Skip to main content

Advertisement

Log in

Management of intracranial pressure in tuberculous meningitis

  • New Perspectives in Bacterial Meningitis
  • Published:
Neurocritical Care Aims and scope Submit manuscript

Abstract

Tuberculous meningitis (TBM) remains a common serious neurological emergency—especially in the developing world. Elevated intracranial pressure (ICP) is often a feature of severe TBM and is associated with high morbidity and mortality. The pathology associated with TBM, such as cerebral edema, hydrocephalus, tuberculoma(s), and infarcts related to arthritis, contribute to increase in intracranial volume and, therefore, elevated ICP. The three types of edema (vasogenic, cytotoxic, and interstitial) may contribute to cerebral edema. The molecular mechanisms underlying the events that ultimately lead to brain damage and cerebral edema during infection are complex. Similarly to bacterial meningitis, cerebral blood flow autoregulation is probably impaired in TBM, and the mechanisms are unclear. Although no universal guidelines are available to institute ICP monitoring in patients with severe TBM, it is be prudent to monitor patients at risk for increases in ICP. Such an approach helps to detect the secondary brain insults, allowing for a more informed approach to treatment. Treatment of elevated ICP involves a multipronged approach. The first step should be to identify focal brain lesions and hydrocephalus (which require surgical intervention) by brain imaging. Cerebral edema is treated with hyperosmolar agents. Mannitol is currently the most commonly used agent. It appears that use of hypertonic saline as an osmotic agent in infection-related cerebral edema has certain advantages. However, this needs to be established by well-designed trials. Use of steroids reduces not only cerebral edema but also the production of cytokines and other chemicals involved in the immunopathogenesis of TBM. Fever associated with TBM should be aggressively treated, because fever can worsen the impact of elevated ICP. Hyponatremia may complicate TBM and requires appropriate correction because it can aggravate cerebral edema.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. World Health Organization. The world health report. Geneva: WHO, 1998.

    Google Scholar 

  2. Dye C, Scheele S, Dolin P, Pathania V, Raviglione MC. Consensus statement. Global burden of tuberculosis: estimated incidence, prevalence, and mortality by country. WHO Global Surveillance and Monitoring Project. JAMA 1999;282:677–686.

    PubMed  CAS  Google Scholar 

  3. Selwyn PA, Haitel D, Lewis VA, et al. A prospective study of the risk of tuberculosis among intravenous drug users with human immunodeficiency virus infection. N Engl J Med 1989;320:345–350.

    Article  Google Scholar 

  4. Bishburg E, Sunderam G, Reichman LB, et al. Central nervous system tuberculosis with the acquired immunodeficiency syndrome and its related complex. Ann Intern Med 1986;105:21–23.

    Google Scholar 

  5. British Medical Research Council. Streptomycin treatment of tuberculous meningitis. Lancet 1948;1:582.

    Google Scholar 

  6. Misra UK, Kalita J, Srivastava M, et al. Prognosis of tuberculous meningitis: a multivariate analysis. J Neurol Sci 1996;137:57–61.

    PubMed  CAS  Google Scholar 

  7. Misra UK, Kalita J, Roy AK, Mandal SK, Srivastava M. Role of clinical, radiological, and neurophysiological changes in predicting the outcome of tuberculous meningitis: a multivariable analysis. J Neurol Neurosurg Psychiatry 2000;68:300–303.

    PubMed  CAS  Google Scholar 

  8. Bhargava S, Gupta AK, Tandon PN. Tuberculous meningitis: a CT scan study. Br J Radiol 1982;55:189–196.

    Article  PubMed  CAS  Google Scholar 

  9. Kingsley DPE, Hendrickse WA, Kendall BE, et al. Tuberculous meningitis: role of CT scan in management and prognosis. J Neurol Neurosurg Psychiatry 1987;50:32–36.

