Skip to main content
Log in

Development of adjunctive therapies for bacterial meningitis and lessons from knockout mice

  • New Perspectives in Bacterial Meningitis
  • Published:
Neurocritical Care Aims and scope Submit manuscript

Abstract

Bacterial meningitis is a medical emergency and is optimally managed in an intensive care environment. Despite the use of antibiotics, the prognosis of this disease is poor because of central nervous system complications such as brain edema formation, cerebrovascular alterations, intracranial hemorrhage, and hydrocephalus. Effective adjunctive therapies are still missing. Experimental studies with animal models have provided new insights into the pathophysiology during the acute phase of bacterial meningitis. In recent years, knockout mice have become a powerful tool to investigate the role of particular genes and have also been applied in bacterial meningitis research. The use of these mice offered new insights into the role of different cytokines, proteases, and oxidants involved in the inflammatory cascade. Translating this knowledge into new therapies will provide new treatment strategies for this serious disease in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kastenbauer S, Pfister HW. Pneumococcal meningitis in adults: Spectrum of complications and prognostic factors in a series of 87 cases. Brain 2003;126(Pt 5):1015–1025.

    PubMed  Google Scholar 

  2. Slack MP, Azzopardi HJ, Hargreaves RM, Ramsay ME. Enhanced surveillance of invasive Haemophilus influenzae disease in England, 1990 to 1996: impact of conjugate vaccines. Pediatr Infect Dis J 1998;17(9 Suppl):S204-S207.

    PubMed  CAS  Google Scholar 

  3. Wenger JD. Epidemiology of Haemophilus influenzae type b disease and impact of Haemophilus influenzae type b conjugate vaccines in the United States and Canada. Pediatr Infect Dis J 1998;17 (Suppl 9):S132-S136.

    PubMed  CAS  Google Scholar 

  4. Geographic variation in penicillin resistance in Streptococcus pneumoniae—selected sites, United States, 1997. MMWR 1999;48(30):656–661.

  5. Waites K, Brown S. Antimicrobial resistance among isolates of respiratory tract infection pathogens from the southern United States: data from the PROTEKT US surveillance program 2000/2001. South Med J 2003;96(10):974–985.

    PubMed  Google Scholar 

  6. Hyde TB, Gay K, Stephens DS, et al. Macrolide resistance among invasive Streptococcus pneumoniae isolates. JAMA 2001; 286(15):1857–1862.

    PubMed  CAS  Google Scholar 

  7. McCormick AW, Whitney CG, Farley MM, et al. Geographic diversity and temporal trends of antimicrobial resistance in Streptococcus pneumoniae in the United States. Nat Med 2003;9(4):424–430.

    PubMed  CAS  Google Scholar 

  8. Koedel U, Scheld WM, Pfister HW. Pathogenesis and pathophysiology of pneumococcal meningitis. Lancet Infect Dis 2002;2(12):721–736.

    PubMed  Google Scholar 

  9. de Gans J, van de Gans BD. Dexamethasone in adults with bacterial meningitis. N Engl J Med 2002;347(20):1549-1556.

    Google Scholar 

  10. van de Gans BD, de Gans J, McIntyre P, Prasad K. Steroids in adults with acute bacterial meningitis: a systematic review. Lancet Infect Dis 2004;4(3):139-143.

    Google Scholar 

  11. Koedel U, Pfister HW. Models of experimental bacterial meningitis. Role and limitations. Infect Dis Clin N Am 1999;13(3):549–577.

    CAS  Google Scholar 

  12. Dacey RG, Sande MA. Effect of probenecid on cerebrospinal fluid concentrations of penicillin and cephalosporin derivatives. Antimicrob Agents Chemother 1974;16(4):437–441.

    Google Scholar 

  13. Quagliarello VJ, Long WJ, Scheld WM. Morphologic alterations of the blood-brain barrier with experimental meningitis in the rat. Temporal sequence and role of encapsulation. J Clin Invest 1986;77(4):1084–1095.

    PubMed  CAS  Google Scholar 

  14. Moxon ER, Smith AL, Averill DR, Smith DH. Haemophilus influenzae meningitis in infant rats after intranasal inoculation. J Infect Dis 1974;129(2):154–162.

    PubMed  CAS  Google Scholar 

  15. Smith AL, Smith DH, Averill DR Jr., Marino J, Moxon ER. Production of Haemophilus influenzae b meningitis in infant rats by intraperitoneal inoculation. Infect Immun 1973; 8(2):278–290.

