Skip to main content
Log in

Energetics and oxidative stress in synaptic plasticity and neurodegenerative disorders

  • Published:
NeuroMolecular Medicine Aims and scope Submit manuscript

Abstract

As in other cells, neurons use adenosine triphosphate (ATP) as an energy source to drive biochemical processes involved in various cell functions, and produce reactive oxygen species (ROS) as “by products” of oxidative phosphorylation. However, the electrical excitability and structural and synaptic complexity of neurons present unusual demands upon cellular systems that produce or respond to ATP and ROS. Mitochondria in axons and presynaptic terminals provide sources of ATP to drive the ion pumps that are concentrated in these structures to rapidly restore ion gradients following depolarization and neurotransmitter release. Mitochondria may also play important roles in the regulation of synaptic function because of their ability to regulate calcium levels and ROS production. ROS generated in response to synaptic activity are now known to contribute to the regulation of long-term structural and functional changes in neurons, and the best-known example is the nitric oxide radical. The high-energy demands of synapses, together with their high levels of ROS production, place them at risk during conditions of increased stress, which occur in aging, neurodegenerative disorders such as Alzheimer’s and Parkinson’s diseases, and after acute traumatic and ischemic insults. Energy depletion and/or increased oxidative damage to various synaptic proteins can result in a local dysregulation of calcium homeostasis and synaptic degeneration. Accordingly, recent studies have shown that dietary and pharmacological manipulations that improve energy efficiency and reduce oxyradical production can prevent synaptic degeneration and neuronal death in experimental models of neurodegenerative disorders. A better understanding of the molecular control of subcellular energy production and utilization, and of the functional relationships between energy metabolism, ion homeostasis, and cytoskeletal and vesicular dynamics, will provide novel insight into mechanisms of neuronal plasticity and disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abeliovich A., Schmitz Y., Farinas I., Choi-Lundberg D., Ho W. H., Castillo P. E., et al. (2000) Mice lacking alpha-synuclein display functional deficits in the nigrostriatal dopamine system. Neuron 25, 239–252.

    Article  PubMed  CAS  Google Scholar 

  • Auerbach J. M. and Segal M. (1997) Peroxide modulation of slow onset potentiation in rat hippocampus. J. Neurosci. 17, 8695–8701.

    PubMed  CAS  Google Scholar 

  • Bajjalieh S. M. and Scheller R. H. (1995) The biochemistry of neurotransmitter secretion. J. Biol. Chem. 270, 1971–1974.

    Article  PubMed  CAS  Google Scholar 

  • Blanc E. M., Kelly J. F., Mark R. J., Waeg G., and Mattson M. P. (1997) 4-Hydroxynonenal, an aldehydic product of lipid peroxidation, impairs signal transduction associated with muscarinic acetylcholine and metabotropic glutamate receptors: possible action on G alpha(q/11). J. Neurochem. 69, 570–580.

    Article  PubMed  CAS  Google Scholar 

  • Bohme G. A., Bon C., Stutzmann J. M., Doble A., and Blanchard J. C. (1991) Possible involvement of nitric oxide in long-term potentiation. Eur. J. Pharmacol. 199, 379–381.

    Article  PubMed  CAS  Google Scholar 

  • Bohme G. A., Bon C., Lemaire M., Reibaud M., Piot O., Stutzmann J. M., et al. (1993) Altered synaptic plasticity and memory formation in nitric oxide synthase inhibitor-treated rats. Proc. Natl. Acad. Sci. USA 90, 9191–9194.

    Article  PubMed  CAS  Google Scholar 

  • Boitier E., Rea R., and Duchen M. R. (1999) Mitochondria exert a negative feedback on the propagation of intracellular Ca2+ waves in rat cortical astrocytes. J. Cell Biol. 145, 795–808.

    Article  PubMed  CAS  Google Scholar 

  • Bootman M. D., Lipp P., and Berridge M. J. (2001) The organisation and functions of local Ca(2+) signals. J. Cell Sci. 114, 2213–2222.