    Google Scholar 

  10. Dastur DK, Manghani DK, Udani PM. Pathology and pathogenetic mechanisms in neurotuberculosis. Radiol Clin North Am 1995;33:733–752.

    PubMed  CAS  Google Scholar 

  11. Shankar SK, Santosh V, Mahadevan A, Yasha TC, Satishchandra P. Pathology of cerebral vasculature in neurotuberculosis—some observations. In: Mehta VS, Misra UK, eds. Progress in Neurosciences, New Delhi: Neurological Society of India. 2001, pp. 134–141.

    Google Scholar 

  12. Yaramis A, Gurkan F, Elevli M, et al. Central nervous system tuberculosis in children: a review of 214 cases. Pediatrics 1998;102:E49

    Google Scholar 

  13. Oxates M, Kemaloglu S, Gurkan F, Ozkan U, Hosoglu S, Simsek MM. CT of the brain in tuberculous meningitis. A review of 289 patients. Acta Radiol 2000;41:13–17.

    Google Scholar 

  14. Kilani B, Ammari L, Tiouiri H, et al. Neuroradiologic manifestations of central nervous system tuberculosis in 122 adults. Rev Med Intern 2003;24:86–96.

    Article  CAS  Google Scholar 

  15. Ranjan P, Kalita J, Misra UK. Serial study of clinical and CT changes in tuberculous meningitis. Neuroradiology. 2003;45:277–282.

    PubMed  CAS  Google Scholar 

  16. Hsich FY, Chia LG, Shen WC. Locations of cerebral infarction in tuberculous meningitis. Neuroradiology 1992;34:197–199.

    Google Scholar 

  17. Dastur DK, Udani PM. Pathology and pathogenesis of tuberculous encephalopathy. Act Neuropathol 1966;6:311–326.

    CAS  Google Scholar 

  18. Tsenova L, Sokol K, Freedman VH, Kaplan G. A combination of thalidomide plus antibiotics protects rabbits from mycobacterial meningitis-associated death. J Infect Dis 1998;177:1563–1572.

    Article  PubMed  CAS  Google Scholar 

  19. Tsenova L, Bergtold A, Freedman VH, Young RA, Kaplan G. Tumor necrosis factor a is a determinant of pathogenesis and disease progression in mycobacterial infection in the central nervous system. Proc Natl Acd Sci 1999;96:5657–5662.

    CAS  Google Scholar 

  20. Kinder V, Sappino AP, Grau GE, et al. The inducing role of tumor necrosis factor in the development of bactericidal granuloma during BCG infection. Cell 1989;56:731–740.

    Google Scholar 

  21. Donald PR, Schoeman JF, Beyers N, et al. Concentrations of interferon gamma, tumor necrosis factor alpha, and interleukin-1 beta in the cerebrospinal fluid of children treated for tuberculous meningitis. Clin Infect Dis 1995;21:924–929.

    PubMed  CAS  Google Scholar 

  22. Mastroianni CM, Paoletti F, Lichtner M, D’Agostino C, Vullo V, Delia S. Cerebrospinal fluid cytokines in patients with tuberculous meningitis. Clin Immunol Immunopathol 1997;84:171–176.

    PubMed  CAS  Google Scholar 

  23. Yaramis A, Colpan L, Tas MA. Diagnostic value of cytokine measurement in cerebrospinal fluid in children with central nervous system tuberculosis. Pediatrics 2001;107:1236.

    PubMed  CAS  Google Scholar 

  24. Thwaites GE, Simmons CP, Than Ha Quyen N, et al. Pathophysiology and prognosis in Vietnamese adults with tuberculous meningitis. J Infect Dis 2003;188:1105–1115.

    PubMed  CAS  Google Scholar 

  25. Chen L, Jiang H, Wei C. Nitric oxide, TNF-alpha and IL-8 in cerebrospinal fluids of tuberculous and cryptococcus meningitis. Hunan Yi Ke Da Xue Xue Bao 1997;22:514–516.