    PubMed  CAS  Google Scholar 

  16. Kim KS, Anthony BF. Efficacy of trimethoprim/sulfamethoxazole in experimental Escherichia coli bacteremia and meningitis. Chemotherapy 1983;29(6):428–435.

    Article  PubMed  CAS  Google Scholar 

  17. Bortolussi R, Ferrieri P, Wannamaker LW. Dynamics of Escherichia coli infection and meningitis in infant rats. Infect Immun 1978;22(2):480–485.

    PubMed  CAS  Google Scholar 

  18. Leist TP, Frei K, Kam-Hansen S, Zinkernagel RM, Fontana A. Tumor necrosis factor alpha in cerebrospinal fluid during bacterial, but not viral, meningitis. Evaluation in murine model infections and in patients. J Exp Med 1988;167(5):1743–1748.

    PubMed  CAS  Google Scholar 

  19. Tsai YH, Hirth RS, Leitner F. A murine model for listerial meningitis and meningoencephalomyelitis: therapeutic evaluation of drugs in mice. Chemotherapy 1980;26(3):196–206.

    PubMed  CAS  Google Scholar 

  20. Charreau B, Tesson L, Soulillou JP, Pourcel C, Anegon I. Transgenesis in rats: technical aspects and models. Transgenic Res 1996;5(4):223–234.

    PubMed  CAS  Google Scholar 

  21. Thomas KR, Capecchi MR. Introduction of homologous DNA sequences into mammalian cells induces mutations in the cognate gene. Nature 1986;324(6092):34–38.

    PubMed  CAS  Google Scholar 

  22. Koller BH, Smithies O. Inactivating the beta 2-microglobulin locus in mouse embryonic stem cells by homologous recombination. Proc Natl Acad Sci USA 1989;86(22):8932–8935.

    PubMed  CAS  Google Scholar 

  23. Kuehn MR, Bradley A, Robertson EJ, Evans MJ. A potential animal model for Lesch-Nyhan syndrome through introduction of HPRT mutations into mice. Nature 1987;326(6110):295–298.

    PubMed  CAS  Google Scholar 

  24. van derAdams WL, Adams DJ, Bradley A. Tools for targeted manipulation of the mouse genome. Physiol Genomics 2002;11(3):133-164.

    Google Scholar 

  25. Buer J, Balling R. Mice, microbes and models of infection. Nat Rev Genet 2003;4(3):195–205.

    PubMed  CAS  Google Scholar 

  26. Eynon EE, Flavell RA. Walking through the forest of transgenic models of human disease. Immunol Rev 1999;169:5–10.

    PubMed  CAS  Google Scholar 

  27. Power CA. Knock out models to dissect chemokine receptor function in vivo. J Immunol Methods 2003;273(1–2):73–82.

    PubMed  CAS  Google Scholar 

  28. Picciotto MR, Wickman K. Using knockout and transgenic mice to study neurophysiology and behavior. Physiol Rev 1998;78(4):1131–1163.

    PubMed  CAS  Google Scholar 

  29. Tuomanen E, Liu H, Hengstler B, Zak O, Tomasz A. The induction of meningeal inflammation by components of the pneumococcal cell wall. J Infect Dis 1985;151(5):859–868.

    PubMed  CAS  Google Scholar 

  30. Janeway CA Jr. Approaching the asymptote? Evolution and revolution in immunology. Cold Spring Harb Symp Quant Biol 1989;54:1–13.

    PubMed  CAS  Google Scholar 

  31. Dziarski R, Tapping RI, Tobias PS. Binding of bacterial peptidoglycan to CD14. J Biol Chem 1998;273(15):8680–8690.

    PubMed  CAS  Google Scholar 

  32. Landmann R, Muller B, Zimmerli W. CD14, new aspects of ligand and signal diversity. Microbes Infect 2000;2(3):295–304.

    PubMed  CAS  Google Scholar 

  33. Barton GM, Medzhitov R. Toll-like receptors and their ligands. Curr Top Microbiol Immunol 2002;270:81–92.

    PubMed  CAS  Google Scholar 

  34. Medzhitov R. Toll-like receptors and innate immunity. Nat Rev Immunol 2001;1(2):135–145.

    PubMed  CAS  Google Scholar 

  35. Yoshimura A, Lien E, Ingalls RR, Tuomanen E, Dziarski R, Golenbock D. Cutting edge: recognition of Gram-positive bacterial cell wall components by the innate immune system occurs via Toll-like receptor 2. J Immunol 1999;163(1):1–5.

