Clinical implications of quantitative infrared pupillometry in neurosurgical patients


Pupillometry has been widely employed in the evaluation of a large number of pathological conditions, including intracranial pathology. The recent introduction of a portable, user-friendly, infrared pupillometer (ForSite, NeurOptics Inc., Irvine, CA) has enabled the accurate and reproducible measurement of several pupillary parameters, such as maximum and minimum apertures, constriction and dilation velocities, and latency period. It should be noted that various clinical conditions, especially neurological and ocular diseases, as well as numerous medications, may interfere with the measurements. Furthermore, a number of physiological parameters, such as the intensity of retinal illumination, the level of patient's alertness, the intensity of ambient light, as well as the time of day that the examination is performed may alter the obtained values. The potential implications of pupillometry in the clinical assessment of neurosurgical patients, including its complex relationship to intracranial pressure changes, mandate the undertaking of prospective clinical studies validating the clinical significance of this noninvasive, diagnostic modality.

This is a preview of subscription content, log in to check access.


  1. 1.

    Lowenfeld IE. The Pupil: Anatomy, Physiology, and Clinical Applications, 1st ed. Ames: Iowa State University Press; 1993; pp. 273–286.

    Google Scholar 

  2. 2.

    Wilson SAK. Ectopia pupilliae in certain mesencephalic lesions. Brain 1906;29:524–536.

    Article  Google Scholar 

  3. 3.

    Fisher CM. Oval pupils. Arch Neurol 1980;37(8):502–503.

    PubMed  CAS  Google Scholar 

  4. 4.

    Marshall LF, Barba D, Toole BM, Bowers SA. The oval pupil: clinical significance and relationship to intracranial hypertension. J Neurosurg 1983;58(4):566–568.

    PubMed  CAS  Google Scholar 

  5. 5.

    Taylor WR, Chen JW, Meltzer H, et al. Quantitative pupillometry, a new technology: normative data and preliminary observations in patients with acute head injury. Technical note. J Neurosurg 2003;98(1):205–213.

    PubMed  Google Scholar 

  6. 6.

    Morris GF, Juul N, Marshall SB, Benedict B, Marshall LF. Neurological deterioration as a potential alternative end-point in human clinical trials of experimental pharmacological agents for treatment of severe traumatic brain injuries. Neurosurgery 1998;43(6):1369–1374.

    PubMed  Article  CAS  Google Scholar 

  7. 7.

    Chesnut RM, Gautille T, Blunt BA, Klauber MR, Marshall LE. The localizing value of asymmetry in pupillary size in severe head injury: relation to lesion type and location. Neurosurgery 1994; 34(5):840–845.

    PubMed  Article  CAS  Google Scholar 

  8. 8.

    Choi SC, Narayan RK, Anderson RL, Ward JD. Enhanced specificity of prognosis in severe head injury. J Neurosurg 1988;69(3):381–385.

    PubMed  CAS  Google Scholar 

  9. 9.

    Litvan I, Saposnik G, Maurino J, et al. Pupillary diameter assessment: need for a graded scale. Neurology 2000;54(2):530–531.

    PubMed  CAS  Google Scholar 

  10. 10.

    Meeker M, Du R, Bacchetti P, et al. Pupil examination: validity and clinical utility of an automated pupillometer. J Neurosci Nurs 2005;37(1):34–40.

    PubMed  Google Scholar 

  11. 11.

    Boev AN, Fountas KN, Karampelas I, et al. Quantitative pupillometry: normative data in healthy pediatric volunteers. J Neurosurg 2005;103(6)Suppl:496–500.

    PubMed  Google Scholar 

  12. 12.

    Wachler BS, Krueger RR. Agreement and repeatability of infrared pupillometry and the comparison method. Ophthalmology 1999;106(2):319–323.

    PubMed  Article  CAS  Google Scholar 

  13. 13.

    Larson MD, Muhiudeen I. Pupillometric analysis of the “absent light reflex”. Arch Neurol 1995;52(4):369–372.

    PubMed  CAS  Google Scholar 

  14. 14.

    Davies DR, Smith SE. Pupil abnormality in amyloidosis with autonomic neuropathy. J Neurol Neurosurg Psychiatry 1999;67(6):819–822.

    PubMed  CAS  Article  Google Scholar 

  15. 15.

    Dütsch M, Hilz MJ, Rauhut U, Solomon J, Neundorfer B, Axelrod FB. Sympathetic and parasympathetic pupillary dysfunction in familial dysautonomia. J Neurol Sci 2002;195(1): 77–83.

