Skip to main content
Log in

Zinc inhibits the nuclear translocation of the tumor suppressor protein p53 and protects cultured human neurons from copper-induced neurotoxicity

  • Original Research
  • Published:
NeuroMolecular Medicine Aims and scope Submit manuscript

Abstract

High concentrations of the trace metal zinc (Zn) have previously been shown to provide transient protection of cells from apoptotic death. The molecular mechanisms responsible for this protection are not known. Thus, this work explored the ability of Zn to protect human neurons in culture (NT2-N) from Cu-mediated death and tested the hypotheses that the tumor-suppressor protein p53 plays a role in Cu-induced neuronal death and is part of the mechanism of Zn protection. Copper toxicity (100 µM) resulted in significant apoptotic neuronal death by 12 h. Addition of 100 µM Zn to Cu-treated cells increased neuronal death. However, the addition of 700 µM Zn to Cu-treated cells resulted in neuronal viability that was not different from untreated controls through 24 h. p53 mRNA abundance, while increased by the addition of Cu and 100 µM Zn, was decreased to 50% of control with the addition of 500 µM Zn in Cu-treated cells, and to 10% of control with 700 µM Zn. Consistent with its role as a transcription factor, both Western analysis and immunocytochemistry showed significant increases in nuclear p53 protein levels in Cu toxicity. The role of p53 in Cu-mediated apoptosis was further confirmed by elimination of apoptosis in Cu-treated cells that had been transfected with a dominant-negative p53 construct to prevent p53 expression. Furthermore, the addition of 500–700 µM Zn prevented the movement of p53 into the nucleus suggesting that Zn not only protects neurons from Cu toxicity by regulating p53 mRNA abundance but also by preventing the translocation of p53 to the nucleus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Beham A., Marin M. C., Fernandez A., Herrmann J., Brisbay S., Tari A. M., et al. (1997) Bcl-2 inhibits p53 nuclear import following DNA damage. Oncogene 15, 2767–2772.

    Article  PubMed  CAS  Google Scholar 

  • Berg D., Weishaupt A., Francis M. J., Miura N., Yang X. L., Goodyer I. D., et al. (2000) Changes of copper-transporting proteins and ceruloplasmin in the lentiform nuclei in primary adult-onset dystonia. Ann. Neurol. 47, 827–830.

    Article  PubMed  CAS  Google Scholar 

  • Canzoniero L. M. T., Turetsky D. M., and Choi D. W. (1999) Measurement of intracellular free zinc concentrations accompanying zinc-induced neuronal death. J. Neurosc. 19(1–6), RC31.

  • Choi D. W. and Koh J. Y. (1998) Zinc and brain injury. Annu. Rev. Neurosci. 21, 347–375.

    Article  PubMed  CAS  Google Scholar 

  • Curtin J. C., Dragnev K. H., Sekula D., Christie A. J., Dmitrovsky E., and Spinella M. J. (2001) Retinoic acid activates p53 in human embryonal carcinoma through retinoid receptor-dependent stimulation of p53 transactivation function. Oncogene 20, 2559–2569.

    Article  PubMed  CAS  Google Scholar 

  • Cuthbert J. A. (1995) Wilson’s disease: a new gene and an animal model for an old disease J. Investig. Med. 43, 323–336.

    PubMed  CAS  Google Scholar 

  • Fiskum G. (2000) Mitochondrial participation in ischemic and traumatic neural cell death. J. Neurotrauma 17, 843–855.

    Article  PubMed  CAS  Google Scholar 

  • Fraker P. J. and Telford W. G. (1997) A reappraisal of the role of zinc in life and death decisions of cells. Proc. Soc. Exp. Biol. Med. 215, 229–236.

    PubMed  CAS  Google Scholar 

  • Frederickson C. J., Suh S. W., Silva D., Frederickson C. J., and Thompson R. B. (2000) Importance of zinc in the central nervous system: The zinc-containing neuron. J. Nutr. 130, 1471S-1483S.

    PubMed  CAS  Google Scholar 

  • Frederickson C. J., Klitenick M. A., Manton W. I., and Kirkpatrick J. B. (1983) Cytoarchitectonic distribution of zinc in the hippocampus of man and the rat. Brain Res. 273, 335–339.

    Article  PubMed  CAS  Google Scholar 

  • Hatayama T., Asai Y., Wakatsuki T., Kitamura T., and Imahara H. (1993) Regulation of hsp70 synthesis induced by cupric sulfate and zinc sulfate in thermotolerant HeLa cells. J. Biochem. 114, 592–597.