    PubMed  CAS  Google Scholar 

  36. Koedel U, Angele B, Rupprecht T, et al. Toll-like receptor 2 participates in mediation of immune response in experimental pneumococcal meningitis. J Immunol 2003;170(1):438–444.

    PubMed  CAS  Google Scholar 

  37. Echchannaoui H, Frei K, Schnell C, Leib SL, Zimmerli W, Landmann R. Toll-like receptor 2-deficient mice are highly susceptible to Streptococcus pneumoniae meningitis because of reduced bacterial clearing and enhanced inflammation. J Infect Dis 2002;186(6):798–806.

    PubMed  CAS  Google Scholar 

  38. Janssens S, Beyaert R. A universal role for MyD88 in TLR/ IL-1R-mediated signaling. Trends Biochem Sci 2002;27(9):474–482.

    PubMed  CAS  Google Scholar 

  39. Takeuchi O, Akira S. MyD88 as a bottle neck in Toll/IL-1 signaling. Curr Top Microbiol Immunol 2002;270:155–67.:155–167.

    PubMed  CAS  Google Scholar 

  40. Koedel U, Rupprecht T, Angele B, et al. MyD88 is required for mounting a robust host immune response to Streptococcus pneumoniae in the CNS. Brain 2004;127(pt 6):1437–1445.

    PubMed  Google Scholar 

  41. Dinarello CA. Proinflammatory cytokines. Chest 2000;118(2):503–508.

    PubMed  CAS  Google Scholar 

  42. Scheld WM, Koedel U, Nathan B, Pfister HW. Pathophysiology of bacterial meningitis: mechanism(s) of neuronal injury. J Infect Dis 2002;186:S225-S233.

    PubMed  CAS  Google Scholar 

  43. Szelenyi J. Cytokines and the central nervous system. Brain Res Bull 2001;54(4):329–338.

    PubMed  CAS  Google Scholar 

  44. Waage A, Halstensen A, Shalaby R, Brandtzaeg P, Kierulf P, Espevik T. Local production of tumor necrosis factor alpha, interleukin 1, and interleukin 6 in meningococcal meningitis. Relation to the inflammatory response. J Exp Med 1989;170(6):1859–1867.

    PubMed  CAS  Google Scholar 

  45. Mustafa MM, Lebel MH, Ramilo O, et al. Correlation of interleukin-1 beta and cachectin concentrations in cerebrospinal fluid and outcome from bacterial meningitis. J Pediatr 1989;115(2):208–213.

    PubMed  CAS  Google Scholar 

  46. Koedel U, Paul R, Winkler F, Kastenbauer S, Huang PL, Pfister HW. Lack of endothelial nitric oxide synthase aggravates murine pneumococcal meningitis. J Neuropathol Exp Neurol 2001;60(11):1041–1050.

    PubMed  CAS  Google Scholar 

  47. Winkler F, Koedel U, Kastenbauer S, Pfister HW. Differential expression of nitric oxide synthases in bacterial meningitis: role of the inducible isoform for blood-brain barrier breakdown. J Infect Dis 2001;183(12):1749–1759.

    PubMed  CAS  Google Scholar 

  48. Quagliarello VJ, Wispelwey B, Long WJ Jr., Scheld WM. Recombinant human interleukin-1 induces meningitis and blood-brain barrier injury in the rat. Characterization and comparison with tumor necrosis factor. J Clin Invest 1991;87(4):1360–1366.

    PubMed  CAS  Google Scholar 

  49. Wellmer A, Gerber J, Ragheb J, et al. Effect of deficiency of tumor necrosis factor alpha or both of its receptors on Streptococcus pneumoniae central nervous system infection and peritonitis. Infect Immun 2001;69(11):6881–6886.

    PubMed  CAS  Google Scholar 

  50. Gadient RA, Patterson PH. Leukemia inhibitory factor, Interleukin 6, and other cytokines using the GP130 transducing receptor: roles in inflammation and injury. Stem Cells 1999;17(3):127–137.