    PubMed  CAS  Google Scholar 

  • Braun N., Schikorski T., and Zimmermann H. (1993) Cytoplasmic segregation and cytoskeletal organization in the electric catfish giant electromotoneuron with special reference to the axon hillock region. Neuroscience 52, 745–756.

    Article  PubMed  CAS  Google Scholar 

  • Brodin L., Bakeeva L., and Shupliakov O. (1999) Presynaptic mitochondria and the temporal pattern of neurotransmitter release. Philos. Trans. R. Soc. Lond. B Biol. Sci. 354, 365–372.

    Article  PubMed  CAS  Google Scholar 

  • Brorson J. R., Schumacker P. T., and Zhang H. (1999) Nitric oxide acutely inhibits neuronal energy production. The Committees on Neurobiology and Cell Physiology. J. Neurosci. 19, 147–158.

    PubMed  CAS  Google Scholar 

  • Bruce-Keller A. J., Umberger G., McFall R., and Mattson M. P. (1999) Food restriction reduces brain damage and improves behavioral outcome following excitotoxic and metabolic insults. Ann. Neurol. 45, 8–15.

    Article  PubMed  CAS  Google Scholar 

  • Buckman J. F. and Reynolds I. J. (2001) Spontaneous changes in mitochondrial membrane potential in cultured neurons. J. Neurosci. 21, 5054–5065.

    PubMed  CAS  Google Scholar 

  • Carelli V., Ross-Cisneros F. N., and Sadun A. A. (1999) Optic nerve degeneration and mitochondrial dysfunction: genetic and acquired optic neuropathies. Neurochem. Int. 40, 573–584.

    Article  Google Scholar 

  • Cattaneo E., Rigamonti D., Goffredo D., Zuccato C., Squitieri F., and Sipione S. (2001) Loss of normal huntingtin function: new developments in Huntington’s disease research. Trends Neurosci. 24, 182–188.

    Article  PubMed  CAS  Google Scholar 

  • Chapman P. F., Atkins C. M., Allen M. T., Haley J. E., and Steinmetz J. E. (1992) Inhibition of nitric oxide synthesis impairs two different forms of learning. Neuroreport 3, 567–570.

    Article  PubMed  CAS  Google Scholar 

  • Cheng B. and Mattson M. P. (1992) Glucose deprivation elicits neurofibrillary tangle-like antigenic changes in hippocampal neurons: Prevention by NGF and bFGF. Exp. Neurol. 117, 114–123.

    Article  PubMed  CAS  Google Scholar 

  • Cheng G., Yu Z., Zhou D., and Mattson M. P. (2002) Phosphatidylinositol-3-kinase—Akt and p42/p44 mitogen-activated protein kinases mediate neurotrophic and excitoprotective actions of a secreted form of amyloid precursor protein. Exp. Neurol. 175, 407–414.

    Article  PubMed  CAS  Google Scholar 

  • Chinopoulos C., Tretter L., Rozsa A., and Adam-Vizi V. (2000) Exacerbated responses to oxidative stress by an Na(+) load in isolated nerve terminals: the role of ATP depletion and rise of [Ca(2+)](i). J. Neurosci. 20, 2094–2103.

    PubMed  CAS  Google Scholar 

  • Chinopoulos C. and Adam-Vizi V. (2001) Mitochondria deficient in complex I activity are depolarized by hydrogen peroxide in nerve terminals: relevance to Parkinson’s disease. J. Neurochem. 76, 302–306.

    Article  PubMed  CAS  Google Scholar 

  • Colton C. A., Fagni L., and Gilbert D. (1989) The action of hydrogen peroxide on paired pulse and long-term potentiation in the hippocampus. Free Radic. Biol. Med. 7, 3–8.

    Article  PubMed  CAS  Google Scholar 

  • Cutler R. G., Pedersen W. A., Camandola S., Rothstein J. D., and Mattson M. P. (2002) Evidence that accumulation of ceramides and cholesterol esters mediates oxidative stress-induced death of motor neurons in ALS. Ann. Neurol. 52, 448–457.

