., Yang Z., Xia C. H., and Goldstein L. S. (2000) Axonal transport of amyloid precursor protein is mediated by direct binding to the kinesin light chain subunit of kinesin-I. Neuron 28, 449–459.PubMedCrossRefGoogle Scholar
  55. Kanayama G., Takeda M., Morihara T., et al. (1997) Temporal and regional profiles of cytoskeletal protein accumulation in the rat brain following traumatic brain injury. Psychiatry Clin. Neurosci. 51, 157–165.PubMedGoogle Scholar
  56. Kruger R., Kuhn W., Muller T., et al. (1998) Ala30Pro mutation in the gene encoding alpha-synuclein in Parkinson’s disease. Nat. Genet. 18, 106–108.PubMedCrossRefGoogle Scholar
  57. Lambri M., Djurovic V., Kibble M., Cairns N., and Al Sarraj S. (2001) Specificity and sensitivity of betaAPP in head injury. Clin. Neuropathol. 20, 263–271.PubMedGoogle Scholar
  58. Langston J. W., Ballard P., Tetrud J. W., and Irwin I. (1983) Chronic Parkinsonism in humans due to a product of meperidine-analog synthesis. Science 219, 979–980.PubMedCrossRefGoogle Scholar
  59. Laurer H. L., Bareyre F. M., Lee V. M.Y., et al. (2001) Mild head injury increases the brain’s vulnerability to a second concussive impact. J. Neurosurg. 95, 859–870.PubMedGoogle Scholar
  60. Lees A. J. (1997) Trauma and Parkinson disease. Rev. Neurol. 153, 541–546.PubMedGoogle Scholar
  61. Lewen A., Li G. L., Nilsson P., Olsson Y., and Hillered L. (1995) Traumatic brain injury in rat produces changes of β-amyloid precursor protein immunoreactivity. NeuroReport 6, 357–360.PubMedCrossRefGoogle Scholar
  62. Liu P. K., Robertson C. S., and Valadka A. (2002) The association between neuronal nitric oxide synthase and neuronal sensitivity in the brain after brain injury. Ann. N. Y. Acad. Sci. 962, 226–241.PubMedGoogle Scholar
  63. Luth H. J., Holzer M., Gartner U., Staufenbiel M., and Arendt T. (2001) Expression of endothelial and inducible NOS-isoforms is increased in Alzheimer’s disease, in APP23 transgenic mice and after experimental brain lesion in rat: evidence for an induction by amyloid pathology. Brain Res. 913, 57–67.PubMedCrossRefGoogle Scholar
  64. Masliah E., Rockenstein E., Veinbergs I., et al. (2000) Dopaminergic loss and inclusion body formation in alpha-synuclein mice: implications for neurodegenerative disorders. Science 287, 1265–1269.PubMedCrossRefGoogle Scholar
  65. Maxwell W. L., Povlishock J. T., and Graham D.I. (1997) A mechanistic analysis of nondisruptive axonal injury: A review. J. Neurotrauma 14, 419–440.PubMedGoogle Scholar
  66. McKenzie K. J., McLellan D. R., Gentleman S. M., et al. (1996) Is beta-APP a marker of axonal damage in short-surviving head injury? Acta Neuropathol. 92, 608–613.PubMedCrossRefGoogle Scholar
  67. Meaney D. F., Ross D. T., Winkelstein B. A., et al. (1994) Modification of the cortical impact model to produce axonal injury in the rat cerebral cortex. J. Neurotrauma 11, 599–612.PubMedGoogle Scholar
  68. Mesenge C., Charriaut-Marlangue C., Verrecchia C., et al. (1998) Reduction of tyrosine nitration after N(omega)-nitro-L-arginine-methylester treatment of mice with traumatic brain injury. Eur. J. Pharmacol. 353, 53–57.PubMedCrossRefGoogle Scholar
  69. Morfini G., Pigino G., Beffert U., Busciglio J., and Brady S. T. (2002) Fast axonal transport misregulation and Alzheimer’s disease. Neuromol. Med. 2, 89–99.CrossRefGoogle Scholar
  70. Murai H., Pierce J. E.S., Raghupathi R., et al. (1998) Two-fold overexpression of human β-amyloid precursor proteins in transgenic mice does not affect the neuromotor, cognitive, or neurodegenerative sequelae following experimental brain injury. J. Comp. Neurol. 392, 428–438.PubMedCrossRefGoogle Scholar