    PubMed  CAS  Google Scholar 

  51. Gadient RA, Otten UH. Interleukin-6 (IL-6)—a molecule with both beneficial and destructive potentials. Prog Neurobiol 1997;52(5):379–390.

    PubMed  CAS  Google Scholar 

  52. Paul R, Koedel U, Winkler F, et al. Lack of IL-6 augments inflammatory response but decreases vascular permeability in bacterial meningitis. Brain 2003;126(Pt 8):1873–1882.

    PubMed  Google Scholar 

  53. Zwijnenburg PJ, Van Der Zwijnenburg PT, Florquin S, Roord JJ, Van Furth AM. IL-1 Receptor Type 1 Gene-Deficient Mice Demonstrate an Impaired Host Defense Against Pneumococcal Meningitis. J Immunol 2003;170(9):4724-4730.

    Google Scholar 

  54. Koedel U, Winkler F, Angele B, Fontana A, Flavell RA, Pfister HW. Role of Caspase-1 in experimental pneumococcal meningitis: Evidence from pharmacologic Caspase inhibition and Caspase-1-deficient mice. Ann Neurol 2002;51(3):319–329.

    PubMed  CAS  Google Scholar 

  55. von Mering M, Wellmer A, Michel U, et al. Transcriptional regulation of caspases in experimental pneumococcal meningitis. Brain Pathol 2001;11(3):282–295.

    Article  Google Scholar 

  56. Braun JS, Novak R, Herzog KH, Bodner SM, Cleveland JL, Tuomanen EI. Neuroprotection by a caspase inhibitor in acute bacterial meningitis. Nat Med 1999;5(3):298–302.

    PubMed  CAS  Google Scholar 

  57. Dinarello CA, Novick D, Puren AJ, et al. Overview of interleukin-18: more than an interferon-gamma inducing factor. J Leukoc Biol 1998;63(6):658–664.

    PubMed  CAS  Google Scholar 

  58. Tsutsui H, Nakanishi K, Matsui K, et al. IFN-gamma-inducing factor up-regulates Fas ligand-mediated cytotoxic activity of murine natural killer cell clones. J Immunol 1996;157(9):3967–3973.

    PubMed  CAS  Google Scholar 

  59. Stuyt RJ, Netea MG, Geijtenbeek TB, Kullberg BJ, Dinarello CA, Van Der Meer JW. Selective regulation of intercellular adhesion molecule-1 expression by interleukin-18 and interleukin-12 on human monocytes. Immunology 2003;110(3):329–334.

    PubMed  CAS  Google Scholar 

  60. Leung BP, Culshaw S, Gracie JA, et al. A role for IL-18 in neutrophil activation. J Immunol 2001;167(5):2879–2886.

    PubMed  CAS  Google Scholar 

  61. Zwijnenburg PJ, Van Der Zwijnenburg PT, Florquin S, et al. Interleukin-18 genedeficient mice show enhanced defense and reduced inflammation during pneumococcal meningitis. J Neuroimmunol 2003;138(1–2):31-37.

    Google Scholar 

  62. Strle K, Zhou JH, Shen WH, et al. Interleukin-10 in the brain. Crit Rev Immunol 2001;21(5):427–449.

    PubMed  CAS  Google Scholar 

  63. Molina-Holgado F, Grencis R, Rothwell NJ. Actions of exogenous and endogenous IL-10 on glial responses to bacterial LPS/cytokines. Glia 2001;33(2):97–106.

    PubMed  CAS  Google Scholar 

  64. Van Furth AM, Seijmonsbergen EM, Langermans JA, Groeneveld PH, de Bel CE, van Furth R. High levels of interleukin 10 and tumor necrosis factor alpha in cerebrospinal fluid during the onset of bacterial meningitis. Clin Infect Dis 1995;21(1):220–222.

    PubMed  Google Scholar 

  65. Koedel U, Bernatowicz A, Frei K, Fontana A, Pfister HW. Systemically (but not intrathecally) administered IL-10 attenuates pathophysiologic alterations in experimental pneumococcal meningitis. J Immunol 1996;157(11):5185–5191.

    PubMed  CAS  Google Scholar 

  66. Zwijnenburg PJ, Van Der Zwijnenburg PT, Florquin S, Roord JJ, Van Furth AM. Interleukin-10 negatively regulates local cytokine and chemokine production but does not influence antibacterial host defense during murine pneumococcal meningitis. Infect Immun 2003;71(sn4):2276-2279.