    Article  PubMed  CAS  Google Scholar 

  • Davey G. P., Peuchen S., and Clark J. B. (1998) Energy thresholds in brain mitochondria. Potential involvement in neurodegeneration. J. Biol. Chem. 273, 12,753–12,757.

    Article  CAS  Google Scholar 

  • Dedov V. N., Armati P. J., and Roufogalis B. D. (2000) Three-dimensional organisation of mitochondrial clusters in regenerating dorsal root ganglion (DRG) neurons from neonatal rats: evidence for mobile mitochondrial pools. J. Peripher. Nerv. Syst. 5, 3–10.

    Article  PubMed  CAS  Google Scholar 

  • Duan W. and Mattson M. P. (1999) Dietary restriction and 2-deoxyglucose administration improve behavioral outcome and reduce degeneration of dopaminergic neurons in models of Parkinson’s disease. J. Neurosci. Res. 57, 195–206.

    Article  PubMed  CAS  Google Scholar 

  • Duan W., Rangnekar V., and Mattson M. P. (1999a) Par-4 production in synaptic compartments following apoptotic and excitotoxic insults: evidence for a pivotal role in mitochondrial dysfunction and neuronal degeneration. J. Neurochem. 72, 2312–2322.

    Article  PubMed  CAS  Google Scholar 

  • Duan W., Zhang Z., Gash D. M., and Mattson M. P. (1999b) Participation of prostate apoptosis response-4 in degeneration of dopaminergic neurons in models of Parkinson’s disease. Ann. Neurol. 46, 587–597.

    Article  PubMed  CAS  Google Scholar 

  • Farrell C. M., Mackey A. T., Klumpp L. M., and Gilbert S. P. (2002) The role of ATP hydrolysis for kinesin processivity. J. Biol. Chem. 277, 17,079–17,087.

    Article  CAS  Google Scholar 

  • Friel, D. D. (1999) Mitochondria as regulators of stimulus-evoked calcium signals in neurons. Cell Calcium 28, 307–316.

    Article  Google Scholar 

  • Gary, D. S. and Mattson, M. P. (2001) Integrin signaling via the PI3-kinase-Akt pathway increases neuronal resistance to glutamate-induced apoptosis. J. Neurochem. 76, 1485–1496.

    Article  PubMed  CAS  Google Scholar 

  • Geibel S., Barth A., Amslinger S., Jung A. H., Burzik C., Clarke R. J., et al. (2000) P(3)-[2-(4-hydroxyphenyl)-2-oxo]ethyl ATP for the rapid activation of the Na(+),K(+)-ATPase. Biophys. J. 79, 1346–1357.

    Article  PubMed  CAS  Google Scholar 

  • Gioio A. E., Eyman M., Zhang H., Lavina Z. S., Giuditta A., and Kaplan B. B. (2001) Local synthesis of nuclear-encoded mitochondrial proteins in the presynaptic nerve terminal. J. Neurosci. Res. 64, 447–453.

    Article  PubMed  CAS  Google Scholar 

  • Glazner G. W., Chan S. L., Lu C., and Mattson M. P. (2000) Caspase-mediated degradation of AMPA receptor subunits: a mechanism for preventing excitotoxic necrosis and ensuring apoptosis. J. Neurosci. 20, 3641–3649.

    PubMed  CAS  Google Scholar 

  • Gunawardena S. and Goldstein L. S. (2001) Disruption of axonal transport and neuronal viability by amyloid precursor protein mutations in Drosophila. Neuron 32, 389–401.

    Article  PubMed  CAS  Google Scholar 

  • Guo Z. H. and Mattson M. P. (2000) Neurotrophic factors protect cortical synaptic terminals against amyloid and oxidative stress-induced impairment of glucose transport, glutamate transport and mitochondrial function. Cereb. Cortex 10, 50–57.