    PubMed  CAS  Google Scholar 

  26. Paul R, Lorenzl S, Koedel U, et al. Matrix metalloproteinases contribution to the blood-brain-barrier disruption during bacterial meningitis. Ann Neurol 1998;44:592–600.

    PubMed  CAS  Google Scholar 

  27. Leppert D, Leib SL, Grygar C, Miller KM, Schaad UB, Hollander GA. Matrix metalloproteinase (MMP)-8 and MMP-9 in cerebrospinal fluid during bacterial meningitis: Association with blood-brain-barrier damage and neurological sequelae. Clin Infect Dis 2000;31:80–84.

    PubMed  CAS  Google Scholar 

  28. Price NM, Farrar J, Tran TT, Nguyen TH, Tran TH, Friedland JS. Identification of a matrix-degrading phenotype in human tuberculosis in vitro and in vivo. J Immunol 2001;166:4223–4230.

    PubMed  CAS  Google Scholar 

  29. Moller K, Larsen FS, Qvist J, et al. Dependency of cerebral blood flow on mean arterial pressure in patients with acute bacterial meningitis. Crit Care Med 2000;28:1027–1032.

    PubMed  CAS  Google Scholar 

  30. Moller K, Skinhoj P, Knudsen GM, Larsen FS. Effect of short-term hyperventilation on cerebral blood flow autoregulation in patients with acute bacterial meningitis. Stroke 2000;31:1116–1122.

    PubMed  CAS  Google Scholar 

  31. McKnight AA, Keyes WG, Hudak ML, Jones MD Jr. Oxygen free radicals and the cerebral arteriolar response to group B streptococci. Pediatr Res 1992;31:40–44.

    Google Scholar 

  32. Andersen NEO, Gyring J, Hansen AJ, Laursen H, Siesjo BK. Brain acidosis in experimental pneumococcal meningitis. J Cerebr Blood Flow Metab 1989;9:381–387.

    CAS  Google Scholar 

  33. Koedel U, Bematowicz A, Pal R, Frei K, Fontana A, Pfister HW. Experimental pneumococcal meningitis: cerebrovascular alterations, brain edema, and meningeal inflammation are linked to the production of nitiric oxide. Ann Neurol 1995;37:319–327.

    Google Scholar 

  34. Tunkel AR, Scheld WM. Pathogenesis and pathophysiology of acute bacterial meningitis. Clin Microbiol Rev 1993;6:118–136.

    PubMed  CAS  Google Scholar 

  35. Jeren T, Beus I. Characteristics of cerebrospinal fluid in tuberculous meningitis. Acta Cytol 1982;26:678–680.

    PubMed  CAS  Google Scholar 

  36. Karstaedr AS, Vltchanova S, Barriere R, et al. Tuberculous meningitis in South African urban adults. Q J Med 1988;91:743–747.

    Google Scholar 

  37. Hopewell PC. Overview of clinical tuberculosis. In: Bloom BR, ed., Tuberculosis, Pathogenesis, Protection, and Control. Washington, DC: ASM, 1994.

    Google Scholar 

  38. Kennedy DH, Gallon RJ. Tuberculous meningitis. JAMA 1979;241:264–268.

    PubMed  CAS  Google Scholar 

  39. Sinclair S, Prabhamani VS, Ghai OP, et al. Evaluation of diagnostic criteria in tuberculous meningitis in children including the hemagglutination test of CSF. Ind Pediatr 1977;14:967–972.

    CAS  Google Scholar 

  40. Thwaites GE, Chau TT, Farrar JJ. Improving the bacteriological diagnosis of tuberculous meningitis. J Clin Microbiol 2004;42:378–379.

    PubMed  Google Scholar 

  41. Radhakrishnan VV, Mathai A. Correlation between isolation of M. tuberculosis and estimation of mycobacterial antigen in cisternal, ventricular, and lumbar CSF in patients with tuberculous meningitis. Ind J Pathol Microbiol 1993;36:341–347.