    PubMed  CAS  Google Scholar 

  • Ishido M., Suzuki T., Adachi T., and Kunimoto M. (1999) Zinc stimulates DNA synthesis during its antiapoptotic action independently with increments of an antiapoptotic protein, Bcl-2, in porcine kidney LLC-PK (1) cells. J. Pharmacol. Exp. Ther. 290, 923–928.

    PubMed  CAS  Google Scholar 

  • Kerr J. F., Gobe G. C., Winterford C. M., and Harmon B. V. (1995) Anatomical methods in cell death. Methods Cell Biol. 46, 1–27.

    Article  PubMed  CAS  Google Scholar 

  • Kim E. Y., Koh J. Y., Kim Y. H, Sohn S., Joe E., and Gwag B. J. (1998) Zn+2 entry produces oxidative neuronal necrosis in cortical cell cultures. Eur. J. Neurosci. 11, 327–334.

    Article  Google Scholar 

  • Kim H. J., Yoon H. R., Washington S., Chang I. I., Oh Y. J., and Suh Y. J. (1997) DNA strand scission and PC12 cell death induced by salsolinol and copper. Neurosci. Lett. 238, 95–98.

    Article  PubMed  CAS  Google Scholar 

  • Kubota M., Iida Y., Magata Y., Kitamura Y., Kawashima H., Saji H. (2000) Mechanisms of [2,3-butanedione bis (N4-dimethylthiosemicarbazone)] zinc neurons against N-methyl-D-aspartate receptor-mediated glutamate cytotoxicity. Jpn. J. Pharmacol. 84, 334–338.

    Article  PubMed  CAS  Google Scholar 

  • Lee J., Prohaska, J. R., and Thiele, D. J. (2001) Essential role for mammalian copper transporter ctr1 in copper homeostasis and embryonic development. PNAS 98, 6842–6847.

    Article  PubMed  CAS  Google Scholar 

  • Liang S. H., and Clarke M. F. (1999) A bipartite nuclear localization signal is required for p53 nuclear import regulated by a carboxy-terminal domain. J. Biol. Chem. 274, 32699–32703.

    Article  PubMed  CAS  Google Scholar 

  • Libonati J. P., Fitch C. A., Rutkowski N. J., and Levenson C. W. (2000) Zinc regulation of cobalt-induced apoptosis in cultured human neurons. Nutr. Neurosci. 3, 425–433.

    CAS  Google Scholar 

  • Manev H., Kharlamov E., Uz T., Mason R. P., and Cagnoli C. M. (1997) Characterization of zinc-induced neuronal death in primary cultures of rat cerebellar granule cells. Exp. Neurol. 146, 171–178.

    Article  PubMed  CAS  Google Scholar 

  • Martin L. J., Al-Abdulla N. A., Brambrink A. M., Kirsch J. R., Sieber F. E., and Portera-Cailliau C. (1998) Neurodegeneration in excitotoxicity, global cerebral ischemia, and target deprivation: A perspective on the contributions of apoptosis and necrosis. Brain Res. Bull. 46, 281–309.

    Article  PubMed  CAS  Google Scholar 

  • Meplan C., Mann K., and Hainaut P. (1999) Cadmium induces conformational modifications of wild-type p53 and suppresses p53 response to DNA damage in cultured cells. J. Biol. Chem. 274, 31663–31670.

    Article  PubMed  CAS  Google Scholar 

  • Narayanan V. S., Fitch C. A., and Levenson C. W. (2001) Tumor suppressor protein p53 mRNA and subcellular localization are altered by changes in cellular copper in human Hep G2 cells. J. Nutr. 131, 1427–1432.

    PubMed  CAS  Google Scholar 

  • Oda K., Arakawa H., Tanaka T., Matsuda K., Tanikawa C., Mori T., et al. (2000) p53 AIP1, a potential mediator of p53-dependent apoptosis, and its regulation by ser-46-phosphorylated p53. Cell 102, 849–862.

    Article  PubMed  CAS  Google Scholar 

  • Perry D. K., Smyth M. J., Stennicke H. R., Salvesen G. S., Duriez P., Poirier G. G., and Hannun Y. A. (1997) Zinc is a potent inhibitor of the apoptotic protease, caspase-3. A novel target for zinc in the inhibition of apoptosis. J. Biol. Chem. 272, 18530–18533.

    Article  PubMed  CAS  Google Scholar 

  • Powell S. R. (2000) The antioxidant properties of zinc. J. Nutr. 130, 1447S-1454S.