  71. Nakagawa Y., Reed L., Nakamura M., et al. (2000) Brain trauma in aged transgenic mice induces regression of established Aβ deposits. Exp. Neurol. 163, 244–252.PubMedCrossRefGoogle Scholar
  72. Nakagawa Y., Nakamura M., McIntosh T. K., et al. (1999) Traumatic brain injury in young amyloid-β peptide overexpressing transgenic mice induces marked ipsilateral hippocampal atrophy and dimininished Aβ deposition during aging. J. Comp. Neurol. 411, 390–398.PubMedCrossRefGoogle Scholar
  73. Nakamura M., Saatman K. E., Galvin J. E., et al. (1999) Increased vulnerability of NFH-LacZ transgenic mouse to traumatic brain injury-induced behavioral deficits and cell loss. J. Cereb. Blood Flow Metab. 19, 762–770.PubMedCrossRefGoogle Scholar
  74. Nayernouri T. (1985) Posttraumatic parkinsonism. Surg. Neurol. 24, 263–264.PubMedCrossRefGoogle Scholar
  75. Nemetz P. N., Leibson C., Naessens J. M., et al. (1999) Traumatic brain injury and time to onset of Alzheimer’s disease: a population-based study. Am. J. Epidemiol. 149, 32–40.PubMedGoogle Scholar
  76. Newell K. L., Boyer P., Gomez-Tortosa E., et al. (1999) Alpha-synuclein immunoreactivity is present in axonal swellings in neuroaxonal dystrophy and acute traumatic brain injury. J. Neuropathol. Exp. Neurol. 58, 1263–1268.PubMedGoogle Scholar
  77. Nixon R. A., Paskevich P. A., Sihag R. K., and Thayer C. Y. (1994) Phosphorylation on carboxyl terminus domains of neurofilament proteins in retinal ganglion cell neurons in vivo: influences on regional neurofilament accumulation, interneurofilament spacing, and axon caliber. J. Cell Biol. 126, 1031–1046.PubMedCrossRefGoogle Scholar
  78. Norris E. H., Giasson B. I., Ischiropoulos H., and Lee V. M.Y. (2003) Effects of oxidative and nitrative challenges on alpha-synuclein fibrillogenesis involve distinct mechanisms of protein modifications. J. Biol. Chem., 278, 27230–27240.PubMedCrossRefGoogle Scholar
  79. Nunan J. and Small D. H. (2000) Regulation of APP cleavage by alpha-, beta- and gamma-secretases. FEBS Lett. 483, 6–10.PubMedCrossRefGoogle Scholar
  80. Okonkwo D. O., Pettus E. H., Moroi J., and Povlishock J. T. (1998) Alteration of the neurofilament sidearm and its relation to neurofilament compaction occurring with traumatic axonal injury. Brain Res. 784, 1–6.PubMedCrossRefGoogle Scholar
  81. Paxinou E., Chen Q., Weisse M., et al. (2001) Induction of alpha-synuclein aggregation by intracellular nitrative insult. J. Neurosci. 21, 8053–8061.PubMedGoogle Scholar
  82. Perrone C. C., Pernas-Alonso R., and di Porzio U. (2001) Neurofilament homeostasis and motoneurone degeneration. BioEssays 23, 24–33.CrossRefGoogle Scholar
  83. Pettus E. H. and Povlishock J. T. (1996) Characterization of a distinct set of intra-axonal ultrastructural changes associated with traumatically induced alteration in axolemmal permeability. Brain Res. 722, 1–11.PubMedCrossRefGoogle Scholar
  84. Pierce J. E.S., Trojanowski J. Q., Graham D. I., Smith D. H., and McIntosh T. K. (1996) Immunohistochemical characterization of alterations in the distribution of amyloid precursor proteins and amyloid β peptide following experimental brain injury in the rat. J. Neurosci. 16, 1083–1090.PubMedGoogle Scholar
  85. Pilz P. (1983) Axonal injury in head injury. Acta Neurochir. (Wein) 32, 119–123.Google Scholar
  86. Polymeropoulos M. H., Lavedan C., Leroy E., et al. (1997) Mutation in the alpha-synuclein gene identified in families with Parkinson’s disease. Science 276, 2045–2047.PubMedCrossRefGoogle Scholar