    Google Scholar 

  67. Imai Y, Kohsaka S. Intracellular signaling in M-CSF-induced microglia activation: role of Iba1. Glia 2002;40(2):164–174.

    PubMed  Google Scholar 

  68. Gallo P, Pagni S, Giometto B, et al. Macrophage-colony stimulating factor (M-CSF) in the cerebrospinal fluid. J Neuroimmunol 1990;29(1–3):105–112.

    PubMed  CAS  Google Scholar 

  69. Gerber J, Raivich G, Wellmer A, et al. A mouse model of Streptococcus pneumoniae meningitis mimicking several features of human disease. Acta Neuropathol (Berl) 2001;101(5):499–508.

    CAS  Google Scholar 

  70. Green DR, Ferguson TA. The role of Fas ligand in immune privilege. Nat Rev Mol Cell Biol 2001;2(12):917–924.

    PubMed  CAS  Google Scholar 

  71. Miwa K, Asano M, Horai R, Iwakura Y, Nagata S, Suda T. Caspase 1-independent IL-1beta release and inflammation induced by the apoptosis inducer Fas ligand. Nat Med 1998;4(11):1287–1292.

    PubMed  CAS  Google Scholar 

  72. Liles WC, Kiener PA, Ledbetter JA, Aruffo A, Klebanoff SJ. Differential expression of Fas (CD95) and Fas ligand on normal human phagocytes: implications for the regulation of apoptosis in neutrophils. J Exp Med 1996;184(2):429–440.

    PubMed  CAS  Google Scholar 

  73. Fassbender K, Eschenfelder C, Hennerici M. Fas (APO-1/CD95) in inflammatory CNS diseases: intrathecal release in bacterial meningitis. J Neuroimmunol 1999;93(1–2):122–125.

    PubMed  CAS  Google Scholar 

  74. Paul R, Angele B, Sporer B, Pfister HW, Koedel U. Inflammatory response during bacterial meningitis is unchanged in Fas- and Fas Ligand-deficient mice. J Neuroimmunol 2004;152(1–2):78–82.

    PubMed  CAS  Google Scholar 

  75. Krieglstein CF, Granger DN. Adhesion molecules and their role in vascular disease. Am J Hypertens 2001;14(6 Pt 2):44S-54S.

    PubMed  CAS  Google Scholar 

  76. Muller WA, Randolph GJ. Migration of leukocytes across endothelium and beyond: molecules involved in the transmigration and fate of monocytes. J Leukoc Biol 1999;66(5):698–704.

    PubMed  CAS  Google Scholar 

  77. Guo RF, Ward PA. Mediators and regulation of neutrophil accumulation in inflammatory responses in lung: insights from the IgG immune complex model. Free Radic Biol Med 2002;33(3): 303–310.

    PubMed  Google Scholar 

  78. Patel KD, Cuvelier SL, Wiehler S. Selectins: critical mediators of leukocyte recruitment. Semin Immunol 2002;14(2):73–81.

    PubMed  CAS  Google Scholar 

  79. Tang T, Frenette PS, Hynes RO, Wagner DD, Mayadas TN. Cytokine-induced meningitis is dramatically attenuated in mice deficient in endothelial selectins. J Clin Invest 1996;97(11):2485–2490.

    Article  PubMed  CAS  Google Scholar 

  80. Tan TQ, Smith CW, Hawkins EP, Mason EO Jr., Kaplan SL. Hematogenous bacterial meningitis in an intercellular adhesion molecule-1-deficient infant mouse model. J Infect Dis 1995;171(2):342–349.

    PubMed  CAS  Google Scholar 

  81. Weber JR, Angstwurm K, Burger W, Einhaupl KM, Dirnagl U. Anti ICAM-1 (CD 54) monoclonal antibody reduces inflammatory changes in experimental bacterial meningitis. J Neuroimmunol 1995;63(1):63–68.

    PubMed  CAS  Google Scholar 

  82. Tuomanen EI, Saukkonen K, Sande S, Cioffe C, Wright SD. Reduction of inflammation, tissue damage, and mortality in bacterial meningitis in rabbits treated with monoclonal antibodies against adhesion-promoting receptors of leukocytes. J Exp Med 1989;170(3):959–969.

    PubMed  CAS  Google Scholar 

  83. Smith SJ. The role of integrin-mediated cell adhesion in health and disease: integrin-based therapy in clinical medicine. Ann Intern Med 2000;132(4):333–336.

