Skip to main content
Log in

Cytochrome C and caspase-9 expression in Huntington’s disease

  • Original Research
  • Published:
NeuroMolecular Medicine Aims and scope Submit manuscript

Abstract

There is increasing evidence implicating apoptosis-mediated cell death in the pathogenesis of neurodegenerative diseases. One important event in the apoptotic cascade is the release of cytochrome c by mitochondria into the cytoplasm, activating caspase-9, leading to the subsequent activation of downstream executioner caspases. In the present study, we examined the distribution of cytochrome c and caspase-9 in Huntington’s disease (HD) patients and in a transgenic model of HD (R6/2 line). Neuronal cytochrome c immunoreactivity increased with neuropathological severity in HD patients. Concomitant with this finding, Western-blot analysis showed a shift in the distribution of cytochrome c from the mitochondrial to the cytosolic fraction with incremental cytosolic expression associated with greater striatal degeneration. Active caspase-9 immunoreactivity was present in both HD striatal neurons and in Western blots of severe-grade specimens. Similar findings were observed in the R6/2 mice. There was a temporal increase in expression and shift of cytochrome c from the mitochondrial to the cytosolic fraction from 4–13 wk of age. Activated caspase-9 and caspase 3 activities were present only at endstage disease. Although the present results provide evidence that key components of the intrinsic mitochondrial apoptotic pathway are activated in both HD patients and a transgene murine model of HD, these phenomena are prominent in only severe neuropathological grades in HD patients and HD mice, suggesting that apoptosis may play a greater role in neuronal death at endstage disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Beal M. F. (2000) Energetics in the pathogenesis of neurodegenerative diseases. TINS 23, 298–304.

    PubMed  CAS  Google Scholar 

  • Buki A., Okonkwo D. O., Wang K. K. W., and Povlishock J. T. (2000) Cytochrome c release and caspase activation in traumatic axonal injury. J. Neurosci. 20, 2825–2834.

    PubMed  CAS  Google Scholar 

  • Cha J. H. (2000) Transcriptional dysregulation in Huntington’s disease. TINS 23, 387–392.

    PubMed  CAS  Google Scholar 

  • Chen Q., Gong B., and Almasan A. (2000) Distinct stages of cytochrome c release from mitochondria: Evidence for a feedback amplification loop linking caspase activation to mitochondrial dysfunction in genotoxic stress induced apoptosis. Cell Death Differ. 7, 227–233.

    Article  PubMed  CAS  Google Scholar 

  • Chen M., Ona V. O., Li M., Ferrante R. J., Fink K. B., Zhu S., et al. (2000) Minocycline inhibits caspase-1 and caspase-3 expression and delays mortality in a transgenic mouse model of Huntington disease. Nature Med. 6, 797–801.

    Article  PubMed  CAS  Google Scholar 

  • Chu Z. L., Pio F., Xie Z., Welsh K., Krajewska M., Krajewski S., Godzik A., and Reed J. C. (2001) A novel enhancer of the Apaf1 Apoptosome involved in cytochrome c-dependent caspase activation and apoptosis. J. Biol. Chem. 276, 9239–9245.

    Article  PubMed  CAS  Google Scholar 

  • Cohen G. M. (1997) Caspases: The executioners of apoptosis. J. Biochem. 326, 1–16.

    CAS  Google Scholar 

  • Desagher S. and Martinou J. C. (1998) Mitochondria as the central point of apoptosis. Trends Cell Biol. 10, 369–377.

    Article  Google Scholar 

  • Dragunow M., Faull R. L., Lawlor P., Beilharz E. J., Singleton K., Walker E. B., and Mee E. (1995) In situ evidence for DNA fragmentation in Huntington’s disease striatum and Alzheimer’s disease temporal lobes. Neuroreport 6, 1053–1057.

    Article  PubMed  CAS  Google Scholar 

  • Du C., Fang M., Li Y., Li L., and Wang X. (2000) Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell 102, 33–42.

    Article  PubMed  CAS  Google Scholar 

  • Ferrante R. J., Andreassen O. A., Jenkins B. G., Dedeoglu A., Kuemmerle S., Kubilus J. K., et al. (2000) Neuroprotective effects of creatine in a transgenic mouse model of Huntington’s disease. J. Neurosci. 20, 4389–4397.

    PubMed  CAS  Google Scholar 

  • Fujimura M., Morita-Fujimura Y., Muratami K., Kawase M., and Chan P. H. (1998) Cytosolic redistribution of cytochrome c after transient focal cerebral ischemia in rats. J. Cereb. Blood Flow Metab. 18, 1239–1247.

