Skip to main content
Log in

Moxifloxacin in experimental Streptococcus pneumoniae cerebritis and meningitis

  • New Perspectives in Bacterial Meningitis
  • Published:
Neurocritical Care Aims and scope Submit manuscript

Abstract

Rifampin, a protein synthesis inhibitor, reduced mortality in a mouse model of meningitis compared to bacteriolytic cephalosporin standard therapy. To assess whether moxifloxacin (known to cause a less rapid bacteriolysis than cephalosporins) can similarly reduce mortality, mice infected with Streptococcus pneumoniae by deep intracerebral injection were treated subcutaneously with either 200 mg/kg of moxifloxacin or ceftriaxone every 8 hours for 5 days (n=49 each). They were then observed for an additional 8 days. Overall mortalities were 35 and 29 in moxifloxacin- and ceftriaxone-treated mice, respectively (p=0.29). Kaplan-Meier survival analysis also revealed no statistically significant differences (p=0.32). Moxifloxacin failed to reduce mortality compared to cephalosporin standard therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hirst RA, Sikand KS, Rutman A, Mitchell TJ, Andrew PW, O’Callaghan C. Relative roles of pneumolysin and hydrogen peroxide from Streptococcus pneumoniae in inhibition of ependymal ciliary beat frequency. Infect Immun 2000;68:1557–1562.

    Article  PubMed  CAS  Google Scholar 

  2. Zysk G, Schneider-Wald BK, Hwang, JH, et al. Pneumolysin is the main inducer of cytotoxicity to brain microvascular endothelia cells caused by Streptococcus pneumoniae. Infect Immun 2001;69:845–852.

    Article  PubMed  CAS  Google Scholar 

  3. Braun JS, Sublett JE, Freyer D, et al. Pneumococcal pneumolysin and H2O2 mediate brain cell apoptosis during meningitis. J Clin Invest 2002;109:19–27.

    Article  PubMed  CAS  Google Scholar 

  4. Stringaris AK, Geisenhainer J, Bergmann F, et al. Neurotoxicity of pneumolysin, a major pneumococcal virulence factor, involves calcium influx and depends on activation of p38 mitogen-activated protein kinase. Neurobiol Dis 2002;11:355–368.

    Article  PubMed  CAS  Google Scholar 

  5. Kim YS, Täuber MG. Neurotoxicity of glia activated by Grampositive bacterial products depends on nitric oxide production. Infect Immun 996;64:3148–3153.

  6. Schmidt H, Tlustochowska A, Stuertz K, et al. Organotypic hippocampal cultures. A model of brain tissue damage in Streptococcus pneumoniae meningitis. J Neuroimmunol 2001;113:30–39.

    Article  PubMed  CAS  Google Scholar 

  7. Iliev AI, Stringaris AK, Nau R, Neumann H. Neuronal injury mediated via stimulation of microglia toll-like receptor-9 (TLR9), FASEB J 2004;18:412–414.

    PubMed  CAS  Google Scholar 

  8. Nau R, Zysk G, Schmidt H, et al. Trovafloxacin delays the antibiotic-induced inflammatory response in experimental pneumococcal meningitis. J Antimicrob Chemother 1997;39:781–788.

    Article  PubMed  CAS  Google Scholar 

  9. Stuertz K, Schmidt H, Trostdorf F, Eiffert H, Mäder M, Nau R. Lower lipoteichoic and teichoic acid CSF concentrations during treatment of pneumococcal meningitis with non-bacteriolytic antibiotics than with ceftriaxone. Scand J Infect Dis 1999;31:367–370.

    Article  PubMed  CAS  Google Scholar 

  10. Azeh I, Gerber J, Wellmer A, et al. The protein synthesis inhibiting clindamycin improves outcome in a mouse model of Staphylococcus aureus sepsis compared to the cell wall active ceftriaxone. Crit Care Med 2002;30:1560–1564.

    Article  PubMed  CAS  Google Scholar 

  11. Stuertz K, Schmidt H, Eiffert H, Schwartz P, Mäder M, Nau R. Differential release of lipoteichoic and teichoic acids from Streptococcus pneumoniae as a result of exposure to β-lactam antibiotics, rifamycins, trovafloxacin, and quinupristin-dalfopristin. Antimicrob Agents Chemother 1998;42:277–281.

