Skip to main content
Log in

Inferential constraint sets in the organization of visual expectation

  • Review Article
  • Published:
Neuroinformatics Aims and scope Submit manuscript

Abstract

Many lines of evidence indicate that considering visual perception as a passive, stimulus-driven, feedforward decoding process is no longer tenable. Visual perceptionnaturally occurs within the context of an integrated array of ongoing cognitive processes involving memory, perception in other modalities, and motor control. In many situations, these processes allow expectations to be formed for likely visual events. This article explores the idea that the formation of visual expectations involves the active organization of visual cortical areas, providing a framework of contextual information within which expected events are interpreted. Retinal inputs are treated as constraints that feed into a complex system of interacting visual cortical areas and thalamic nuclei, which are concurrently imposing constraints on one another. Although the nature of expectational organization in the visual cortex is not well-understood, a reasonable hypothesis is that expectation involves the mutual constraint of spatiotemporal activity patterns in multiple visual cortical areas. In this scenario, expectation is instantiated by a set of activity patterns in high-level visual cortical areas that impose constraints on one another as well as on low-level areas according to the partial information that is available about expected retinal inputs. One approach to testing this proposal is through the analysis of simultaneously recorded local field potentials (LFPs) from local neuronal assemblies in multiple visual cortical areas. Analysis of LFPs by multivariate autoregressive modeling is showing promise in revealing the organization of expectation in visual cortex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arieli, A., Shoham, D., Hildesheim, R., and Grindvald, A. (1995) Coherent spatiotemporal patterns of ongoing activity revealed by real-time optical imaging coupled with single-unit recording in the cat visual cortex. J. Neurophysiol. 73, 2072–2093.

    CAS  Google Scholar 

  • Baccala, L. A. and Sameshima, K. (2001) Partial directed coherence: a new concept in neural structure determination. Biol. Cybern. 84, 463–474.

    Article  CAS  Google Scholar 

  • Barrie, J. M., Freeman, W. J., and Lenhart, M. D. (1996) Spatiotemporal analysis of prepyriform, visual, auditory, and somesthetic surface EEGs in trained rabbits. J. Neurophysiol. 76, 520–539.

    CAS  Google Scholar 

  • Barlow, H. (2001) Redundnacy reduction revisited. Network 12, 241–253.

    CAS  Google Scholar 

  • Bekisz, M. and Wróbel, A. (2003) Attention-dependent coupling between beta activities recorded in the cat’s thalamic and cortical representations of the central visual field. Eur. J. Neurosci. 17, 421–426.

    Article  Google Scholar 

  • Bernasconi, C. and König, P. (1999) On the directionality of cortical interactions studied by structural analysis of electrophysiological recordings. Biol. Cybern. 81, 199–210.

    Article  CAS  Google Scholar 

  • Bressler, S. L. (1987a) Functional relation of olfactory bulb and cortex: I. Spatial variation of bulbocortical interdependence. Brain Res. 409, 285–293.

    Article  CAS  Google Scholar 

  • Bressler, S. L. (1987b) Functional relation of olfactory bulb and cortex: II. Model for driving of cortex by bulb. Brain Res. 409, 294–301.

    Article  CAS  Google Scholar 

  • Bressler, S. L. (1996) Interareal synchronization in the visual cortex. Behav. Brain Res. 76, 37–49.

    Article  CAS  Google Scholar 

  • Bressler, S. L. (1999) The dynamic manifestation of cognitive structures in the cerebral cortex, in Understanding Representation in the Cognitive Sciences, Riegler, A., Peschl, M., and von Stein, A., eds., Kluwer Academic, New York, pp. 121–126.

    Google Scholar 

  • Bressler, S. L. (2002) Understanding cognition through large-scale cortical networks. Curr. Dir. Psychol. Sci. 11, 58–61.

    Article  Google Scholar 

  • Bressler, S. L. (2003) Cortical coordination dynamics and the disorganization syndrome in schizophrenia. Neuropsychopharm. 28, S35-S39.

    Article  Google Scholar 

  • Bressler, S. L. and Kelso, J. A. (2001) Cortical coordination dynamics and cognition. Trends Cogn. Sci. 5, 26–36.

    Article  Google Scholar 

  • Bressler, S. L., Coppola, R., and Nakamura, R. (1993) Episodic multiregional cortical coherence at multiple frequencies during visual task performance. Nature 366, 153–156.

    Article  CAS  Google Scholar 

  • Bressler, S. L., Ding, M., and Yang, W. (1999) Investigation of cooperative cortical dynamics by multivariate autoregressive modeling of event-related local field potentials. Neurocomput. 26–27, 625–631.