  87. Posmantur R. M., Newcomb J. K., Kampfl A., and Hayes R. L. (2000) Light and confocal microscopic studies of evolutionary changes in neurofilament proteins following cortical impact injury in the rat. Exp. Neurol. 161, 15–26.PubMedCrossRefGoogle Scholar
  88. Posmantur R., Hayes R. L., Dixon C. E., and Taft W. C. (1994) Neurofilament 68 and Neurofilament 200 protein levels decrease after traumatic brain injury. J. Neurotrauma 11, 533–545.PubMedCrossRefGoogle Scholar
  89. Povlishock J. T. and Becker D. P. (1985) Fate of reactive axonal swellings induced by head injury. Lab. Invest. 52, 540–552.PubMedGoogle Scholar
  90. Povlishock J. T., Marmarou A., McIntosh T. K., Trojanowski J. Q., and Moroi J. (1997) Impact acceleration injury in the rat: Evidence for focal axolemmal change and related neurofilament sidearm alteration. J. Neuropathol. Exp. Neurol. 56, 347–359.PubMedGoogle Scholar
  91. Pratico D., Reiss P., Tang L. X., et al. (2002) Local and systemic increase in lipid peroxidation after moderate experimental traumatic brain injury. J. Neurochem. 80, 894–898.PubMedCrossRefGoogle Scholar
  92. Raby C. A., Morganti-Kossmann M. C., Kossmann T., et al. (1998) Traumatic brain injury increases beta-amyloid peptide 1–42 in cerebrospinal fluid. J. Neurochem. 71, 2505–2509.PubMedCrossRefGoogle Scholar
  93. Rasmusson D. X., Brandt J., Martin D. B., and Folstein M. F. (1995) Head injury as a risk factor in Alzheimer’s disease. Brain Injury 3, 213–219.Google Scholar
  94. Reichard R. R., White C. L., III, Hladik C. L., and Dolinak D. (2003) Beta-amyloid precursor protein staining in nonhomicidal pediatric medicolegal autopsies. J. Neuropathol. Exp. Neurol. 62, 237–247.PubMedGoogle Scholar
  95. Roberts G. W., Gentleman S. M., Lynch A., and Graham D. I. (1991) βA4 amyloid protein deposition in brain after head trauma. Lancet 338, 1422–1423.PubMedCrossRefGoogle Scholar
  96. Saatman K. E., Abai B., Grosvenor A., et al. (2003) Traumatic axonal injury results in biphasic calpain activation and retrograde transport impairment in mice. J. Cereb. Blood Flow Metab. 23, 34–42.PubMedCrossRefGoogle Scholar
  97. Saatman K. E., Graham D. I., and McIntosh T. K. (1998) The neuronal cytoskeleton is at risk after mild and moderate brain injury. J. Neurotrauma 15, 1047–1058.PubMedGoogle Scholar
  98. Schmidt M. L., Zhukareva V., Newell K. L., Lee V. M., and Trojanowski J. Q. (2001) Tau isoform profile and phosphorylation state in dementia pugilistica recapitulate Alzheimer’s disease. Acta Neuropathol. (Berlin) 101, 518–524.Google Scholar
  99. Schofield P. W., Tang M., Marder K., et al. (1997) Alzheimer’s disease after remote head injury: an incidence study. J. Neurol. Neurosurg. Psychiat. 62, 119–124.PubMedGoogle Scholar
  100. Selkoe D. J. and Wolfe M. S. (2000) In search of gamma-secretase: presenilin at the cutting edge. Proc. Natl. Acad. Sci USA 97, 5690–5692.PubMedCrossRefGoogle Scholar
  101. Sherriff F. E., Bridges L. R., and Sivaloganathan S. (1994) Early detection of axonal injury after human head trauma using immunocytochemistry for β-amyloid precursor protein. Acta Neuropathol. 87, 55–62.PubMedGoogle Scholar
  102. Smith D. H., Chen X. H., Iwata A., and Graham D. I. (2003) Amyloid beta accumulation in axons after traumatic brain injury in humans. J. Neurosurg. 98, 1072–1077.PubMedGoogle Scholar
  103. Smith D. H. and Meaney D. F. (2000) Axonal damage in traumatic brain injury. Neuroscientist 6, 483–495.Google Scholar
