Skip to main content
Log in

Neurological recovery after decompressive craniectomy for massive ischemic stroke

  • Original Article
  • Published:
Neurocritical Care Aims and scope Submit manuscript

Abstract

Introduction: Decompressive craniectomy has demonstrated efficacy in reducing morbidity and mortality in critically ill patients with massive hemispheric cerebral infarction. However, little is known about the patterns of functional recovery that exist in patients after decompressive craniectomy, and controversy still exists as to whether craniotomy and infarct resection (“strokectomy”) are appropriate alternatives to decompression alone. We therefore used functional magnetic resonance imaging (f-MRI) to assess the extent and location of functional recovery in patients after decompressive craniectomy for massive ischemic stroke.

Methods: f-MRI was obtained in three patients with massive nondominant cerebral infarction who had undergone decompressive craniectomy for severe cerebral edema 13 to 26 months previously. Brain activation was triggered by hand-gripping or foot-movement tasks. Imaging results were combined with periodic clinical follow-up to determine the extent of neurological recovery.

Results: Activation of the contralateral hemisphere was seen in the sensorimotor cortex, premotor, and supplementary motor areas. Lesser activation patterns were seen in equivalent regions of the infarcted hemisphere. Peri-infarct activation foci were seen in two of the three patients, but no activation occurred within the area of infarction as defined by the initial stroke seen on diffusion-weighted MRI. All three patients demonstrated some corresponding neurological improvement.

Conclusion: After massive hemispheric cerebral infarction requiring decompressive craniectomy, patients may experience functional recovery as a result of activation in both the infarcted and contralateral hemispheres. The evidence of functional recovery in peri-infarct regions suggests that decompression alone may be preferable to strokectomy where the risk of damage to adjacent nonischemic brain may be greater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ng LKY, Nimmanitya J. Massive cerebral infarction with severe brain swelling: a clinicopathological study. Stroke 1970;1:158–163.

    PubMed  CAS  Google Scholar 

  2. Ropper AH, Shafran B. Brain edema after stroke. Arch Neurol 1984;41:26–29.

    PubMed  CAS  Google Scholar 

  3. Hacke W, Schwab S, Horn M, Spranger M, DeGeorgia M, vonKummer R. ‘Malignant’ middle cerebral artery territory infarction. Arch Neurol 1996;53:309–315.

    PubMed  CAS  Google Scholar 

  4. Carter BS, Ogilvy CS, Candia GJ, Rosas HD, Buonanno F. One-year outcome after decompressive surgery for massive nondominant hemisphere infarction. Neurosurgery 1997;40:1168–1175.

    Article  PubMed  CAS  Google Scholar 

  5. Berrouschot J, Sterker M, Bettin S, Koster J, Schneider D. Mortality of space-occupying (‘malignant’) middle cerebral artery infarction under conservative intensive care. Intensive Care Med 1998;24:620–623.

    Article  PubMed  CAS  Google Scholar 

  6. Ivamoto HS, Numoto M, Donaghy RMP. Surgical decompression for cerebral and cerebellar infarcts. Stroke 1974;5:365–370.

    PubMed  CAS  Google Scholar 

  7. Rengachary SS, Batnitzky S, Morantz RA, Arjunan K, Jeffries B. Hemicraniectomy for acute massive cerebral infarction. Neurosurgery 1981;8:321–328.

    Article  PubMed  CAS  Google Scholar 

  8. Young PH, Smith KRJ, Dunn RC. Surgical decompression after cerebral hemispheric stroke: indications and patient selection. South Med J 1982;75:473–475.

    PubMed  CAS  Google Scholar 

  9. Delashaw JB, Broaddus WC, Kassell NF, Haley EC, Pendleton GA, Vollmer DG, Maggio WW, Grady MS. Treatment of right hemispheric cerebral infarction by hemicraniectomy. Stroke 1990;21:874–881.

    PubMed  CAS  Google Scholar 

  10. Wirtz CR, Steiner T, Aschoff A, Schwab S, Schnippering H, Steiner HH, Hacke W, Kunze S. Hemicraniectomy with dural augmentation in medically uncontrollable hemispheric infarction. Neurosurg Focus 1997;2:E3.

    Google Scholar 

  11. Woertgen C, Erban P, Rothoerl RD, Bein T, Horn M, Brawanski A. Quality of life after decompressive craniectomy in patients suffering from supratentorial brain ischemia. 146 2004;7:691–695.

    Google Scholar 

  12. Uhl E, Kreth F, Elias B, Goldammer A, Hempelmann R, Liefner M, Nowak G, Oertel M, Schmieder K, Schneider G-H. Outcome and prognostic factors of hemicranietomy for space occupying cerebral infarction. J Neurol Neurosurg Psychiatry 2004;75:270–274.

    PubMed  CAS  Google Scholar 

  13. Mori K, Nakao Y, Yamamoto T, Maeda M. Early external decompressive craniectomy with duroplasty improves functional recovery in patients with massive hemispheric embolic infarction: timing and indication of decompressive surgery for malignant cerebral infarction. Surg Neurol 2004;62:420–429.

    PubMed  Google Scholar 

  14. Kalia KK, Yonas H. An aggressive approach to massive middle cerebral artery infarction. Arch Neurol 1993;50:1293–1297.