    PubMed  CAS  Google Scholar 

  84. Woessner JF Jr. MMPs and TIMPSs—an historical perspective. Mol Biotechnol 2002;22(1):33–49.

    PubMed  CAS  Google Scholar 

  85. Ries C, Petrides PE. Cytokine regulation of matrix metalloproteinase activity and its regulatory dysfunction in disease. Biol Chem Hoppe Seyler 1995;376(6):345–355.

    PubMed  CAS  Google Scholar 

  86. Murrell GA, Jang D, Williams RJ. Nitric oxide activates metalloprotease enzymes in articular cartilage. Biochem Biophys Res Commun 1995;206(1):15–21.

    PubMed  CAS  Google Scholar 

  87. Leppert D, Hauser SL, Kishiyama JL, An S, Zeng L, Goetzl EJ. Stimulation of matrix metalloproteinase-dependent migration of T cells by eicosanoids. FASEB J 1995;9(14):1473–1481.

    PubMed  CAS  Google Scholar 

  88. Mun-Bryce S, Rosenberg GA. Gelatinase B modulates selective opening of the blood-brain barrier during inflammation. Am J Physiol 1998;274(5 Pt 2):R1203-R1211.

    PubMed  CAS  Google Scholar 

  89. Rosenberg GA, Dencoff JE, Correa N Jr., Reiners M, Ford CC. Effect of steroids on CSF matrix metalloproteinases in multiple sclerosis: relation to blood-brain barrier injury. Neurology 1996;46(6):1626–1632.

    PubMed  CAS  Google Scholar 

  90. D’Haese A, Wuyts A, Dillen C, et al. In vivo neutrophil recruitment by granulocyte chemotactic protein-2 is assisted by gelatinase B/MMP-9 in the mouse. J Interferon Cytokine Res 2000;20(7):667–674.

    PubMed  CAS  Google Scholar 

  91. Delclaux C, Delacourt C, D’Ortho MP, Boyer V, Lafuma C, Harf A. Role of gelatinase B and elastase in human polymorphonuclear neutrophil migration across basement membrane. Am J Respir Cell Mol Biol 1996;14(3):288–295.

    PubMed  CAS  Google Scholar 

  92. Paul R, Lorenzl S, Koedel U, et al. Matrix metalloproteinases contribute to the blood-brain barrier disruption during bacterial meningitis. Ann Neurol 1998;44(4):592–600.

    PubMed  CAS  Google Scholar 

  93. Leib SL, Clements JM, Lindberg RL, et al. Inhibition of matrix metalloproteinases and tumour necrosis factor alpha converting enzyme as adjuvant therapy in pneumococcal meningitis. Brain 2001;124(Pt 9):1734–1742.

    PubMed  CAS  Google Scholar 

  94. Kieseier BC, Paul R, Koedel U, et al. Differential expression of matrix metalloproteinases in bacterial meningitis. Brain 1999;122(Pt 8):1579–1587.

    PubMed  Google Scholar 

  95. Bottcher T, Spreer A, Azeh I, Nau R, Gerber J. Matrix metalloproteinase-9 deficiency impairs host defense mechanisms against Streptococcus pneumoniae in a mouse model of bacterial meningitis. Neurosci Lett 2003;338(3):201–204.

    PubMed  CAS  Google Scholar 

  96. Kastenbauer S, Koedel U, Becker BF, Pfister HW. Oxidative stress in bacterial meningitis in humans. Neurology 2002;58(2):186–191.

    PubMed  CAS  Google Scholar 

  97. Kastenbauer S, Koedel U, Pfister HW. Role of peroxynitrite as a mediator of pathophysiological alterations in experimental pneumococcal meningitis. J Infect Dis 1999;180(4):1164–1170.

    PubMed  CAS  Google Scholar 

  98. Koedel U, Pfister HW. Oxidative stress in bacterial meningitis. Brain Pathol 1999;9(1):57–67.

    Article  PubMed  CAS  Google Scholar 

  99. Koedel U, Bernatowicz A, Paul R, Frei K, Fontana A, Pfister HW. Experimental pneumococcal meningitis: cerebrovascular alterations, brain edema, and meningeal inflammation are linked to the production of nitric oxide. Ann Neurol 1995;37(3):313–323.