    CAS  Google Scholar 

  42. Hooker JA, Muhindi DW, Amayo EO, Mc’ligeyo SO, Bhatt KM, Odhiambo JA. Diagnostic utility of cerebrospinal fluid studies in patients with clinically suspected tuberculous meningitis. Int J Tuber Lung Dis 2003;7:787–796.

    CAS  Google Scholar 

  43. Gambhir JS, Mehta M, Singh DS, et al. Evaluation of CSF-ADA activity intuberculous meningitis. J Assoc Phys Ind 1999;47:192–194.

    CAS  Google Scholar 

  44. Ribera E, Marinez-Vazuez JM, Ocana I, et al. Activity of adenosine deaminase in cerebrospinal fluid for the diagnosis and follow-up of tuberculous meningitis in adults. J Infect Dis 1987;155:603–607.

    PubMed  CAS  Google Scholar 

  45. Thwaites G, Chau TTH, Mai NTH, Drobniewski F, McAdam K, Farrar J. Tuberculous meningitis. J Neurol Neurosurg Psychiatry 2000;68:289–299.

    PubMed  CAS  Google Scholar 

  46. Kox LFF, Der SK, Kolls AHJ. Early diagnosis of tuberculous meningitis by polymerase chain reaction. Neurology 1995;45:2228–2232.

    PubMed  CAS  Google Scholar 

  47. Seth P, Ahuja GK, Vijaya Bhanu N, et al. Evaluation of polymerase chain reaction for rapid diagnosis of clinically suspected tuberculous meningitis. Tubercle Lung Dis 1996;77:353–357.

    CAS  Google Scholar 

  48. Shankar P, Manjunath N, Mohan KK, et al. Rapid diagnosis of tuberculous meningitis by polymerase chain reaction. Lancet 1991;337:5–7.

    PubMed  CAS  Google Scholar 

  49. Nguyen LN, Kox LFF, Pham LD, et al. The potential contribution of polymerase chain reaction to the diagnosis of tuberculous meningitis. Arch Neurol 1996;53:771–776.

    PubMed  CAS  Google Scholar 

  50. Rafi A, Naghily B. Efficiency of polymerase chain reaction for the diagnosis of tuberculous meningitis. Southeast Asian J Trop Med Public Health. 2003;34:357–360.

    PubMed  Google Scholar 

  51. Schoeman JF, Laubscher JA, Donald PR. Serial lumbar CSF pressure measurements and cranial computed tomographic findings in childhood tuberculous meningitis. Childs Nerv Syst 2000;16:203–208.

    PubMed  CAS  Google Scholar 

  52. Goitein KJ, Tamir I. Cerebral perfusion pressure in central nervous system infections of infancy and childhood. J Pediatr 1983;103:40–43.

    PubMed  CAS  Google Scholar 

  53. Rebaud P, Berthier JC, Hartemann E, Floret D. Intracranial pressure in childhood central nervous system infections. Intensive Care Med 1988;14:522–525.

    PubMed  CAS  Google Scholar 

  54. Dennis LJ, Mayer SA. Diagnosis and management of increased intracranial pressure. Neurology India 2001;49 (Suppl 1):S37-S50.

    PubMed  Google Scholar 

  55. Battistella FD, Wisner DH. Combined hemorrhagic shock and head injury: effects of hypertonc saline (7.5%) resuscitation. J Trauma 1991;31:182–188.

    PubMed  CAS  Google Scholar 

  56. Prough DS, Johnson JC, Poole GV Jr., Stullken EH, Johnston WE Jr., Royster R. Effects on intracranial pressure of resuscitation from hemorrhagic shock with hypertonic saline versus lactated Ringer’s solution. Crit Care Med 1985;13:407–411.

    Article  PubMed  CAS  Google Scholar 

  57. Suarrz JI. Hypertonic saline for cerebral edema and elevated intracranial pressure. Cleveland Clin J Med 2004;71 (Suppl 1):S9-S12.