    Article  PubMed  CAS  Google Scholar 

  • Guo Z. H., Ersoz A., Butterfield D. A., and Mattson M. P. (2000) Beneficial effects of dietary restriction on cerebral cortical synaptic terminals: preservation of glucose and glutamate transport and mitochondrial function after exposure to amyloid beta-peptide, iron, and 3-nitropropionic acid. J. Neurochem. 75, 314–320.

    Article  PubMed  CAS  Google Scholar 

  • Guo Z. H. and Mattson M. P. (2000) In vivo 2-deoxyglucose administration preserves glucose and glutamate transport and mitochondrial function in cortical synaptic terminals after exposure to amyloid beta-peptide and iron: evidence for a stress response. Exp. Neurol. 166, 173–179.

    Article  PubMed  CAS  Google Scholar 

  • Gurney M. E., Pu H., Chiu A. Y., Dal Canto M. C., Polchow C. Y., Alexander D. D., et al. (1994) Motor neuron degeneration in mice that express a human Cu,Zn superoxide dismutase mutation. Science 264, 1772–1775.

    Article  PubMed  CAS  Google Scholar 

  • Gurney M. E., Cutting F. B., Zhai P., Doble A., Taylor C. P., Andrus P. K., et al. (1996) Benefit of vitamin E, riluzole, and gabapentin in a transgenic model of familial amyotrophic lateral sclerosis. Ann. Neurol. 39, 147–157.

    Article  PubMed  CAS  Google Scholar 

  • Herrera A. A., Grinnell A. D., and Wolowske B. (1985) Ultrastructural correlates of naturally occurring differences in transmitter release efficacy in frog motor nerve terminals. J. Neurocytol. 14, 193–202.

    Article  PubMed  CAS  Google Scholar 

  • Hollenbeck P. J. (1996) The pattern and mechanism of mitochondrial transport in axons. Front. Biosci. 1, d91-d102.

    PubMed  CAS  Google Scholar 

  • Ishida A., Furukawa K., Keller J. N., and Mattson M. P. (1997) Secreted form of beta amyloid precursor protein shifts the frequency dependency for induction of LTD, and enhances LTP in hippocampal slices. Neuroreport 8, 2133–2137.

    Article  PubMed  CAS  Google Scholar 

  • Jankowsky J. L. and Patterson P. H. (1999) Cytokine and growth factor involvement in long-term potentiation. Mol. Cell. Neurosci. 14, 273–286.

    CAS  Google Scholar 

  • Jarvis S. E. and Zamponi G. W. (2001) Interactions between presynaptic Ca2+ channels, cytoplasmic messengers and proteins of the synaptic vesicle release complex. Trends Pharmacol. Sci. 22, 519–525.

    Article  PubMed  CAS  Google Scholar 

  • Jenner P. and Olanow C. W. (1998) Understanding cell death in Parkinson’s disease. Ann. Neurol. 44, S72-S84.

    PubMed  CAS  Google Scholar 

  • Kater S. B. and Mattson M. P. (1988) Calcium regulation of the neuronal growth cone. Trends Neurosci. 11, 315–321.

    Article  PubMed  CAS  Google Scholar 

  • Keller J. N., Mark R. J., Bruce A. J., Blanc E., Rothstein J. D., Uchida K., et al. (1997) 4-Hydroxynonenal, an aldehydic product of membrane lipid peroxidation, impairs glutamate transport and mitochondrial function in synaptosomes. Neuroscience 80, 685–696.

    Article  PubMed  CAS  Google Scholar 

  • Kim-Han J. S., Reichert S. A., Quick K. L., and Dugan L. L. (2001) BMCP1: a mitochondrial uncoupling protein in neurons which regulates mitochondrial function and oxidant production. J. Neurochem. 79, 658–668.

    Article  PubMed  CAS  Google Scholar 

  • Kitagawa K., Matsumoto M., Kuwabara K., Takasawa K., Tanaka S., Sasaki T., et al. (2002) Protective effect of apolipoprotein E against ischemic neuronal injury is mediated through antioxidant action. J. Neurosci. Res. 68, 226–232.