    PubMed  CAS  Google Scholar 

  100. Koedel U, Pfister HW. Protective effect of the antioxidant N-acetyl-cysteine in pneumococcal meningitis in the rat. Neurosci Lett 1997;225(1):33–36.

    PubMed  CAS  Google Scholar 

  101. Pfister HW, Koedel U, Lorenzl S, Tomasz A. Antioxidants attenuate microvascular changes in the early phase of experimental pneumococcal meningitis in rats. Stroke 1992;23(12):1798–1804.

    PubMed  CAS  Google Scholar 

  102. Tsukahara H, Hara Y, Tsuchida S, et al. Nitrite concentration in cerebrospinal fluid of infants: evidence for enhanced nitric oxide production in Hemophilus influenzae meningitis. Acta Paediatr Jpn 1996;38(4):420–422.

    PubMed  CAS  Google Scholar 

  103. Van Furth AM, Seijmonsbergen EM, Groeneveld PH, van Furth R, Langermans JA. Levels of nitric oxide correlate with high levels of tumor necrosis factor alpha in cerebrospinal fluid samples from children with bacterial meningitis. Clin Infect Dis 1996;22(5):876–878.

    PubMed  Google Scholar 

  104. Jaworowicz DJ, Jr., Korytko PJ, Singh LS, Boje KM. Nitric oxide and prostaglandin E2 formation parallels blood-brain barrier disruption in an experimental rat model of bacterial meningitis. Brain Res Bull 1998;46(6):541–546.

    PubMed  CAS  Google Scholar 

  105. Destache CJ, Pakiz CB, Dash AK, Larsen C. Nitric oxide concentrations and cerebrospinal fluid parameters in an experimental animal model of Streptococcus pneumoniae meningitis. Pharmacotherapy 1998;18(3):612–619.

    PubMed  CAS  Google Scholar 

  106. Schaper M, Leib SL, Meli DN, Brandes RP, Tauber MG, Christen S. Differential effect of p47 phox and gp91 phox deficiency on the course of Pneumococcal Meningitis. Infect Immun 2003;71(7):4087–4092.

    PubMed  CAS  Google Scholar 

  107. Leusen JH, Verhoeven AJ, Roos D. Interactions between the components of the human NADPH oxidase: intrigues in the phox family. J Lab Clin Med 1996;128(5):461–476.

    PubMed  CAS  Google Scholar 

  108. Cai H, Griendling KK, Harrison DG. The vascular NAD(P)H oxidases as therapeutic targets in cardiovascular diseases. Trends Pharmacol Sci 2003;24(9):471–478.

    PubMed  CAS  Google Scholar 

  109. Lassegue B, Sorescu D, Szocs K, et al. Novel gp91(phox) homologues in vascular smooth muscle cells: nox1 mediates angiotensin II-induced superoxide formation and redox-sensitive signaling pathways. Circ Res 2001;88(9):888–894.

    PubMed  CAS  Google Scholar 

  110. Stuehr DJ. Mammalian nitric oxide synthases. Biochim Biophys Acta 1999;1411(2–3):217–230.

    PubMed  CAS  Google Scholar 

  111. Huang PL. Lessons learned from nitric oxide synthase knockout animals. Semin Perinatol 2000;24(1):87–90.

    PubMed  CAS  Google Scholar 

  112. Rowin ME, Xue V, Irazuzta J. Integrin expression on neutrophils in a rabbit model of Group B Streptococcal meningitis. Inflammation 2000;24(2):157–173.

    PubMed  CAS  Google Scholar 

  113. Beckman JS, Koppenol WH. Nitric oxide, superoxide, and peroxynitrite: the good, the bad, and ugly. Am J Physiol 1996;271(5 Pt 1):C1424-C1437.

    PubMed  CAS  Google Scholar 

  114. O’Donnell VB, Freeman BA. Interactions between nitric oxide and lipid oxidation pathways: implications for vascular disease. Circ Res 2001;88(1):12–21.

    PubMed  CAS  Google Scholar 

  115. Szabo C, Dawson VL. Role of poly(ADP-ribose) synthetase in inflammation and ischaemia-reperfusion. Trends Pharmacol Sci 1998;19(7):287–298.

    PubMed  CAS  Google Scholar 

  116. Koedel U, Winkler F, Angele B, Fontana A, Pfister HW. Meningitis-associated central nervous system complications are mediated by the activation of poly(ADP-ribose) polymerase. J Cereb Blood Flow Metab 2002;22(1):39–49.