    PubMed  CAS  Google Scholar 

  15. Mori K, Aoki A, Yamamoto T, Horinaka N, Maeda M. Aggressive decompressive surgery in patients with massive hemispheric embolic cerebral infarction associated with severe brain swelling. Acta Neurochir (Wein) 2001;143:483–491.

    Article  CAS  Google Scholar 

  16. Robertson SC, Lennarson P, Hasan DM, Traynelis VC. Clinical course and surgical management of massive cerebral infarction. Neurosurgery 2004;55:55–61.

    Article  PubMed  Google Scholar 

  17. Ogawa S, Lee T, Nayak A, Glynn P. Oxygenation-sensitive contrast in magnetic resonance image of rodent brain at high magnetic fields. Magn Reson Med 1990;14:68–78.

    Article  PubMed  CAS  Google Scholar 

  18. Friston KJ, Jezzard P, Turner R. Analysis of functional MRI time-series. Hum Brain Mapp 1994;1:153–171.

    Article  Google Scholar 

  19. Schwab S, Steiner T, Aschoff A, Schwarz S, Steiner HH, Jansen O, Hacke W. Early hemicraniectomy in patients with complete middle cerebral artery infarction. Stroke 1998;29:1888–1893.

    PubMed  CAS  Google Scholar 

  20. Kondziolka D, Fazl M. Functional recovery after decompressive craniectomy for cerebral infarction. Neurosurgery 1998;23:142–147.

    Google Scholar 

  21. Koh MS, GOh KYC, Tung MYY, Chan C. Is decompressive craniectomy for acute cerebral infarction of any benefit? Surg Neurol 2000;53:225–300.

    Article  PubMed  CAS  Google Scholar 

  22. Rieke K, Schwab S, Krieger D, vonKummer R, Aschoff A, Schuchardt V, Hacke W. Decompressive surgery in space-occupying hemispheric infarction: results of an open, prospective trial. Crit Care Med 1995;23:1576–1587.

    Article  PubMed  CAS  Google Scholar 

  23. Polonara G, Fabri M, Manzoni T, Salvolini U. Localization of the first and second somatosensory areas in the human cerebral cortex with functional MR imaging. AJNR 1999;20:199–205.

    PubMed  CAS  Google Scholar 

  24. Boecker H, Kleinschmidt A, Requart M, Hanicke W, Merboldt KD, Frahm J. Functional cooperativity of human cortical motor areas during self-paced simple finger movements: a high resolution MRI study. Brain 1994;117:1231–1239.

    Article  PubMed  Google Scholar 

  25. Papke K, Reimer P, Renger B, Schuierer G, Knecht S, Schulz M, Heindel W. Optimized activation of the primary sensorimotor cortex for clinical functional MR imgaing. AJNR 2000;21:395–401.

    PubMed  CAS  Google Scholar 

  26. Cramer SC, Nelles G, Benson RR, et al. A functional MRI study of subjects recovered from hemiparetic stroke. Stroke 1997;28:2518–2527.

    PubMed  CAS  Google Scholar 

  27. Cao Y, D’Olhaberriague L, Vikingstad EM, Levine SR, Welch KMA. Pilot study of functional MRI to assess cerebral activation of motor function after poststroke hemiparesis. Stroke 1998;29:112–122.

    PubMed  CAS  Google Scholar 

  28. Newton J, Sunderland A, Butterworth SE, Peters AM, Peck KK, Gowland PA. A pilot study of event-related functional magnetic resonance imaging of monitored wrist movements in patients with partial recovery. Stroke 2002;33:2881–2887.

    Article  PubMed  CAS  Google Scholar 

  29. Johansen-Berg H, Dawes H, Guy C, Smith SM, Wade DT, Matthews PM. Correlation between motor improvements and altered fMRI activity after rehabilitative therapy. Brain 2002;125:2731–2742.

    Article  PubMed  Google Scholar 

  30. Jang SH, Kim YH, Cho SH, Lee JH, Kwon YH. Cortical reorganization induced by task-oriented training in chronic hemiplegic stroke patients. Neuroreport 2003;14:137–141.

    Article  PubMed  Google Scholar 

  31. Dijkhuizen RM, Singhal AB, Mandeville JB, et al. Correlation between brain reorganization, ischemic damage, and neurologic status after transient focal cerebral ischemia in rats: a functional magnetic resonance imaging study. J Neurosci 2003;23:510–517.

    PubMed  CAS  Google Scholar 

  32. Fujii Y, Nakada T. Cortical reorganization in patients with subcortical hemiparesis: neural mechanisms of functional recovery and prognostic implication. J Neurosurg 2003;98:64–73.

    PubMed  Google Scholar 

  33. Greenwood J. Acute brain infarctions with high intracranial pressure: surgical indications. Johns Hopkins Med J 1968;122:254–260.

    PubMed  Google Scholar 

  34. Wagner S, Schnippering H, Aschoff A, Koziol J, Schwab S, Steiner T. Suboptimum hemicraniectomy as a cause of additional cerebral lesions in patients with malignant infarction of the middle cerebral artery. J Neurosurg 2001;94:693–696.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin M. Cockroft.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheung, A., Telaghani, C.K., Wang, J. et al. Neurological recovery after decompressive craniectomy for massive ischemic stroke. Neurocrit Care 3, 216–223 (2005). https://doi.org/10.1385/NCC:3:3:216

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/NCC:3:3:216

Key Words

Navigation