Skip to main content
Log in

Clustered organization of cortical connectivity

Neuroinformatics Aims and scope Submit manuscript

Abstract

Long-range corticocortical connectivity in mammalian brains possesses an intricate, nonrandom organization. Specifically, projections are arranged in ‘small-world’ networks, forming clusters of cortical areas, which are closely linked among each other, but less frequently with areas in other clusters. In order to delineate the structure of cortical clusters and identify their members, we developed a computational approach based on evolutionary optimization. In different compilations of connectivity data for the cat and macaque monkey brain, the algorithm identified a small number of clusters that broadly agreed with functional cortical subdivisions. We propose a simple spatial growth model for evolving clustered connectivity, and discuss structural and functional implications of the clustered, small-world organization of cortical networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (France)

Instant access to the full article PDF.

Institutional subscriptions

References

  • Barabasi, A. L. and Albert, R. (1999) Emergence of scaling in random networks. Science 286, 509–512.

    Article  Google Scholar 

  • Barbas, H. (2000) Connections underlying the synthesis of cognition, memory, and emotion in primate prefrontal cortices. Brain Res Bull 52, 319–330.

    Article  CAS  Google Scholar 

  • Büchel, C. and Friston, K. J. (1997) Modulation of connectivity in visual pathways by attention: cortical interactions evaluated with structural equation modelling and fMRI. Cereb Cortex 7, 768–778.

    Article  Google Scholar 

  • Felleman, D. J. and Van Essen, D. C. (1991) Distributed hierarchical processing in the primate cerebral cortex. Cereb Cortex 1, 1–47.

    Article  CAS  Google Scholar 

  • Friston, K. J. (1994) Functional and effective connectivity in neuroimaging: a synthesis. Hum Brain Mapp 2, 56–78.

    Article  Google Scholar 

  • Gupta, A., Wang, Y., and Markram, H. (2000) Organizing principles for a diversity of GABAergic interneurons and synapses in the neocortex. Science 287, 273–278.

    Article  CAS  Google Scholar 

  • Hilgetag, C. and Barbas, H. (2003) Predictors of primate corticocortical connectivity. Soc Neurosci Abstr 29, 596.522.

    Google Scholar 

  • Hilgetag, C., Kötter, R., Stephan, K., and Sporns, O. (2002). Computational methods for the analysis of brain connectivity. in Computational Neuroanatomy: Principles and Methods, Ascoli, G., ed., Humana Press, pp. 295–335.

  • Hilgetag, C. C., Burns, G. A., O’Neill, M. A., et al. (2000a) Anatomical connectivity defines the organization of clusters of cortical areas in the macaque monkey and the cat. Philos Trans R Soc Lond B Biol Sci 355, 91–110.

    Article  CAS  Google Scholar 

  • Hilgetag, C. C. and Grant, S. (2000) Uniformity, specificity and variability of corticocortical connectivity. Philos. Trans R Soc Lond B Biol Sci 355, 7–20.

    Article  CAS  Google Scholar 

  • Hilgetag, C. C., O’Neill, M. A., and Young, M. P. (1996) Indeterminate organization of the visual system. Science 271, 776–777.

    Article  CAS  Google Scholar 

  • Hilgetag, C. C., O’Neill, M. A., and Young, M. P. (2000b) Hierarchical organization of macaque and cat cortical sensory systems explored with a novel network processor. Philos Trans R Soc Lond B Biol Sci 355, 71–89.

    Article  CAS  Google Scholar 

  • Jeong, H., Mason, S. P., Barabasi, A. L., and Oltvai, Z. N. (2001) Lethality and centrality in protein networks. Nature 411, 41–42.

    Article  CAS  Google Scholar 

  • Kaiser, M. and Hilgetag, C. (2004a) Edge vulnerability in neural and metabolic networks. Biol. Cybern. 90, 311–317.

    Article  Google Scholar 

  • Kaiser, M. and Hilgetag, C. (2004b) Modelling the development of cortical networks. Neuro-Computing 58–60, 297–302.