    PubMed  CAS  Google Scholar 

  • Reaves, S. K., Fanzo, J. C., Arima, K., Wu, J. Y. J., Wang, Y. R., and Lei, K. Y. (2000) Expression of the p53 tumor suppressor gene is upregulated by depletion of intracellular zinc in HepG2 cells. J. Nutr. 130, 1688–1694.

    PubMed  CAS  Google Scholar 

  • Sagripanti J. L., Goering P. L., and Lamanna A. (1991) Interaction of copper with DNA and antagonism by other metals. Toxicol. Appl. Pharmacol. 110, 477–485.

    Article  PubMed  CAS  Google Scholar 

  • Saito T., Okabe M., Hosokawa T., Kurasaki M., Hata A., Endo F., et al. (1999) Immunohistochemical determination of the Wilson copper-transporting P-type ATPase in the brain tissues of the rat. Neurosci. Lett. 266, 13–16.

    Article  PubMed  CAS  Google Scholar 

  • Sarkar B. (2000) Copper transport and its defect in Wilson disease: characterization of the copper-binding domain of Wilson disease ATPase. J. Inorg. Biochem. 79, 187–191.

    Article  PubMed  CAS  Google Scholar 

  • Scheinberg H. and Sternlieb I. (1984) Wilson’s Disease, Vol. XXIII, W. B. Saunders Company, Philadelphia, PA.

    Google Scholar 

  • Scheinberg I. H. and Sternlieb I. (1979) The role of radiocopper in the diagnosis of Wilson’s disease. Gastroenterology 77, 138–142.

    PubMed  Google Scholar 

  • Schmidt-Kastner R., Truettner J., Zhao W., Belayev L., Krieger C., Busto R., and Ginsberg M. D. (2000) Differential changes of bax, caspase-3 and p21 mRNA expression after transient focal brain ischemia in the rat. Brain Res. Mol. Brain Res. 79, 88–101.

    Article  PubMed  CAS  Google Scholar 

  • Sensi S. L., Yin H. Z., Carriedo S. G., Rao S. S., and Weiss J. H. (1999) Preferential Zn+2 influx through Ca+2-permeable AMPA/kainate channels triggers prolonged mitochondrial superoxide production. Proc. Natl. Acad. Sci. USA 96, 2414–2419.

    Article  PubMed  CAS  Google Scholar 

  • Sheline C. T., Behrens M. M., and Choi D. W. (2000) Zinc-induced cortical neuronal death: contribution of energy failure attributable to loss of NAD+ and inhibition of glycolysis. J. Neurosci. 20, 3139–3146.

    PubMed  CAS  Google Scholar 

  • Strand S., Hofmann W. J., Grambihler A., Hug H., Volkmann M., Otto G., et al. (1998) Hepatic failure and liver cell damage in acute Wilson’s disease involve CD95 (APO-1/Fas) mediated apoptosis. Nat. Med. 4, 588–593.

    Article  PubMed  CAS  Google Scholar 

  • Tkeshelashvili L. K., McBride T., Spence K., and Loeb L. A. (1991) Mutation spectrum of copper-induced DNA damage. J. Biol. Chem. 266, 6401–6406.

    PubMed  CAS  Google Scholar 

  • Truong-Tran A. Q., Ho L. H., Chai F., and Zalewski P. D. (2000) Cellular zinc fluxes and the regulation of apoptosis/gene-directed cell death. J. Nutr. 130, 1459S-1466S.

    PubMed  CAS  Google Scholar 

  • Waggoner D. J., Bartnikas T. B., and Gitlin J. D. (1999) The role of copper in neurodegenerative disease. Neurobiol. Dis. 6, 221–230.

    Article  PubMed  CAS  Google Scholar 

  • Wood R. J. (2000) Assessment of marginal zinc status in humans. J. Nutr. 130, 1350S-1354S.

    PubMed  CAS  Google Scholar 

  • Xiang H., Hochman D. W., Saya H., Fujiwara T., Schwartzkroin P. A., and Morrison R. S. (1996) Evidence for p53-mediated modulation of neuronal viability. J. Neurosci. 16, 6753–6765.

    PubMed  CAS  Google Scholar 

  • Zago M. P. and Oteiza P. I. (2001) The antioxidant properties of zinc: Interactions with iron and antioxidants. Free Rad. Biol. Med. 31, 266–274.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cathy W. Levenson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

VanLandingham, J.W., Fitch, C.A. & Levenson, C.W. Zinc inhibits the nuclear translocation of the tumor suppressor protein p53 and protects cultured human neurons from copper-induced neurotoxicity. Neuromol Med 1, 171–182 (2002). https://doi.org/10.1385/NMM:1:3:171

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/NMM:1:3:171

Index Entries

Navigation