Advertisement

Neuroinformatics

, Volume 1, Issue 1, pp 135–139 | Cite as

ModelDB

Making models publicly accessible to support computational neuroscience
  • Michele Migliore
  • Thomas M. Morse
  • Andrew P. Davison
  • Luis Marenco
  • Gordon M. Shepherd
  • Michael L. Hines
News Item

Conclusion

ModelDB provides a resource for the computational neuroscience community that enables investigators to increase their understanding of published models by enabling them o run the models as published and build on them for further research. Its use can aid the field of computational neuroscience to enter a new era of expedited numerical experimentation.

Keywords

Hines Computational Neuroscience Communication Disorder Submission Process Neuroscience Community 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chemin, J., Monteil, A., Bourinet, E., Nargeot, J., and Lory, P. (2001) Alternatively spliced alpha(1G)(Ca(V)3.1) intracellular loops promote specific T-type Ca(2+) channel gating properties. Biophys J 80:1238–1250.PubMedCrossRefGoogle Scholar
  2. Destexhe, A., Neubig, M., Ulrich, D., and Huguenard, J. (1998) Dendritic low-threshold calcium currents in thalamic relay cells. J Neurosci 18:3574–3588.PubMedGoogle Scholar
  3. Hines, M. L. and Carnevale, N. T. (1997) The NEURON simulation environment. Neural Comput 9:1179–1209.PubMedCrossRefGoogle Scholar
  4. Hopfield J. J. and Brody C. D. (2001) What is a moment? Transient synchrony as a collective mechanism for spatiotemporal integration. Proc Natl Acad Sci USA 98:1282–1287.PubMedCrossRefGoogle Scholar
  5. Marenco, L., Nadkarni, P., Skoufos, E., Shepherd, G., and Miller, P. (1999) Neuronal database integration: the Senselab EAV data model. Proc AMIA Symp pp. 102–106.Google Scholar
  6. Migliore, M. and Shepherd, G. M. (2002) Emerging rules for the distributions of active dendritic conductances. Nat Rev Neurosci 3:362–370.PubMedCrossRefGoogle Scholar
  7. Miller, P. L., Nadkarni, P., Singer, M., Marenco, L., Hines, M., and Shepherd, G. (2001) Integration of multidisciplinary sensory data: a pilot model of the human brain project approach. J Am Med Inform Assoc 8:34–48.PubMedGoogle Scholar
  8. Nadkarni, P.M., Marenco, L., Chen, R., Skoufos, E., Shepherd, G., and Miller, P. (1999) Organization of heterogeneous scientific data using the EAV/CR representation. J Am Med Inform Assoc 6:478–493.PubMedGoogle Scholar
  9. Peterson, B. E., Healy, M. D., Nadkarni, P. M., Miller, P. L., and Shepherd, G. M. (1996) ModelDB: an environment for running and storing computational models and their results applied to neuroscience. J Am Med Inform Assoc 3:389–398.PubMedGoogle Scholar
  10. Shen, G. Y., Chen, W. R., Midtgaard, J., Shepherd, G. M., and Hines, M. L. (1999) Computational analysis of action potential initiation in mitral cell soma and dendrites based on dual patch recordings. J Neurophysiol 82:3006–3020.PubMedGoogle Scholar
  11. Shepherd, G. M., Mirsky, J. S., Healy, M. D., Singer, M. S., Skoufos, E., Hines, M. S., Nadkarni, P. M., and Miller, P. L. (1998) The Human Brain Project: Neuroinformatics tools for integrating, searching, and modeling multidisciplinary neuroscience data. Trends Neurosci 21:460–468.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc 2003

Authors and Affiliations

  • Michele Migliore
    • 1
    • 2
  • Thomas M. Morse
    • 1
  • Andrew P. Davison
    • 1
  • Luis Marenco
    • 3
  • Gordon M. Shepherd
    • 1
  • Michael L. Hines
    • 1
  1. 1.Department of NeurobiologyYale University School of MedicineNew Haven
  2. 2.Institute of BiophysicsNational Research CouncilPalermoItaly
  3. 3.Center for Medical InformaticsYale University School of MedicineNew Haven

Personalised recommendations