  104. Smith D. H., Chen X.-H., Nonaka M., et al. (1999) Accumulation of amyloid β and tau and the formation of neurofilament inclusions following diffuse brain injury in the pig. J. Neuropathol. Exp. Neurol. 58, 982–992.PubMedCrossRefGoogle Scholar
  105. Smith D. H., Nakamura M., McIntosh T. K., et al. (1998) Brain trauma induces massive hippocampal neuron death linked to a surge in β-amyloid levels in mice overexpressing mutant amyloid precursor protein. Am. J. Pathol. 153, 1005–1110.PubMedGoogle Scholar
  106. Soriano S., Lu D. C., Chandra S., Pietrzik C. U., and Koo E. H. (2001) The amyloidogenic pathway of amyloid precursor protein (APP) is independent of its cleavage by caspases. J. Biol. Chem. 276, 29045–29050.PubMedCrossRefGoogle Scholar
  107. Sosin D. M., Sniezek J. E., and Waxweiler R. J. (1995) Trends in death associated with traumatic brain injury, 1979 through 1992. JAMA 273, 1778–1780.PubMedCrossRefGoogle Scholar
  108. Sosin D. M., Sacks J. J., and Smith S. M. (1989) Head injury-associated deaths in the United States from 1979 to 1986. JAMA 262, 2251–2255.PubMedCrossRefGoogle Scholar
  109. Souza J. M., Giasson B. I., Chen Q., Lee V. M., and Ischiropoulos H. (2000a) Dityrosine cross-linking promotes formation of stable alpha-synuclein polymers. Implication of nitrative and oxidative stress in the pathogenesis of neurodegenerative synucleinopathies. J. Biol. Chem. 275, 18344–18349.PubMedCrossRefGoogle Scholar
  110. Souza J. M., Giasson B. I., Lee V. M., and Ischiropoulos H. (2000b) Chaperone-like activity of synucleins. FEBS Lett. 474, 116–119.PubMedCrossRefGoogle Scholar
  111. Spillantini M. G., Crowther R. A., Jakes R., Hasegawa M., and Goedert M. (1998) alpha-Synuclein in filamentous inclusions of Lewy bodies from Parkinson’s disease and dementia with Lewy bodies. Proc. Natl. Acad. Sci. USA 95, 6469–6473.PubMedCrossRefGoogle Scholar
  112. Spillantini M. G., Schmidt M. L., Lee V. M., et al. (1997) Alpha-synuclein in Lewy bodies. Nature 388, 839–840.PubMedCrossRefGoogle Scholar
  113. Stefanis L., Kholodilov N., Rideout H. J., Burke R. E., and Greene L. A. (2001) Synuclein-1 is selectively up-regulated in response to nerve growth factor treatment in PC12 cells. J. Neurochem. 76, 1165–1176.PubMedCrossRefGoogle Scholar
  114. Stern M. B. (1991) Head trauma as a risk factor for Parkinson’s disease. Mov. Disord. 6, 95–97.PubMedCrossRefGoogle Scholar
  115. Stone J. R., Okonkwo D. O., Singleton R. H., et al. (2002) Caspase-3-mediated cleavage of amyloid precursor protein and formation of amyloid Beta peptide in traumatic axonal injury. J. Neurotrauma 19, 601–614.PubMedCrossRefGoogle Scholar
  116. Stone J. R., Singleton R. H., and Povlishock J. T. (2001) Intra-axonal neurofilament compaction does not evoke local axonal swelling in all traumatically injured axons. Exp. Neurol. 172, 320–331.PubMedCrossRefGoogle Scholar
  117. Tanner C. M., Ottman R., Goldman S. M., et al. (1999) Parkinson disease in twins: an etiologic study. JAMA 281, 341–346.PubMedCrossRefGoogle Scholar
  118. Teasdale G. M., Nicoll J. A., Murray G., and Fiddes M. (1997) Association of apolipoprotein E polymorphism with outcome after head injury. Lancet 350, 1069–1071.PubMedCrossRefGoogle Scholar
  119. Thiruchelvam M., Richfield E. K., Baggs R. B., Tank A. W., and Cory-Slechta D. A. (2000) The nigrostriatal dopaminergic system as a preferential target of repeated exposures to combined paraquat and maneb: implications for Parkinson’s disease. J. Neurosci. 20, 9207–9214.PubMedGoogle Scholar