    Google Scholar 

  • Kaiser, M. and Hilgetag, C. C. (2004c) Spatial growth of real-world networks. Phys Rev E Stat Nonlin Soft Matter Phys 69, 036103.

    Google Scholar 

  • Kalisman, N., Silberberg, G., and Markram, H. (2003) Deriving physical connectivity from neuronal morphology. Biol Cybern 88, 210–218.

    Article  Google Scholar 

  • Kötter, R., and Stephan, K. E. (2003) Network participation indices: characterizing component roles for information processing in neural networks. Neural Netw 16, 1261–1275.

    Article  Google Scholar 

  • Kruskal, J. B. and Wish, M. (1978). Multidimensional scaling. Sage Publications, Beverly Hills, CA.

    Google Scholar 

  • Martin, R., Kaiser, M., Andras, P., and Young, M. (2001) Is the brain a scale-free network? Soc Neurosci Abstr 27, 816.814.

    Google Scholar 

  • McIntosh, A. R., Grady, C. L., Ungerleider, L. G., et al. (1994) Network analysis of cortical visual pathways mapped with PET. J Neurosci 14, 655–666.

    CAS  Google Scholar 

  • Milo, R., Shen-Orr, S., Itzkovitz, S., et al. (2002) Network motifs: Simple building blocks of complex networks. Science 298, 824–827.

    Article  CAS  Google Scholar 

  • Petroni, F., Panzeri, S., Hilgetag, C. C., et al. (2001) Simultaneity of responses in a hierarchical visual network. Neuroreport 12, 2753–2759.

    Article  CAS  Google Scholar 

  • Sporns, O., Tononi, G., and Edelman, G. M. (2000a) Connectivity and complexity: the relationship between neuroanatomy and brain dynamics. Neural Netw 13, 909–922.

    Article  CAS  Google Scholar 

  • Sporns, O., Tononi, G., and Edelman, G. M. (2000b) Theoretical neuroanatomy: relating anatomical and functional connectivity in graphs and cortical connection matrices. Cereb Cortex 10, 127–141.

    Article  CAS  Google Scholar 

  • Stephan, K. E., Hilgetag, C. C., Burns, G. A., et al. (2000) Computational analysis of functional connectivity between areas of primate cerebral cortex. Philos Trans R Soc Lond B Biol Sci 355, 111–126.

    Article  CAS  Google Scholar 

  • Sur, M., and Leamey, C. A. (2001) Development and plasticity of cortical areas and networks. Nat Rev Neurosci 2, 251–262.

    Article  CAS  Google Scholar 

  • Ungerleider, L. G. and Mishkin, M. (1982). Two cortical visual systems. in Analysis of visual behaviour, Ingle, D. G., Goodale, M. A. and Mansfield, R. J. Q., ed., MIT Press, Cambridge, MA, pp. 549–586.

    Google Scholar 

  • Verhage, M., Maia, A. S., Plomp, J. J., et al. (2000) Synaptic assembly of the brain in the absence of neurotransmitter secretion. Science 287, 864–869.

    Article  CAS  Google Scholar 

  • Watts, D. J., and Strogatz, S. H. (1998) Collective dynamics of ‘small-world’ networks. Nature 393, 440–442.

    Article  CAS  Google Scholar 

  • Young, M. P. (1992) Objective analysis of the topological organization of the primate cortical visual system. Nature 358, 152–155.

    Article  CAS  Google Scholar 

  • Young, M. P., Scannell, J. W., O’Neill, M. A., et al. (1995) Non-metric multidimensional scaling in the analysis of neuroanatomical connection data and the organization of the primate cortical visual system. Philos Trans R Soc Lond B Biol Sci 348, 281–308.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claus C. Hilgetag.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hilgetag, C.C., Kaiser, M. Clustered organization of cortical connectivity. Neuroinform 2, 353–360 (2004). https://doi.org/10.1385/NI:2:3:353

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/NI:2:3:353

Index Entries

Navigation