    PubMed  CAS  Google Scholar 

  117. Koedel U, Gorriz C, Lorenzl S, Pfister HW. Increased endothelin levels in cerebrospinal fluid samples from adults with bacterial meningitis. Clin Infect Dis 1997;25(2):329–330.

    Article  PubMed  CAS  Google Scholar 

  118. Koedel U, Lorenzl S, Gorriz C, Arendt RM, Pfister HW. Endothelin B receptor-mediated increase of cerebral blood flow in experimental pneumococcal meningitis. J Cereb Blood Flow Metab 1998;18(1):67–74.

    PubMed  CAS  Google Scholar 

  119. Clouthier DE, Hosoda K, Richardson JA, et al. Cranial and cardiac neural crest defects in endothelin-A receptor-deficient mice. Development 1998;125(5):813–824.

    PubMed  CAS  Google Scholar 

  120. Kurihara Y, Kurihara H, Suzuki H, et al. Elevated blood pressure and craniofacial abnormalities in mice deficient in endothelin-1. Nature 1994;368(6473):703–710.

    PubMed  CAS  Google Scholar 

  121. Hosoda K, Hammer RE, Richardson JA, et al. Targeted and natural (piebald-lethal) mutations of endothelin-B receptor gene produce megacolon associated with spotted coat color in mice. Cell 1994;79(7):1267–1276.

    PubMed  CAS  Google Scholar 

  122. Pfister HW, Frei K, Ottnad B, Koedel U, Tomasz A, Fontana A. Transforming growth factor beta 2 inhibits cerebrovascular changes and brain edema formation in the tumor necrosis factor alpha-independent early phase of experimental pneumococcal meningitis. J Exp Med 1992;176(1):265–268.

    PubMed  CAS  Google Scholar 

  123. Sanford LP, Ormsby I, Gittenberger-de Groot AC, et al. TGFbeta2 knockout mice have multiple developmental defects that are non-overlapping with other TGFbeta knockout phenotypes. Development 1997;124(13):2659–2670.

    PubMed  CAS  Google Scholar 

  124. Shull MM, Ormsby I, Kier AB, et al. Targeted disruption of the mouse transforming growth factor-beta 1 gene results in multifocal inflammatory disease. Nature 1992;359(6397):693–699.

    PubMed  CAS  Google Scholar 

  125. Linder CC. The influence of genetic background on spontaneous and genetically engineered mouse models of complex diseases. Lab Anim (NY) 2001;30(5):34–39.

    CAS  Google Scholar 

  126. Valentino KL, Gutierrez M, Sanchez R, Winship MJ, Shapiro DA. First clinical trial of a novel caspase inhibitor: anti-apoptotic caspase inhibitor, IDN-6556, improves liver enzymes. Int J Clin Pharmacol Ther 2003;41(10):441–449.

    PubMed  CAS  Google Scholar 

  127. Siegmund B, Zeitz M. Pralnacasan (vertex pharmaceuticals). IDrugs 2003;6(2):154–158.

    PubMed  CAS  Google Scholar 

  128. Aventis and Vertex Pharmaceuticals Voluntarily Discontinue Phase IIb Clinical Trials of Pralnacasan in Rheumatoid Arthritis. Vertex Pharmaceutical press release 2003; http://www.vrtx.com/Pressrelease2003/pr111003av.html. Accessed 06/26/2004.

  129. Southan GJ, Szabo C. Poly(ADP-ribose) polymerase inhibitors. Curr Med Chem 2003;10(4):321–340.

    PubMed  CAS  Google Scholar 

  130. Inotek completes enrollment of Phase 1 clinical trial with oral PARP inhibitor. Inotek news 2003; http:/www.inotekcorp.com/news/apr_26_2003.htm. Accessed 06/26/2004.

  131. Current early clinical trials. Cancer Research UK—Science and Research 2004;http://science.cancerresearchuk.org/tcr/drugdevelopment/curearlycts/?version=1. Accessed 06/26/2004.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans-Walter Pfister.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paul, R., Koedel, U. & Pfister, HW. Development of adjunctive therapies for bacterial meningitis and lessons from knockout mice. Neurocrit Care 2, 313–324 (2005). https://doi.org/10.1385/NCC:2:3:313

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/NCC:2:3:313

Key Words

Navigation