  120. Tokuda T., Ikeda S., Yanagisawa N., Ihara Y., and Glenner G. G. (1991) Re-examination of ex-boxers’ brains using immunohistochemistry with antibodies to amyloid β-protein and tau protein. Acta Neuropathol. 82, 281–285.CrossRefGoogle Scholar
  121. Trojanowski J. Q. and Lee V. M. (2002) Parkinson’s disease and related synucleinopathies are a new class of nervous system amyloidoses. Neurotoxicology 23, 457–460.PubMedCrossRefGoogle Scholar
  122. Trojanowski J. Q., Schmidt M. L., Shin R. W., et al. (1993) Altered Tau and neurofilament proteins in neurodegenerative diseases: diagnostic implications for Alzheimer’s disease and Lewy body dementias. Brain Pathol. 3, 45–54.PubMedGoogle Scholar
  123. Tu P. H., Galvin J. E., Baba M., et al. (1998) Glial cytoplasmic inclusions in white matter oligodendrocytes of multiple system atrophy brains contain insoluble alpha-synuclein. Ann. Neurol. 44, 415–422.PubMedCrossRefGoogle Scholar
  124. Tu P.-H., Robinson K. A., Snoo F., et al. (1997) Selective degeneration of Purkinje cells with Lewy body-like inclusions in aged NFHLACZ transgenic mice. J. Neurosci. 17, 1064–1074.PubMedGoogle Scholar
  125. Tu P.-H., Elder G., Lazzarini R. A., et al. (1995) Over-expression of the human NFM subunit in transgenic mice modifies the level of endogenous NFL and the phosphorylation state of NFH subunits. J. Cell Biol. 129, 1629–1640.PubMedCrossRefGoogle Scholar
  126. Uryu K., Giasson B. I., Longhi L., et al. (2003) Age-dependent synuclein pathology following traumatic brain injury in mice. Exp. Neurol, in press.Google Scholar
  127. Uryu K., Laurer H., McIntosh T., et al. (2002) Repetitive mild brain trauma accelerates Abeta deposition, lipid peroxidation, and cognitive impairment in a transgenic mouse model of Alzheimer amyloidosis. J. Neurosci. 22, 446–454.PubMedGoogle Scholar
  128. Uversky V. N., Li J., and Fink A. L. (2001) Evidence for a partially folded intermediate in alpha-synuclein fibril formation. J. Biol. Chem. 276, 10737–10744.PubMedCrossRefGoogle Scholar
  129. Van Den Heuvel C., Finnie J. W., Blumbergs P. C., et al. (2000) Upregulation of neuronal amyloid precursor protein (APP) and APP mRNA following magnesium sulphate (MgSO4) therapy in traumatic brain injury. J. Neurotrauma 17, 1041–1053.CrossRefGoogle Scholar
  130. Vassar R., Bennett B. D., Babu-Khan S., et al. (1999) Beta-secretase cleavage of Alzheimer’s amyloid precursor protein by the transmembrane aspartic protease BACE. Science 286, 735–741.PubMedCrossRefGoogle Scholar
  131. Xu Z., Cork L. C., Griffin J. W., and Cleveland D. W. (1993) Increased expression of neurofilament subunit NF-L produces morphological alterations that resemble the pathology of human motor neuron disease. Cell 73, 23–33.PubMedCrossRefGoogle Scholar
  132. Yaghmai A. and Povlishock J. T. (1992) Traumatically induced reactive change as visualized through the use of monoclonal antibodies targeted to neurofilament subunits. J. Neuropathol. Exp. Neurol. 51, 158–176.PubMedGoogle Scholar

Copyright information

© Humana Press Inc 2003

Authors and Affiliations

  • Douglas H. Smith
    • 1
  • Kunihiro Uryu
    • 2
  • Kathryn E. Saatman
    • 1
  • John Q. Trojanowski
    • 2
    • 3
  • Tracy K. McIntosh
    • 1
    • 4
  1. 1.Department of NeurosurgeryUniversity of PennsylvaniaPhiladelphia
  2. 2.Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory MedicineUniversity of PennsylvaniaPhiladelphia
  3. 3.Institute on AgingUniversity of PennsylvaniaPhiladelphia
  4. 4.Veterans Administration Medical CenterPhiladelphia

Personalised recommendations