    PubMed  Article  Google Scholar 

  16. 16.

    de Seze J, Arndt C, Stojkovic T, et al. Pupillary disturbances in multiple sclerosis: correlation with MRI findings. J Neurol Sci 2001;188(1–2):37–41.

    PubMed  Article  Google Scholar 

  17. 17.

    Bertinotti L, Pietrini U, Del Rosso A, et al. The use of pupillometry in joint and connective tissue diseases. Ann NY Acad Sci 2002;96(6):446–455.

    Article  Google Scholar 

  18. 18.

    Micieli G, Tassorelli C, Martignoni E, Marcheselli S, Rossi F, Nappi G. Further characterization of autonomic involvement in multiple system atrophy: a pupillometric study. Funct Neurol 1995;10(6):273–280.

    PubMed  CAS  Google Scholar 

  19. 19.

    Mylius V, Braune HJ, Schepelmann K. Dysfunction of the pupillary light reflex following migraine headache. Clin Auton Res 2003;13(1):16–21.

    PubMed  Article  Google Scholar 

  20. 20.

    Lowenstein O, Loewenfeld IE. In: The Pupil in the Eye, Vol. 3, Davson H, ed. New York: Academic Press, 1969; pp. 269–270.

    Google Scholar 

  21. 21.

    McLaren JW, Hauri PJ, Lin SC, Harris CD. Pupillometry in clinically sleepy patients. Sleep Med 2002;3(4):347–352.

    PubMed  Article  Google Scholar 

  22. 22.

    Kraemer S, Danker-Hopfe H, Dorn H, Schmidt A, Ehlert I, Herrmann WM. Time-of-day variations of indicators of attention: performance, physiologic parameters, and self-assessment of sleepiness. Biol Psychiatry 2000;48(11):1069–1080.

    PubMed  Article  CAS  Google Scholar 

  23. 23.

    Barr KJ, Boettger MK, Till S, Dolicek J, Sauer H. Lateralization of pupillary light reflex parameters. Clin Neurophysiol 2005;116:790–798.

    Article  Google Scholar 

  24. 24.

    Jones R. Do women and myopes have larger pupils? Invest Ophthalmol Vis Sci 1990;31(7):1413–1415.

    PubMed  CAS  Google Scholar 

  25. 25.

    Piha SJ, Halonen JI. Infrared pupillometry in the assessment of autonomic function. Diabetes Res Clin Pract 1994;26(1):61–66.

    PubMed  Article  CAS  Google Scholar 

  26. 26.

    Larson MD, Berry PD. Supraspinal pupillary effects of intravenous and epidural fentanyl during isoflurane anesthesia. Reg Anesth Pain Med 2000;25(1):60–66.

    PubMed  Article  CAS  Google Scholar 

  27. 27.

    Gray AT, Krejci ST, Larson MD. Neuromuscular blocking drugs do not alter the pupillary light reflex of anesthetized humans. Arch Neurol 1997;54(5):579–584.

    PubMed  CAS  Google Scholar 

  28. 28.

    Fliegart F, Kurth B, Gohler K. The effects of tramadol on static and dynamic pupillometry in healthy subjects—the relationship between pharmacodynamics, pharmacokinetics and CYP2D6 metaboliser status. Eur J Clin Pharmacol 2005;61(4): 257–266.

    Article  CAS  Google Scholar 

  29. 29.

    Fotiou F, Fountoulakis KN, Goulas A, Alexopoulos L, Palikaras A. Automated standardized Pupillometry with optical method for purposes of clinical practice and research. Clin Physiology 2000;20(5):336–347.

    Article  CAS  Google Scholar 

  30. 30.

    Lam BL, Thompson HS, Corbett JJ. The prevalence of simple anisocoria. Am J Ophthalmol 1987;104(1):69–73.

    PubMed  CAS  Google Scholar 

  31. 31.

    Manley GT, Larson MD. Infrared pupillometry during uncal herniation. J Neurosurg Anesthesiol 2002;14(3):223–228.

    PubMed  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Kostas N. Fountas.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Fountas, K.N., Kapsalaki, E.Z., Machinis, T.G. et al. Clinical implications of quantitative infrared pupillometry in neurosurgical patients. Neurocrit Care 5, 55–60 (2006).

Download citation

Key Words

  • Anisocoria
  • constriction velocity
  • infrared pupillometry
  • intracranial pressure
  • latency period