    Article  Google Scholar 

  58. Messeter K, Nordstrom CH, Sundbarg G, Algotsson L, Ryding E. Cerebral hemodynamics in patients with acute severe head trauma. J Neurosurg 1986;64:231–237.

    PubMed  CAS  Google Scholar 

  59. Amtrop O. Estimation of capillary permeability of inulin, sucrose and mannitol in rat brain cortex. Act Physiol Scan 1980;110:337–342.

    Google Scholar 

  60. Mizoi K, Suzuki J, Imaizumi S, Yoshimoto T. Development of new cerebral protective agents: the free radical scavengers. Neurol Res 1986;8:75–80.

    PubMed  CAS  Google Scholar 

  61. Rhee P, Wang D, Ruff P, Austin B, et al. Human neutrophil activation and increased adhesion by various resuscitation fluids. Crit Care Med 2000;28:74–78.

    PubMed  CAS  Google Scholar 

  62. Angle N, Hoyt DB, Cabello-Passini R, Herdon-Remelius C, Loomis W, Junger WG. Hypertonic saline resuscitation reduces neurotphil migration by suppressing neurophil L selectin expression. J Trauma 1998;45:7–12.

    PubMed  CAS  Google Scholar 

  63. Angle N, Hoyt DB, Coimbra R, et al. Hypertonic saline resuscitation diminishes lung injury by suppressing neutrophil activation after hemorrhagic shock. Shock 1998;9:164–170.

    PubMed  CAS  Google Scholar 

  64. Angle N, Cabello-Passini R, Hoyt DB, et al. Hypertonic saline infusion: can it regulate human neurtophil function? Shock 2000;14:503–508.

    PubMed  CAS  Google Scholar 

  65. Rizoli SB, Kapus A, Fan J, Li YH, Marshall JC, Rotstein OD. Immunomodulatory effects of hypertonic resuscitation on the development of lung inflammation following hemorrhagic shock. J Immunol 1998;161:6288–6296.

    PubMed  CAS  Google Scholar 

  66. Qureshi AI, Wilson DA, Traystman RJ. Treatment of elevated intracranial pressure in experimental intracerebral hemorrhage: comparison between mannitol and hypertonic saline. Neurosurgery 1999;44:1055–1063.

    PubMed  CAS  Google Scholar 

  67. Schatzmann C, Heissler HE, Konig K, et al. Treatment of elevated intracranial pressure by infusions of 10% saline in severely head injured patients. Act Neurochir Suppl (Wien) 1998;71:31–33.

    CAS  Google Scholar 

  68. Simma B, Burger R, Falk M, Sacher P, Fanconi S. A prospective, randomized, and controlled of fluid management in children with severe head injury: lactated Ringer;s solution versus hypertonic saline. Crit Care Med 1998;26:1265–1270.

    PubMed  CAS  Google Scholar 

  69. Christopher R, Gourie-Devi M. The syndrome of inappropriate antidiuretic hormone secretion in tuberculous meningitis. J Assoc Phys Ind 1997;45:933–935.

    Google Scholar 

  70. Singh BS, Patwari AK, Deb M. Serum sodium and osmolal changes in tuberculous meningitis. Indian Pediatr 1994;31:1345–1350.

    PubMed  CAS  Google Scholar 

  71. Narotam PK, Kemp M, Buck R, Gouws E, van Dellen JR, Bhoola KD. Hyponatremic natriuretic syndrome in tuberculous meningitis: the probable role of atrial natriuretic peptide. Neurosurgery 1994;34:982–988.

    Article  PubMed  CAS  Google Scholar 

  72. Ostensen J, Stokke ES, Bugge JF, Langberg H, Kiil F. Difference between hypertonic NaCl and NaHCO3 as osmotic diuretics in dog kidneys. Act Physiol Scand 1989;137:177–187.