    Article  Google Scholar 

  • Bullock, T. H., McClune, M. C., Achimowicz, J. Z., Iragui-Madoz, V. J., Duckrow, R. B., and Spencer, S. S. (1995) Temporal fluctuations in coherence of brain waves. Proc. Natl. Acad. Sci. 92, 11568–11572.

    Article  CAS  Google Scholar 

  • Chiu, C. and Weliky, M. (2001) Spontaneous activity in developing ferret visual cortex in vivo. J. Neurosci. 21, 8906–8914.

    CAS  Google Scholar 

  • Cossart, R., Aronov, D., and Yuste, R. (2003) Attractor dynamics of network UP states in the neocortex. Nature 423, 283–288.

    Article  CAS  Google Scholar 

  • Desimone, R. and Duncan, J. (1995) Neural mechanisms of selective visual attention. Ann. Rev. Neurosci. 18, 193–222.

    Article  CAS  Google Scholar 

  • Ding, M., Bressler, S. L., Yang, W., and Liang, H. (2000) Short-window spectral analysis of cortical event-related potentials by adaptive multivariate autoregressive modeling: data preprocessing, model validation, and variability assessment. Biol. Cybern. 83, 35–45.

    Article  CAS  Google Scholar 

  • Engel, A. K., Fries, P., and Singer, W. (2001) Dynamic predictions: oscillations and synchrony in top-down processing. Nat. Rev. Neurosci. 2, 704–716.

    Article  CAS  Google Scholar 

  • Felleman, D. J. and Van Essen, D. C. (1991) Distributed hierarchical processing in the primate cerebral cortex. Cereb. Cortex 1, 1–47.

    Article  CAS  Google Scholar 

  • Franaszczuk, P.J., Blinowska, K. J., and Kowalczyk, M. (1985) The application of parametric multichannel spectral estimates in the study of electrical brain activity. Biol. Cybern. 51, 239–247.

    Article  CAS  Google Scholar 

  • Freeman, W. J. and Rogers, L. J. (2002) Fine temporal resolution of analytic phase reveals episodic synchronization by state transitions in gamma EEGs. J. Neurophysiol. 87, 937–945.

    Google Scholar 

  • Freeman, W. J. and van Dijk, B. W. (1987) Spatial patterns of visual cortical fast EEG during conditioned reflex in a rhesus monkey. Brain Res. 422, 267–276.

    Article  CAS  Google Scholar 

  • Friston, K. (2002) Functional integration and inference in the brain. Prog. Neurobiol. 68, 113–143.

    Article  Google Scholar 

  • Fuster, J. M. (2000) Cortical dynamics of memory. Int. J. Psychophysiol. 35, 155–164.

    Article  CAS  Google Scholar 

  • Galuske, R. A., Schmidt, K. E., Goebel, R., Lomber, S. G., and Payne, B. R. (2002) The role of feedback in shaping neural representations in cat visual cortex. Proc. Natl. Acad. Sci. 99, 17083–17088.

    Article  CAS  Google Scholar 

  • Geweke, J. (1982) Measurement of linear dependence and feedback between multiple time series. J. Am. Stat. Assoc. 77, 304–324.

    Article  Google Scholar 

  • Granger, C. W. J. (1969) Investigating causal relations by econometric models and cross-spectral methods. Econometrica 37, 424–438.

    Article  Google Scholar 

  • Harrison, L., Penny, W. D., and Friston, K. (2003) Multivariate autoregressive modeling of fMRI time series. Neuroimage 19, 1477–1491.

    Article  CAS  Google Scholar 

  • Hesse, W., Moller, E., Arnold, M., and Schack, B. (2003) The use of time-variant EEG Granger causality for inspecting directed interdependencies of neural assemblies. J. Neurosci. Methods 124, 27–44.

    Article  Google Scholar 

  • Hilgetag, C. C., Burns, G. A., O’Neill, M. A., Scannell, J. W., and Young, M. P. (2000) Anatomical connectivity defines the organization of clusters of cortical areas in the macaque monkey and the cat. Philos. Trans. R. Soc. Lond. B Biol. Sci. 355, 91–110.

    Article  CAS  Google Scholar 

  • Houk, J. C. and Wise, S. P. (1995) Distributed modular architectures linking basal ganglia, cerebellum, and cerebral cortex: their role in planning and controlling action. Cereb. Cortex 5, 95–110.

    Article  CAS  Google Scholar 

  • Kastner, S., Pinsk, M. A., De Weerd, P., Desimone, R., and Ungerleider, L. G. (1999) Increased activity in human visual cortex during directed attention in the absence of visual stimulation. Neuron 22, 751–761.