    Article  PubMed  CAS  Google Scholar 

  • Knapp L. T. and Klann E. (2002) Potentiation of hippocampal synaptic transmission by superoxide requires the oxidative activation of protein kinase C. J. Neurosci. 22, 674–683.

    PubMed  CAS  Google Scholar 

  • Kruman I. I., Pedersen W. A., Springer J. E., and Mattson M. P. (1999) ALS-linked Cu/Zn-SOD mutation increases vulnerability of motor neurons to excitotoxicity by a mechanism involving increased oxidative stress and perturbed calcium homeostasis. Exp. Neurol. 160, 28–39.

    Article  PubMed  CAS  Google Scholar 

  • Liu R., Althaus J. S., Ellerbrock B. R., Becker D. A., and Gurney M. E. (1998) Enhanced oxygen radical production in a transgenic mouse model of familial amyotrophic lateral sclerosis. Ann. Neurol. 44, 763–770.

    Article  PubMed  CAS  Google Scholar 

  • Liu D., Lu C., Wan R., Auyeung W. W., and Mattson M. P. (2002) Activation of mitochondrial ATP-dependent potassium channels protects neurons against ischemia-induced death by a mechanism involving suppression of Bax translocation and cytochrome c release. J. Cereb. Blood Flow Metab. 22, 431–443.

    Article  PubMed  CAS  Google Scholar 

  • Lu C., Fu W., and Mattson M. P. (2002) Direct cleavage of AMPA receptor subunit GluR1 and suppression of AMPA currents by caspase-3: implications for synaptic plasticity and excitotoxic neuronal death. NeuroMolecular Med. 1, 69–79.

    Article  PubMed  CAS  Google Scholar 

  • Mark R. J., Hensley K., Butterfield D. A., and Mattson M. P. (1995) Amyloid beta-peptide impairs ion-motive ATPase activities: evidence for a role in loss of neuronal Ca2+ homeostasis and cell death. J. Neurosci. 15, 6239–6249.

    PubMed  CAS  Google Scholar 

  • Mark R. J., Pang Z., Geddes J. W., Uchida K., and Mattson M. P. (1997) Amyloid beta-peptide impairs glucose transport in hippocampal and cortical neurons: involvement of membrane lipid peroxidation. J. Neurosci. 17, 1046–1054.

    PubMed  CAS  Google Scholar 

  • Mattson M. P. (1992) Calcium as sculptor and destroyer of neural circuitry. Exp. Gerontol. 27, 29–49.

    Article  PubMed  CAS  Google Scholar 

  • Mattson M. P., Zhang Y., and Bose S. (1993) Growth factors prevent mitochondrial dysfunction, loss of calcium homeostasis, and cell injury, but not ATP depletion in hippocampal neurons deprived of glucose. Exp. Neurol. 121, 1–13.

    Article  PubMed  CAS  Google Scholar 

  • Mattson M. P. (1997) Cellular actions of beta-amyloid precursor protein and its soluble and fibrillogenic derivatives. Physiol. Rev. 77, 1081–1132.

    PubMed  CAS  Google Scholar 

  • Mattson M. P., Fu W., Waeg G., and Mattson M. P. (1997) 4-hydroxynonenal, a product of lipid peroxidation, inhibits dephosphorylation of the microtubule-associated protein tau. NeuroReport 8, 2275–2281.

    Article  PubMed  CAS  Google Scholar 

  • Mattson M. P. (1998) Modification of ion homeostasis by lipid peroxidation: roles in neuronal degeneration and adaptive plasticity. Trends Neurosci. 21, 53–57.

    Article  PubMed  CAS  Google Scholar 

  • Mattson M. P., Keller J. N., and Begley J. G. (1998a) Evidence for synaptic apoptosis. Exp. Neurol. 153, 35–48.

    Article  PubMed  CAS  Google Scholar 

  • Mattson M. P., Partin J., and Begley J. G. (1998b) Amyloid beta-peptide induces apoptosis-related events in synapses and dendrites. Brain Res. 807, 167–176.

    Article  PubMed  CAS  Google Scholar 

  • Mattson M. P. and Partin J. (1999) Evidence for mitochondrial control of neuronal polarity. J. Neurosci. Res. 56, 8–20.