    CAS  Google Scholar 

  73. Maxwell RE, Long DM, French LA. The effects of glucosteroids on experimental cold-induced brain edema. Grossmorphological alterations and vascular permeability changes. J Neurosurg 1971;34:477–487.

    PubMed  CAS  Google Scholar 

  74. Weiss MH, Nulsen FE. The effect of glucocorticoids on CSF flow in dogs. J Neurosurg 1970;32:451–458.

    Google Scholar 

  75. Hall ED, Yonkers PA, Mccall JM, Braughler JM. Effects of the 21-aminosteroid U74006F on experimental head injury in mice. J Neurosurg 1988;68:456–461.

    PubMed  CAS  Google Scholar 

  76. Coyle PK. Glucocorticoids in central nervous system bacterial infection. Arch Neurol 1999;56:796–801.

    PubMed  CAS  Google Scholar 

  77. Mcintyre PB, Berkey CS, King SM, et al. Dexamethasone as adjunctive therapy in bacterial meningitis: a meta-analysis of randomized clinical trials since 1988. JAMA 1997;278:925–931.

    PubMed  CAS  Google Scholar 

  78. Prasad K, Volmink J, Menon GR. Steroids for treating tuberculous meningitis. Cochrane Database Sys Rev 2000(3):CD002244.

  79. Schoeman JF, Van Zyl LE, Laubscher JA, Donald PR. Effect of corticosteroids on intracranial pressure, computed tomographic findings, and clinical outcome in young children with tuberculous meningitis. Pediatrics 1997;99:226–231.

    PubMed  CAS  Google Scholar 

  80. Garg RK. Tuberculosis of the central nervous system. Postgrad Med J 1999;75:133–140.

    PubMed  CAS  Google Scholar 

  81. Hajat H, Hajat S, Sharma P. Effects of poststroke pyrexia on stroke outcome: a meta-analysis of studies in patients. Stroke 2000;31:410–414.

    PubMed  CAS  Google Scholar 

  82. Schwartz S, Hafner K, Aschoff A, et al. Incidence and prognostic significance of fever following intracerebral hemorrhage. Neurology 2000;54:354–361.

    Google Scholar 

  83. Ginsberg BR. The influence of altered brain temperature in cerebral ischemia. In: Ginsberg MD, Bogousslavsky J, eds., Cerebrovascular Disease: Pathophysiology, Diagnosis, and Management. Malden, MA: Blackwell Science, 1998, pp. 287–307.

    Google Scholar 

  84. Diringer MN, Reaven NL, Funk S. The influence of fever on length of stay in neuro-ICU patients [abstract]. Neurology 2003;60(Suppl):A425.

    Google Scholar 

  85. Rosomoff HL, Holaday DA. Cerebral blood flow and cerebral oxygenconsumption during hypothermia. Am J Physiol 1954;179:85–88.

    PubMed  CAS  Google Scholar 

  86. Clifton GL, Miller ER, Choi SC, et al. Lack of effect of induction of hypothermia after acute brain injury. N Engl J Med 2001;344:556–563.

    PubMed  CAS  Google Scholar 

  87. Smith J, Godwin-Austen R. Hypersecretion of anti-diuretic hormone due to tuberculous meningitis. Postgrad Med J 1980;56:41–44.

    PubMed  CAS  Google Scholar 

  88. Arunodaya GR. Sodium dysregulation and infections of central nervous system. Ann Ind Acad Neurol 2003;6:253–258.

    Google Scholar 

  89. Loo KL, Ramachandran R, Abdullah BJ, Chow SK, Goh EM, Yeap SS. Cerebral infarction and cerebral salt wasting syndrome in a patient with tuberculous meningoencephalitis. Southeast Asian J Trop Med Public Health 2003;34:636–640.

    PubMed  CAS  Google Scholar 

  90. Ti LK, Kang SC, Cheong KF. Acute hyponatraemia secondary to cerebral salt wasting syndrome in a patient with tuberculous meningitis. Anaesth Intensive Care 1998;26:420–423.

