Skip to main content
Log in

Mining for associations between text and brain activation in a functional neuroimaging database

  • Original Article
  • Published:
Neuroinformatics Aims and scope Submit manuscript

Abstract

We describe a method for mining a neuroimaging database for associations between text and brain locations. The objective is to discover association rules between words indicative of cognitive function as described in abstracts of neuroscience papers and sets of reported stereotactic Talairach coordinates. We invoke a simple probabilistic framework in which kernel density estimates are used to model distributions of brain activation foci conditioned on words in a given abstract. The principal associations are found in the joint probability density between words and voxels. We show that the statistically motivated associations are well aligned with general neuroscientific knowledge.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agrawal, R., Imielinski, T., and Swami, A. (1993) Mining association rules between sets of items in large databases. In: Proceedings of the 1993 ACM SIGMOD International Conference on Management of Data, Washington, DC, May 26–28, 1993. Buneman, P. and Jajodia, S. (eds.) ACM Press, New York, pp. 207–216.

    Chapter  Google Scholar 

  • Brett, M. (1999) The MNI brain and the Talairach atlas. http://www.mrc-cbu.cam.ac.uk/Imaging/mnispace.html (accessed March 17, 2003).

  • Cabeza, R. and Nyberg, L. (2000) Imaging cognition II: an empirical review of 275 PET and fMRI studies. J. Cogn. Neurosci. 12, 1–47.

    Article  CAS  Google Scholar 

  • Deerwester, S., Dumais, S. T., Furnas, G. W., Landauer, T. K., and Harshman, R. (1990) Indexing by latent semantic analysis. J. Am. Soc. Inform. Sci. 41, 391–407.

    Article  Google Scholar 

  • Fox, P. T. and Lancaster, J. L. (1994) Neuroscience on the net. Science 266, 994–996.

    Article  CAS  Google Scholar 

  • Fox, P. T. and Lancaster, J. L. (2002) Mapping context and content: the BrainMap model. Nat. Rev. Neurosci. 3, 319–321.

    Article  CAS  Google Scholar 

  • Gerlach, C., Law, I., Gade, A., and Paulson, 0. B. (1999) Perceptual differentiation and category effects in normal object recognition: a PET study. Brain 122 (11), 2159–2170.

    Article  Google Scholar 

  • Heimer, L. (1994) The Human Brain and Spinal Cord. Functional Neuroanatomy and Dissection Guide, 2nd edn. Springer-Verlag, New York. Ingvar, M. (1999) Pain and functional imaging. Philos. Trans. R. Soc. Lond. B Biol. Sci. 354, 1347–1358.

    Google Scholar 

  • Ishai, A., Ungerleider, L. G., Martin, A., and Haxby, J. V. (2000) The representation of objects in the human occipital and temporal cortex. J. Cogn. Neurosci. 12, 35–51.

    Article  Google Scholar 

  • Jordan, K., Heinze, H. J., Lutz, K., Kanowski, M., and Jancke, L. (2001) Cortical activations during the mental rotation of different visual objects. Neuroimage 13, 143–152.

    Article  CAS  Google Scholar 

  • Kolenda, T., Hansen, L. K., Larsen, J., and Winther, O. (2002) Independent component analysis for understanding multimedia content. In: Proceedings of IEEE Workshop on Neural Networks for Signal Processing XII. Bourlard, H., Adali, T., Bengio, S., Larsen, J., and Douglas, S. (eds.) IEEE Press, NJ, pp. 757–766.

    Chapter  Google Scholar 

  • Koperski, K. and Han, J. (1995) Discovery of spatial association rules in geographic information databases. In: Advances in Spatial Databases, 4th International Symposium SSD ’95, Portland, ME, August 6–9, 1995. In: Lecture Notes in Computer Science, vol. 951. Egenhofer, M. J. and Herring, J. R. (eds.) Springer, Heidelberg, Germany, pp. 47–66.