    Article  PubMed  CAS  Google Scholar 

  • Mattson M. P., Guo Z. H., and Geiger J. D. (1999) Secreted form of amyloid precursor protein enhances basal glucose and glutamate transport, and protects against oxidative impairment of glucose and glutamate transport in synaptosomes by a cyclic GMP-mediated mechanism. J. Neurochem. 73, 532–537.

    Article  PubMed  CAS  Google Scholar 

  • Mattson M. P. (2000) Apoptosis in neurodegenerative disorders. Nat. Rev. Mol. Cell Biol. 1, 120–129.

    Article  PubMed  CAS  Google Scholar 

  • Mattson M. P. (2002) Accomplices to neuronal death. Nature 415, 377–379.

    Article  PubMed  CAS  Google Scholar 

  • Mattson M. P., Duan W., and Maswood N. (2002) How does the brain control lifespan? Ageing Res. Rev. 1, 155–165.

    Article  PubMed  CAS  Google Scholar 

  • McCracken E., Valeriani V., Simpson C., Jover T., McCulloch J., and Dewar D. (2000) The lipid peroxidation by-product 4-hydroxynonenal is toxic to axons and oligodendrocytes. J. Cereb. Blood Flow Metab. 20, 1529–1536.

    Article  PubMed  CAS  Google Scholar 

  • Medler K. and Gleason E. L. (2002) Mitochondrial ca(2+) buffering regulates synaptic transmission between retinal amacrine cells. J. Neurophysiol. 87, 1426–1439.

    PubMed  CAS  Google Scholar 

  • Morris R. L. and Hollenbeck P. J. (1993) The regulation of bidirectional mitochondrial transport is coordinated with axonal outgrowth. J. Cell Sci. 104, 917–927.

    PubMed  Google Scholar 

  • Muller D., Toni N., and Buchs P. A. (2000) Spine changes associated with long-term potentiation. Hippocampus 10, 596–604.

    Article  PubMed  CAS  Google Scholar 

  • Murphy M. P. (2001) How understanding the control of energy metabolism can help investigation of mitochondrial dysfunction, regulation and pharmacology. Biochim. Biophys. Acta 1504, 1–11.

    Article  PubMed  CAS  Google Scholar 

  • Neely M. D., Sidell K. R., Graham D. G., and Montine T. J. (1999) The lipid peroxidation product 4-hydroxynonenal inhibits neurite outgrowth, disrupts neuronal microtubules, and modifies cellular tubulin. J. Neurochem. 72, 2323–2333.

    Article  PubMed  CAS  Google Scholar 

  • Nguyen P. V., Marin L., and Atwood H. L. (1997) Synaptic physiology and mitochondrial function in crayfish tonic and phasic motor neurons. J. Neurophysiol. 78, 281–294.

    Article  PubMed  CAS  Google Scholar 

  • Nicotera P., Leist M., Fava E., Berliocchi L., and Volbracht C. (2000) Energy requirement for caspase activation and neuronal cell death. Brain Pathol. 10, 276–282.

    Article  PubMed  CAS  Google Scholar 

  • Nobler M. S., Pelton G. H., and Sackeim H. A. (1999) Cerebral blood flow and metabolism in late-life depression and dementia. J. Geriatr. Psychiatry Neurol. 12, 118–127.

    Article  PubMed  CAS  Google Scholar 

  • O’Dell T. J., Hawkins R. D., Kandel E. R., and Arancio O. (1991) Tests of the roles of two diffusible substances in long-term potentiation: evidence for nitric oxide as a possible early retrograde messenger. Proc. Natl. Acad. Sci. USA 88, 11,285–11,289.

    Article  CAS  Google Scholar 

  • Pantaloni D., Le Clainche C., and Carlier M. F. (2001) Mechanism of actin-based motility. Science 292, 1502–1506.

