Skip to main content
Log in

Dynamic phenotypes

Time series analysis techniques for characterizing neuronal and behavioral dynamics

  • Commentary
  • Published:
Neuroinformatics Aims and scope Submit manuscript

Abstract

We consider quantitative measures of behavioral and neuronal dynamics as a means of characterizing phenotypes. Such measures are important from a scientific perspective; because understanding brain function is contingent on understanding the link between the dynamics of the nervous system and behavioral dynamics. They are also important from a biomedical perspective because they provide a contrast to purely psychological characterizations of phenotype or characterizations via static brain images or maps, and are a potential means for differential diagnoses of neuropsychiatric illnesses. After a brief presentation of background work and some current advances, we suggest that more attention needs to be paid to dynamic characterizations of phenotypes. We will discuss some of the relevant time series analysis tools.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adey, W. R., Walter, D. O., and Hendrix, C. E. (1961) Computer techniques in correlation and spectral analyses of cerebral slow waves during discriminative behavior. Exp. Neurol. 3, 501–524.

    Article  CAS  Google Scholar 

  • Babiloni, C., Miniussi, C., Moretti, D. V., et al. (2004) Cortical networks generating movement-related EEG rhythms in Alzheimer's disease: an EEG coherence study. Behav. Neurosci. 118, 698–706.

    Article  Google Scholar 

  • Beer, C. G. (1980) Perspectives on animal behavior comparisons. In: Comparative Methods in Psychology, Bornstein, M. H. (ed.) L. Erlbaum Associates, Hillsdale, NJ.

    Google Scholar 

  • Brazier, M. A. and Casby, J. U. (1952) Cross-correlation and autocorrelation studies of electroencephalographic potentials. Electroencephalogr. Clin. Neurophysiol. Suppl. 4, 201–211.

    Article  CAS  Google Scholar 

  • Brown, E. N., Kass, R. E., and Mitra, P. P. (2004) Multiple neural spike train data analysis: state-of-the-art and future challenges. Nat. Neurosci. 7, 456–461.

    Article  CAS  Google Scholar 

  • Coutin-Churchman, P., Anez, Y., Uzcategui, M., et al. (2003) Quantitative spectral analysis of EEG in psychiatry revisited: drawing signs out of numbers in a clinical setting. Clin. Neurophysiol. 114, 2294–2306.

    Article  CAS  Google Scholar 

  • Drai, D. and Golani, I. (2001) SEE: a tool for the visualization and analysis of rodent exploratory behavior. Neurosci. Biobehav. Rev. 25, 409–426.

    Article  CAS  Google Scholar 

  • Fries, P., Schroder, J. H., Roelfsema, P. R., Singer, W., and Engel, A. K. (2002) Oscillatory neuronal synchronization in primary visual cortex as a correlate of stimulus selection. J. Neurosci. 22, 3739–3754.

    CAS  Google Scholar 

  • Gallistel, C. R. (1980) The Organization of Action: A New Synthesis. L. Erlbaum Associates, Distributed by Halsted Press, Hillsdale, NJ, New York.

  • Golani, I., Kafkafi, N., and Drai, D. (1999) Phenotyping stereotypic behaviour: collective variables, range of variation and predictability. Appl. Anim. Behav. Sci. 65, 191–220.

    Article  Google Scholar 

  • Jarvis, M. R. and Mitra, P. P. (2001) Sampling properties of the spectrum and coherency of sequences of action potentials. Neural Comput. 13, 717–749.

    Article  CAS  Google Scholar 

  • Jones, K. A., Porjesz, B., Almasy, L., et al. (2004) Linkage and linkage disequilibrium of evoked EEG oscillations with CHRM2 receptor gene polymorphisms: implications for human brain dynamics and cognition. Int. J. Psychophysiol. 53, 75–90.

    Article  Google Scholar 

  • Llinas, R. R., Ribary, U., Jeanmonod, D., Kronberg, E., and Mitra, P. P. (1999) Thalamocortical dysrhythmia: a neurological and neuropsychiatric syndrome characterized by magnetoencephalography. Proc. Natl. Acad. Sci. USA 96, 15,222–15,227.

    Article  CAS  Google Scholar 

  • Percival, D. B. and Walden, A. T. (1993) Spectral Analysis For Physical Applications: Multitaper and Conventional Univeriate Techniques. Cambridge University Press. Cambridge; New York, NY.

    Google Scholar 

  • Pesaran, B., Pezaris, J. S., Sahani, M., Mitra, P. P., and Andersen, R. A. (2002) Temporal structure in neuronal activity during working memory in macaque parietal cortex. Nat. Neurosci. 5, 805–811.

    Article  CAS  Google Scholar 

  • Porjesz, B., Almasy, L., Edenberg, H. J., et al. (2002) Linkage disequilibrium between the beta frequency of the human EEG and a GABAA receptor gene locus. Proc. Natl. Acad. Sci. USA 99, 3729–3733.

    Article  CAS  Google Scholar 

  • Skinner, B. F. (1991) The Behavior of Organisms: An Experimental Analysis. Copley Pub. Group, Acton, MA.

    Google Scholar 

  • Tchernichovski, O., Mitra, P. P., Lints, T., and Nottebohm, F. (2001) Dynamics of the vocal imitation process: how a zebra finch learns its song. Science 291, 2564–2569.

    Article  CAS  Google Scholar 

  • Tchernichovski, O., Nottebohm, F., Ho, C. E., Pesaran, B., and Mitra, P. P. (2000) A procedure for an automated measurement of song similarity. Anim. Behav. 59, 1167–1176.

    Article  Google Scholar 

  • Thakor, N. V. and Tong, S. (2004) Advances in quantitative electroencephalogram analysis methods. Ann. Rev. Biomed. Eng. 6, 453.

    Article  CAS  Google Scholar 

  • Thomson, D. J. (1982) Spectrum Estimation and Harmonic-Analysis. Proc. IEEE 70, 1055–1096.

    Article  Google Scholar 

  • Thomson, D. J. and Chave, A. D. (1991) Jackknifed Error Estimates for Spectra, Coherences, and Transfer Functions. In: Advances in Spectrum Estimation. Haykin, S. (ed.) Prentice-Hall, Englewood Cliffs, NJ, pp. 58–113.

    Google Scholar 

  • Tinbergen, N. (1989) The Study of Instinct. Oxford University Press, Oxford.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hemant Bokil.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bokil, H., Tchernichovsky, O. & Mitra, P.P. Dynamic phenotypes. Neuroinform 4, 119–128 (2006). https://doi.org/10.1385/NI:4:1:119

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/NI:4:1:119

Index Entries

Navigation