    Google Scholar 

  • Lancaster, J. L., Rainey, L. H., Summerlin, J. L., et al. (1997) Automated labeling of the human brain: a preliminary report on the development and evaluation of a forward-transform method. Hum. Brain Mapp. 5, 238–242.

    Article  Google Scholar 

  • Lee, D. D. and Seung, H. S. (1999) Learning the parts of objects by non-negative matrix factorization. Nature 401, 788–791.

    Article  CAS  Google Scholar 

  • Lee, D. D. and Seung, H. S. (2001) Algorithms for non-negative matrix factorization. In: Advances in Neural Information Processing Systems 13, Proceedings of the 2000 Conference. Leen, T. K., Dietterich, T. G., and Tresp, V. (eds.) MIT Press, Cambridge, MA, pp. 556–562.

    Google Scholar 

  • Nielsen, F. Å. (2003) The Brede database: a small database for functional neuroimaging. Neuroimage 19. Presented at the 9th International Conference on Functional Mapping of the Human Brain, New York, NY, June 19–22, 2003. Also available on CD-ROM.

  • Nielsen, F. Å. and Hansen, L. K. (2000) Experiences with Matlab and VRML in functional neuroimaging visualizations. In: VDE2000-Visualization Development Environments, Workshop Proceedings, Princeton, NJ, April 27–28, 2000. Klasky, S. and Thorpe, S. (eds.) Princeton Plasma Physics Laboratory, Princeton, NJ, pp. 76–81.

    Google Scholar 

  • Nielsen, F. Å. and Hansen, L. K. (2002a) Automatic anatomical labeling of Talairach coordinates and generation of volumes of interest via the BrainMap database. NeuroImage 16. Presented at the 8th International Conference on Functional Mapping of the Human Brain, Sendai, Japan, June 2–6, 2002. Also available on CD-ROM.

  • Nielsen, F. Å. and Hansen, L. K. (2002b) Modeling of activation data in the BrainMap™ database: detection of outliers. Hum. Brain Mapp. 15, 146–156.

    Article  Google Scholar 

  • Nielsen, F. Å. and Hansen, L. K. (2004) Finding related functional neuroimaging volumes. Artif. Intell. Med. 30, 141–151.

    Article  Google Scholar 

  • Rehm, K., Lakshminarayan, K., Frutiger, S. A., et al. (1998) A symbolic environment for visualizing activated foci in functional neuroimaging datasets. Med. Image Anal. 2, 215–226.

    Article  CAS  Google Scholar 

  • Rorden, C. and Brett, M. (2000) Stereotaxic display of brain lesions. Behav. Neurol. 12, 191–200.

    Google Scholar 

  • Talairach, J. and Tournoux, P. (1988) Co-planar Stereotaxic Atlas of the Human Brain. Thieme Medical Publisher Inc, New York.

    Google Scholar 

  • Turkeltaub, P. E., Eden, G. F., Jones, K. M., and Zeffiro, T. A. (2002) Meta-analysis of the functional neuroanatomy of single-word reading: method and validation. NeuroImage 16, 765–780.

    Article  Google Scholar 

  • Tzourio-Mazoyer, N., Landeau, B., Papathanassiou, D., et al. (2002) Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. NeuroImage 15, 273–289.

    Article  CAS  Google Scholar 

  • Van Horn, J. D., Grethe, J. S., Kostelec, P., et al. (2001) The functional magnetic resonance imaging data center (fMRIDC): the challenges and rewards of large-scale databasing of neuroimaging studies. Philos. Trans. R. Soc. Lond. B Biol. Sci. 356, 1323–1339.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Finn Årup Nielsen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nielsen, F.Å., Hansen, L.K. & Balslev, D. Mining for associations between text and brain activation in a functional neuroimaging database. Neuroinform 2, 369–379 (2004). https://doi.org/10.1385/NI:2:4:369

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/NI:2:4:369

Index Entries

Navigation