    Article  CAS  Google Scholar 

  • Kersten, D. and Yuille, A. (2003) Bayesian models of object perception. Curr. Opin. Neurobiol. 13, 150–158.

    Article  CAS  Google Scholar 

  • Lee, T. S. (2002) Top-down influence in early visual processing: a Bayesian perspective. Physiol. Behav. 77, 645–650.

    Article  CAS  Google Scholar 

  • Lee, T. S. and Mumford, D. (2003) Hierarchical Bayesian inference in the visual cortex. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 20, 1434–1448.

    Google Scholar 

  • Leopold, D. A. and Logothetis, N. K. (2003) Spatial patterns of spontaneous local field activity in the monkey visual cortex. Rev. Neurosci. 14, 195–205.

    Google Scholar 

  • Meador, K. J., Ray, P. G., Echauz, J. R., Loring, D. W., and Vachtsevanos, G. J. (2002) Gamma coherence and conscious perception. Neurology 59, 847–854.

    CAS  Google Scholar 

  • Miller, R. (1996) Neural assemblies and laminar interactions in the cerebral cortex. Biol. Cybern. 75, 253–261.

    Article  CAS  Google Scholar 

  • Miltner, W. H., Braun, C., Arnold, M., Witte, H., and Taub, E. (1999) Coherence of gamma-band EEG activity as a basis for associative learning. Nature 397, 434–436.

    Article  CAS  Google Scholar 

  • Moller, E., Schack, B., Arnold, M., and Witte, H. (2001) Instantaneous multivariate EEG coherence analysis by means of adaptive high-dimensional autoregressive models. J. Neurosci. Methods 105, 143–158.

    Article  CAS  Google Scholar 

  • Mumford, D. (1992) On the computational architecture of the neocortex. II. The role of corticocortical loops. Biol. Cybern. 66, 241–251.

    Article  CAS  Google Scholar 

  • Murray, S. O., Kersten, D., Olshausen, B. A., Schrater, P., and Woods, D. L. (2002) Shape perception reduces activity in human primary visual cortex. Proc. Natl. Acad. Sci. 99, 15164–15169.

    Article  CAS  Google Scholar 

  • Pascual-Leone, A. and Walsh, V. (2001) Fast back-projections from the motion to the primary visual area necessary for visual awareness. Science 292, 510–512.

    CAS  Google Scholar 

  • Passingham, R. E., Stephan, K. E., and Kotter, R. (2002) The anatomical basis of functional localization in the cortex. Nat. Rev. Neurosci. 3, 606–616.

    CAS  Google Scholar 

  • Phillips, W. A. (2001) Contextual modulation and dynamic grouping in perception. Trends Cogn. Sci. 5, 95–97.

    Article  Google Scholar 

  • Phillips, W. A. and Singer, W. (1997) In search of common foundations for cortical computation. Behav. Brain Sci. 20, 657–683; discussion 683–722.

    Article  CAS  Google Scholar 

  • Pouget, A., Dayan, P., and Zemel, R. S. (2003) Inference and computation with population codes. Ann. Rev. Neurosci. 26, 381–410.

    Article  CAS  Google Scholar 

  • Pulvermuller, F. (1999) Words in the brain’s language. Behav. Brain Sci. 22, 253–279; discussion 280–336.

    Article  CAS  Google Scholar 

  • Rao, R. P. (1999) An optimal estimation approach to visual perception and learning. Vision Res. 39, 1963–1989.

    Article  CAS  Google Scholar 

  • Singer, W. (1994) Coherence as an organizing principle of cortical functions. Int. Rev. Neurobiol. 37, 153–183.

    Article  CAS  Google Scholar 

  • Sommer, F. T. and Wennekers, T. (2003) Models of distributed associative memory networks in the brain. Theory Biosci. 122, 55–69.

    Article  Google Scholar 

  • Thagard, P. and Verbeurgt, K. (1998) Coherence as constraint satisfaction. Cognit. Sci. 22, 1–24.

    Article  Google Scholar 

  • Warren, D. J., Fernandez, E., and Normann, R. A. (2001) High-resolution two-dimensional spatial mapping of cat striate cortex using a 100-micro-electrode array. Neuroscience 105, 19–31.

    Article  CAS  Google Scholar 

  • Young, M. P. (2000) The architecture of visual cortex and inferential processes in vision. Spat. Vis. 13, 137–146.

    Article  CAS  Google Scholar 

  • Yu, A. J. and Dayan, P. (2002) Acetylcholine in cortical inference. Neural Netw. 15, 719–730.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bressler, S.L. Inferential constraint sets in the organization of visual expectation. Neuroinform 2, 227–237 (2004). https://doi.org/10.1385/NI:2:2:227

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/NI:2:2:227

Index Entries

Navigation