    Article  PubMed  CAS  Google Scholar 

  12. Van Langevelde P, Van Dissel JT, Ravensberger E, Appelmelk BJ, Schrijver IA, Groeneveld PHP. Antibiotic-induced release of lipoteichoic acid and peptidogly can from Staphylococcusaureus: quantitative measurements and biological reactivities. Antimicrob Agents Chemother 1988;42:3073–3078.

    Google Scholar 

  13. Böttcher T, Gerber J, Wellmer A, et al. Rifampin reduces production of reactive oxygen species of CSF phagocytes and hippocampal neuronal apoptosis in experimental Streptococcus pneumoniae meningitis. J Infect Dis 2000;181:2095–2098.

    Article  PubMed  Google Scholar 

  14. Nau R, Wellmer A, Soto A, et al. Rifampin reduces early mortality in experimental Streptococcus pneumoniae meningitis. J Infect Dis 1999;179:1557–1560.

    Article  PubMed  CAS  Google Scholar 

  15. Nau R, Schmidt T, Kaye K, Froula JL, Täuber MG. Quinolone antibiotics in therapy of experimental pneumococcal meningitis in rabbits. Antimicrob Agents Chemother 1995;39:593–597.

    PubMed  CAS  Google Scholar 

  16. Schmidt H, Dalhoff A, Stuertz K, et al. Moxifloxacin in the therapy of experimental pneumococcal meningitis. Antimicrob Agents Chemother 1998;41:1397–1401.

    Google Scholar 

  17. Ostergaard C, Klitmoller Sorensen T, Dahl Knudsen J, Frimodt-Moller N. Evaluation of moxifloxacin, a new 8-methoxyquinolone, for treatment of meningitis caused by a penicillin-resistant pneumococcus in rabbits. Antimicrob Agents Chemother 1998;42:1706–1712.

    PubMed  CAS  Google Scholar 

  18. Rodriguez-Cerrato V, McCoig CC, Michelow IC, et al. Pharmacodynamics and bactericidal activity of moxifloxacin in experimental Escherichia coli meningitis. Antimicrob Agents Chemother 2001;45:3092–3097.

    Article  PubMed  CAS  Google Scholar 

  19. Mason DJ, Power EG, Talsania H, Phillips I, Gant VA. Antibacterial action of ciprofloxacin. Antimicrob Agents Chemother 1995;39:2752–2758.

    PubMed  CAS  Google Scholar 

  20. Gerber J, Raivich G, Wellmer A, et al. A mouse model of Streptococcus pneumoniae meningitis mimicking several features of human disease. Acta Neropathol 2001;101:499–508.

    CAS  Google Scholar 

  21. Wellmer A, Noeske C, Gerber J, Munzel U, Nau R. Spatial memory and learning deficits after experimental pneumococcal meningitis in mice. Neurosci Lett 2000;296:137–140.

    Article  PubMed  CAS  Google Scholar 

  22. Frimodt-Moller N, Bentzon MW, Thomsen VF. Experimental infection with Streptococcus pneumoniae in mice: correlation of in vitro activity and pharmacokinetic parameters with in vivo effect for 14 cephalosporins. J Infect Dis 1986;154:511–517.

    PubMed  CAS  Google Scholar 

  23. Britt RH, Enzmann DR, Placone RC, Obana WG, Yeager AS. Experimental anaerobic brain abscess. Computerized tomographic and neuropathological correlations. J Neurosurg 1984;60:1148–1159.

    Article  PubMed  CAS  Google Scholar 

  24. Craig WA, Ebert SC. Killing and regrowth of bacteria in vitro: a review. Scand J Infect Dis 1990;74(Suppl):63–70.

    CAS  Google Scholar 

  25. Woodcock JM, Andrews JM, Boswell FJ, Brenwald NP, Wise R. In vitro activity of BAY 12-8039, a new fluoroquinolone. Antimicrob Agents Chemother 1997;41:101–106.

    PubMed  CAS  Google Scholar 

  26. Stass H, Kubitza D. Pharmacokinetics and elimination of moxifloxacin after oral and intravenous administration in man. J Antimicrob Chemother 1999;43 (Suppl B):83–90.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roland Nau.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Djukic, M., Böttcher, T., Wellmer, A. et al. Moxifloxacin in experimental Streptococcus pneumoniae cerebritis and meningitis. Neurocrit Care 2, 325–329 (2005). https://doi.org/10.1385/NCC:2:3:325

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/NCC:2:3:325

Key Words

Navigation