    Article  PubMed  CAS  Google Scholar 

  • Goldberg Y. P., Nicholson D. W., Rasper D. M., Kalchman M. A., Koide H. B., Graham R. K., et al. (1996) Cleavage of huntingtin by apopain, a proapoptotic cysteine protease, is modulated by the polyglutamine tract. Nat Genet 13, 442–449.

    Article  PubMed  CAS  Google Scholar 

  • Green D. R. and Reed J. C. (1998) Mitochondria and apoptosis. Science 281, 1309–1312.

    Article  PubMed  CAS  Google Scholar 

  • Huntington’s Disease Collaborative Research Group (1993) A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. Cell 72, 971–983.

    Article  Google Scholar 

  • Kowall N. W. and Ferrante R. J. (1998) Huntington’s disease, in Neuropathology of Dementing Disorders (Markesbery M., ed.), Edward Arnold, London, UK, pp. 219–256.

    Google Scholar 

  • Krajewska M., Wang H. G., Krajewski S., Zapata J. M., Shabaik A., Gascoyne R., and Reed J. C. (1997) Immunohistochemical analysis of in vivo patterns of expression of CPP32 (Caspase-3), a cell death protease. Cancer Res. 57, 1605–1613.

    PubMed  CAS  Google Scholar 

  • Kuemmerle S., Gutekunst C. A., Klein A. M., Li X. J., Li S. H., Beal M. F., et al. (1999) Huntington aggregates may not predict neuronal death in Huntington’s disease. Ann. Neurol. 46, 842–849.

    Article  PubMed  CAS  Google Scholar 

  • La Spada A. R., Paulson H. L., and Fischbeck K. H. (1994) Trinucleotide repeat expansion in neurological disease Ann. Neurol. 36, 814–822.

    Article  PubMed  Google Scholar 

  • Li P., Nijhawan D., Budihardjo I., Srinivasula S. M., Ahmad M., Alnemri E. S., and Wang X.. (1997) Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell 91, 479–489.

    Article  PubMed  CAS  Google Scholar 

  • Li S. H., Lam S., Cheng A. L., and Li X. J. (2000) Intranuclear huntingtin increases the expression of caspase-1 and induces apoptosis. Hum. Mol. Genet. 9, 2859–2867.

    Article  PubMed  CAS  Google Scholar 

  • Liu X., Kim C. N., Yang J., Jemmerson R., and Wang X. (1996) Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c. Cell 86, 147–157.

    Article  PubMed  CAS  Google Scholar 

  • Mattson M. P. and Duan W. (1999) “Apoptotic” biochemical cascades in synaptic compartments: roles in adaptive plasticity and neurodegenerative disorders. J. Neurosci. Res. 58, 152–166.

    Article  PubMed  CAS  Google Scholar 

  • Miyashita T., Matsui J., Ohtsuka Y., Mami U., Fujishima S., Okamura-Oho Y., et al. (1999) Expression of extended polyglutamine sequentially activates initiator and effector caspases. Biochem. Biophys. Res. Commun. 257, 724–730.

    Article  PubMed  CAS  Google Scholar 

  • Offen D., Elkon H., and Melamed E. (2000) Apoptosis as a general cell death pathway in neurodegenerative diseases. J. Neural Transm. Suppl. 58, 153–166.

    PubMed  Google Scholar 

  • Ona V. O., Li M., Vonsattel J. P., Andrews L. J., Khan S. Q., Chung W. M., et al. (1999) Inhibition of caspase-1 slows disease progression in a mouse model of Huntington’s disease. Nature 399, 263–267.

    Article  PubMed  CAS  Google Scholar 

  • Pasinelli P., Houseweart M. K., Brown R. H., and Cleveland D. W. (2000) Caspase-1 and -3 are sequentially activated in motor neuron death in CuZn superoxide dismutase-mediated familial amyotrophic lateral sclerosis. Proc. Natl. Acad. Sci. USA 97, 13901–13906.

    Article  PubMed  CAS  Google Scholar 

  • Plassart E. and Fontaine B. (1994) Genes with triplet repeats: a new class of mutations causing neurological diseases. Biomed. Pharmacother. 48, 191–197.

    Article  PubMed  CAS  Google Scholar 

  • Petersen A., Mani K., and Brundin P. (1999) Recent advances on the pathogenesis of Huntington’s disease. Exp. Neurol. 157, 1–18.

    Article  PubMed  CAS  Google Scholar 

  • Portera-Cailliau C., Hedreen J. C., Price D. L., and Koliatsos V. E. (1995) Evidence for apoptotic cell death in Huntington’s disease and excitotoxic animal models. J. Neurosci. 15, 3775–3787.