    PubMed  CAS  Google Scholar 

  91. Dass R, Nagaraj R, Murlidharan J, Singhi S. Hyponatraemia and hypovolemic shock with tuberculous meningitis. Indian J Pediatr 2003;70:995–997.

    PubMed  Google Scholar 

  92. Huang SM, Chen CC, Chiu PC, Cheng MF, Chiu CL, Hsieh KS. Tuberculous meningitis complicated with hydrocephalus and cerebral salt wasting syndrome in a three-year-old boy. Pediatr Infect Dis J 2004;23:884–886.

    PubMed  Google Scholar 

  93. Adrogue HJ, Madias NE. Hyponatremia. N Engl J Med 2000;342:1681–1689.

    Google Scholar 

  94. Bhagwati SN. Ventriculoatrial shunt in tuberculous meningitis with hydrocephalus. J Neurosurg 1971;35:309–313.

    Google Scholar 

  95. Roy TK, Sircar PK, Chander V. Ventriculo-peritoneal shunt in the management of tuberculous meningitis. Indian J Pediatr 1979;16:1023–1027.

    CAS  Google Scholar 

  96. Singhal BS, Bhagwati SN, Syed AH, et al. Raised intracranial pressure in tuberculous meningitis. Neurology India 1975;23:32–39.

    PubMed  CAS  Google Scholar 

  97. Palur R, Rajshekhar V, Chandy MJ, et al. Shunt surgery for hydrocephalus in tuberculous meningitis: a long term follow up study. J Neurosurg 1991;74:64–60.

    PubMed  CAS  Google Scholar 

  98. Lamprecht D, Schoeman J, Donald P, Hartzenberg H. Ventriculoperitoneal shunting in childhood tuberculous meningitis. Br J Neurosurg 2001;15:119–125.

    PubMed  CAS  Google Scholar 

  99. Mathew J, Rajshekhar V, Chandy MJ. Shunt surgery in poor grade patients with tuberculous meningitis and hydrocephalus: effects of response to external ventricular drainage and other variables on long-term outcome. J Neurol Neurosurg Psychiatry 1998;65:115–118.

    Article  PubMed  CAS  Google Scholar 

  100. Wasay M, Moolani MK, Zaheer J, Kheleani BA, Smego AR, Sarwari RA. Prognostic indicators in patients with intracranial tuberculoma: a review of 102 cases. J Pak Med Assoc 2004;54:83–87.

    PubMed  CAS  Google Scholar 

  101. Tandon PN, Bhargava S. Effect of medical treatment on intracranial tuberculoma: a CT study. Tubercle 1985;66:85–97.

    PubMed  CAS  Google Scholar 

  102. Traub M, Colchester AC, Kingsley DP, et al. Tuberculosis of the central nervous system. Quart J Med 1984;53:81–100.

    PubMed  CAS  Google Scholar 

  103. Bhagwati SN, Parulekar GD. Management of intracranial tuberculoma in children. Childs Nerv Syst 1986;2:32–34.

    PubMed  CAS  Google Scholar 

  104. Choudhury AR. Non-surgical treatment of tuberculomas of the brain. Br J Neurosurg 1989;3:643–653.

    PubMed  CAS  Google Scholar 

  105. Bouchama A, al-Kawi MZ, Kanaan I, Coates R, Jallu A, Rahm B, Siqueira EB. Brain biopsy in tuberculoma: the risks and benefits. Neurosurgery 1991;30:405–409.

    Google Scholar 

  106. Ravenscroft A, Schoeman JF, Donald PR. Tuberculous granulomas in childhood tuberculous meningitis: radiological features and course. J Trop Pediatr 2001;47:5–12.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. M. K. Murthy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Murthy, J.M.K. Management of intracranial pressure in tuberculous meningitis. Neurocrit Care 2, 306–312 (2005). https://doi.org/10.1385/NCC:2:3:306

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/NCC:2:3:306

Key Words

Navigation