    Article  PubMed  CAS  Google Scholar 

  • Pedersen W. A., Fu W., Keller J. N., Markesbery W. R., Appel S., Smith R. G., et al. (1998) Protein modification by the lipid peroxidation product 4-hydroxynonenal in the spinal cords of amyotrophic lateral sclerosis patients. Ann. Neurol. 44, 819–824.

    Article  PubMed  CAS  Google Scholar 

  • Persky A. M. and Brazeau G. A. (2001) Clinical pharmacology of the dietary supplement creatine monohydrate. Pharmacol. Rev. 53, 161–176.

    PubMed  CAS  Google Scholar 

  • Pfefferbaum A. and Zipursky R. B. (1991) Neuroimaging studies of schizophrenia. Schizophr. Res. 4, 193–208.

    Article  PubMed  CAS  Google Scholar 

  • Pfister K. K. (1999) Cytoplasmic dynein and microtubule transport in the axon: the action connection. Mol. Neurobiol. 20, 81–91.

    PubMed  CAS  Google Scholar 

  • Pollard T. D., Blanchoin L., and Mullins R. D. (2000) Molecular mechanisms controlling actin filament dynamics in nonmuscle cells. Annu. Rev. Biophys. Biomol. Struct. 29, 545–576.

    Article  PubMed  CAS  Google Scholar 

  • Prolla T. A. and Mattson M. P. (2001) Molecular mechanisms of brain aging and neurodegenerative disorders: lessons from dietary restriction. Trends Neurosci. 24, S21-S31.

    Article  PubMed  CAS  Google Scholar 

  • Rabinovic A. D., Lewis D. A., and Hastings T. G. (2000) Role of oxidative changes in the degeneration of dopamine terminals after injection of neurotoxic levels of dopamine. Neuroscience 101, 67–76.

    Article  PubMed  CAS  Google Scholar 

  • Raff M. C., Barres B. A., Burne J. F., Coles H. S., Ishizaki Y., and Jacobson M. D. (1993) Programmed cell death and the control of cell survival: lessons from the nervous system. Science 262, 695–700.

    Article  PubMed  CAS  Google Scholar 

  • Robb-Gaspers L. D., Rutter G. A., Burnett P., Hajnoczky G., Denton R. M., and Thomas A. P. (1998) Coupling between cytosolic and mitochondrial calcium oscillations: role in the regulation of hepatic metabolism. Biochim. Biophys. Acta 1366, 17–32.

    Article  PubMed  CAS  Google Scholar 

  • Rothstein J. D., VanKammen B. A., Levey A. I., Martin L. J., and Kuncl R. W. (1995) Selective loss of glial glutamate transporter GLT-1 in amyotrophic lateral sclerosis. Ann. Neurol. 38, 73–84.

    Article  PubMed  CAS  Google Scholar 

  • Saraste M. (1999) Oxidative phosphorylation at the fin de siecle. Science 283, 1488–1493.

    Article  PubMed  CAS  Google Scholar 

  • Schuman E. M. and Madison D. V. (1991) A requirement for the intercellular messenger nitric oxide in long-term potentiation. Science 254, 1503–1506.

    Article  PubMed  CAS  Google Scholar 

  • Stanton P. K. and Schanne F. A. (1986) Hippocampal long-term potentiation increases mitochondrial calcium pump activity in rat. Brain Res. 382, 185–188.

    Article  PubMed  CAS  Google Scholar 

  • Strakowski S. M., DelBello M. P., Adler C., Cecil D. M., and Sax K. W. (2000) Neuroimaging in bipolar disorder. Bipolar Disord. 2, 148–164.

    Article  PubMed  CAS  Google Scholar 

  • Sullivan P. G., Geiger J. D., Mattson M. P., and Scheff S. W. (2000) Dietary supplement creatine protects against traumatic brain injury. Ann. Neurol. 48, 723–729.

    Article  PubMed  CAS  Google Scholar 

  • Tarnopolsky M. A. and Beal M. F. (2001) Potential for creatine and other therapies targeting cellular energy dysfunction in neurological disorders. Ann. Neurol. 49, 561–574.