    PubMed  CAS  Google Scholar 

  • Qin Z. H., Wang Y., Kikly K. K., Sapp E., Kegel K. B., Aronin N., and DiFiglia M. (2001) Pro-caspase-8 is predominately localized in mitochondria and released into cytoplasm upon apoptotic stimulation. J. Biol. Chem. 276, 8079–8086.

    Article  PubMed  CAS  Google Scholar 

  • Rey L, and Maier R.J. (1997) Cytochrome c terminal oxidase pathways of Azotobacter vinelandii: analysis of cytochrome c4 and c5 mutants and up-regulation of cytochrome c-dependent pathways with N2 fixation. J. Bacteriol. 179, 7191–7196.

    PubMed  CAS  Google Scholar 

  • Rigamonti D., Bauer J. H., De-Fraja C., Conti L., Sipione S., Sciorati C., et al. (2000) Wild-type Huntingtin protects from apoptosis upstream of caspase-3. J. Neurosci. 20, 3705–3713.

    PubMed  CAS  Google Scholar 

  • Ross C. A. (1997) Intranuclear neuronal inclusions: a common pathogenic mechanism for glutamine-repeat neurodegenerative diseases? Neuron 19, 1147–1150.

    Article  PubMed  CAS  Google Scholar 

  • Roy S. and Nicholson D. W. (2000) Programmed cell-death regulation: basic mechanism and therapeutic opportunities. Mol. Med. Today 6, 264–266.

    Article  PubMed  CAS  Google Scholar 

  • Sanchez I., Xu C. J., Juo P., Kazizaka A., Blenis J., and Yuan J. (1999) Caspase-8 is required for cell death induced by expanded polyglutamine repeats. Neuron 22, 623–633.

    Article  PubMed  CAS  Google Scholar 

  • Sawa A., Wiegand G. W., Cooper J., Margolis R. L., Sharp A. H., Lawler J. F. Jr, et al. (1999) Increased apoptosis of Huntington disease lymphoblasts associated with repeat length-dependent mitochondrial depolarization. Nature Med. 5, 1194–1198.

    Article  PubMed  CAS  Google Scholar 

  • Shimohama S. (2000) Apoptosis in Alzheimer’s disease: an update. Apoptosis 5, 9–16.

    Article  PubMed  CAS  Google Scholar 

  • Thornberry N. and Lazebnik Y. (1998) Caspases: enemies within. Science 281, 1312–1316.

    Article  PubMed  CAS  Google Scholar 

  • Turmaine M., Raza A., Mahal A., Mangiarini L., Bates G. P., and Davies S. W. (2000) Nonapoptotic neurodegeneration in a transgenic mouse model of Huntington’s disease. Proc. Natl. Acad. Sci. USA 97, 8093–8097.

    Article  PubMed  CAS  Google Scholar 

  • Vonsattel J. P., Myers R. H., Stevens T. J., Ferrante R. J., Bird E. D., and Richardson E. P. Jr. (1985) Neuropathological classification of Huntington’s disease. J. Neuropathol. Exp. Neurol. 44, 559–577.

    Article  PubMed  CAS  Google Scholar 

  • Vukosavic S., Stefanis L., Jackson-Lewis V., Guegan C., Romero N., Chen C., et al. (2000) Delaying caspase activation by Bcl-2: A clue to disease retardation in a transgenic mouse model of amyotrophic lateral sclerosis. J. Neurosci. 20, 9119–9125.

    PubMed  CAS  Google Scholar 

  • Wellington C. L., Singaraja R., Ellerby L., Savill J., Roy S., Leavitt B., et al. (2000) Inhibiting caspase cleavage of huntingtin reduces toxicity and aggregate formation in neuronal and nonneuronal cells. J. Biol. Chem. 275, 19831–19838.

    Article  PubMed  CAS  Google Scholar 

  • Wyllie A. H., Kerr J. F., and Currie A. R. (1980) Cell death: the significance of apoptosis. Int. Rev. Cytol. 68, 251–306.

    PubMed  CAS  Google Scholar 

  • Zou H., Li Y., Liu X., and Wang X. (1999) An APAF-1/cytochrome c multimeric complex is a functional apoptosome that activates procaspase-9. J. Biol. Chem. 274, 11549–11556.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert J. Ferrante.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kiechle, T., Dedeoglu, A., Kubilus, J. et al. Cytochrome C and caspase-9 expression in Huntington’s disease. Neuromol Med 1, 183–195 (2002). https://doi.org/10.1385/NMM:1:3:183

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/NMM:1:3:183

Index Entries

Navigation