    Article  PubMed  CAS  Google Scholar 

  • Tartaglia N., Du J., Tyler W. J., Neale E., Pozzo-Miller L., and Lu B. (2001) Protein synthesis-dependent and -independent regulation of hippocampal synapses by brain-derived neurotrophic factor. J. Biol. Chem. 276, 37,585–37,593.

    Article  CAS  Google Scholar 

  • Tesseur I., Van Dorpe J., Bruynseels K., Bronfman F., Sciot R., Van Lommel A., et al. (2000) Prominent axonopathy and disruption of axonal transport in transgenic mice expressing human apolipoprotein E4 in neurons of brain and spinal cord. Am. J. Pathol. 157, 1495–1510.

    PubMed  CAS  Google Scholar 

  • Thiels E., Urban N. N., Gonzalez-Burgos G. R., Kanterewicz B. I., Barrionuevo G., Chu C. T., et al. (2000) Impairment of long-term potentiation and associative memory in mice that overexpress extracellular superoxide dismutase. J. Neurosci. 20, 7631–7639.

    PubMed  CAS  Google Scholar 

  • Tolkovsky A. M. and Suidan H. S. (1987) Adenosine 5′-triphosphate synthesis and metabolism localized in neurites of cultured sympathetic neurons. Neuroscience 23, 1133–1142.

    Article  PubMed  CAS  Google Scholar 

  • Tsujimoto Y. and Shimizu S. (2002) The voltage-dependent anion channel: an essential player in apoptosis. Biochimie 9, 187–193.

    Article  Google Scholar 

  • Wataya T., Nunomura A., Smith M. A., Siedlak S. L., Harris P. L., Shimohama S., et al. (2002) High molecular weight neurofilament proteins are physiological substrates of adduction by the lipid peroxidation product hydroxynonenal. J. Biol. Chem. 277, 4644–4648.

    Article  PubMed  CAS  Google Scholar 

  • Weeber E. J., Levy M., Sampson M. J., Anflous K., Armstrong D. L., Brown S. E., et al. (2002) The role of mitochondrial porins and the permeability transition pore in learning and synaptic plasticity. J. Biol. Chem. 277, 18,891–18,897.

    CAS  Google Scholar 

  • Williams J. M., Thompson V. L., Mason-Parker S. E., Abraham W. C., and Tate W. P. (1998) Synaptic activity-dependent modulation of mitochondrial gene expression in the rat hippocampus. Mol. Brain Res. 60, 50–56.

    Article  PubMed  CAS  Google Scholar 

  • Williamson T. L. and Cleveland D. W. (1999) Slowing of axonal transport is a very early event in the toxicity of ALS-linked SOD1 mutants to motor neurons. Nat. Neurosci. 2, 50–56.

    Article  PubMed  CAS  Google Scholar 

  • Yu Z. F. and Mattson M. P. (1999) Dietary restriction and 2-deoxyglucose administration reduce focal ischemic brain damage and improve behavioral outcome: evidence for a preconditioning mechanism. J. Neurosci. Res. 57, 830–839.

    Article  PubMed  CAS  Google Scholar 

  • Yuste R. and Bonhoeffer T. (2001) Morphological changes in dendritic spines associated with long-term synaptic plasticity. Annu. Rev. Neurosci. 24, 1071–1089.

    Article  PubMed  CAS  Google Scholar 

  • Zenisek D. and Matthews G. (2000) The role of mitochondria in presynaptic calcium handling at a ribbon synapse. Neuron 25, 229–237.

    Article  PubMed  CAS  Google Scholar 

  • Zhu H., Guo Q., and Mattson M. P. (1999) Dietary restriction protects hippocampal neurons against the death-promoting action of a presenilin-1 mutation. Brain Res. 842, 224–229.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark P. Mattson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mattson, M.P., Liu, D. Energetics and oxidative stress in synaptic plasticity and neurodegenerative disorders. Neuromol Med 2, 215–231 (2002). https://doi.org/10.1385/NMM:2:2:215

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/NMM:2:2:215

Index Entries

Navigation