Skip to main content

Long-term biocompatibility of NanoGATE drug delivery implant

Abstract

The fouling of components and the formation of a fibrotic tissue capsule around subcutaneously implanted medical devices are two major obstacles in developing viable, long-term implantable drug delivery systems. NanoGATE is a subcutaneous implant designed for constant-output passive diffusion of a drug of interest through a silicon nanopore membrane. To this end, we have investigated the long-term in vivo biocompatibility of the NanoGATE implant in terms of the fouling of the nanopore membrane and the formation of a fibrotic tissue capsule around the implant. We have also evaluated how these effects influence diffusion of a lysozyme surrogate from the device once implanted within the vascular compartment of a Sprague-Dawley rat model. Using several model biomolecules such as glucose, lysozyme, and albumin, our studies suggest that silicon nanopore membranes do not foul when implanted subcutaneously for 6 mo. This study also reveals the tissue capsule that naturally forms around the implant does not limit diffusion of molecules with molecular weights on the order of 14.4 kDa at therapeutic delivery rates of tens of micrograms per day. This indicates that our NanoGATE implant should be completely functional in vivo, providing constant release levels of a drug over an extended time period. Thus, by adjusting the release rate to fit the pharmacokinetic clearance profile of the Sprague-Dawley rat, long-term steady-state blood plasma concentrations can be achieved.

This is a preview of subscription content, access via your institution.

References

  1. Anderson, J. (1994) In: Problems in General Surgery. Klitzman B. (ed.). J. B. Lippincott, Philadelphia, PA.

    Google Scholar 

  2. Wisniewski, N., Klitzman, B., Miller, B., and Reichert, W. M. (2001), J. Biomed. Mater. Res. 57, 513–521.

    Article  CAS  Google Scholar 

  3. Ratner, B. D., Hoffman, A. S., Schoen, F. J., and Lemons, J. E. (eds.), (1996), Biomaterials Science. An introduction to Materials in Medicine. Academic Press, San Diego, CA.

    Google Scholar 

  4. Babensee, J. E., Anderson, J. M., McIntire, L. V., and Mikos, A. G. (1998), Adv. Drug Deliv. Rev. 33, 111–139.

    Article  CAS  Google Scholar 

  5. Brauker, J. H., Carr-Brendel, V. E., Martinson, L. A., Crudele, J., Johnston, W. D., and Johnson, R. C. (1995), J. Biomed. Mater. Res. 29, 1517–1524.

    Article  CAS  Google Scholar 

  6. De Vos, P., Hillebrands, J-L., De Haan, B. J., Strubbe, J. H., and Van Schilfgaarde, R. (1997), Transplantation 63, 824–830.

    Article  Google Scholar 

  7. Mikos, A. G., Sarakinos, G., Lyman, M. D., Ingber, D. E., Vacanti, J. P., and Langer, R. (1993), Biotechnol. Bioeng. 42, 716–723.

    Article  CAS  Google Scholar 

  8. Picha, G. J. and Drake, R. F. (1996), J. Biomed. Mater. Res. 30, 305–312.

    Article  CAS  Google Scholar 

  9. Salzmann, D. L., Kleinert, L. B., Berman, S. S., and Williams, S. K. (1997), J. Biomed. Mater. Res. 34, 463–476.

    Article  CAS  Google Scholar 

  10. Siebers, U., Sturm, R., Renardy, M., et al. (1990), In: Methods in Islet Transplantation, Federlin, K., Bretzel, R. G., and Hering, B. J., (eds.). Georg Thieme, Stuttgart, pp. 206–208.

    Google Scholar 

  11. Wake, M. C., Patrick, C. W., and Mikos, A. G. (1994), Cell Transplant. 3, 339–343.

    CAS  Google Scholar 

  12. Desai, T. A., Popat K. C., and Sharma, S. (2002), In: Business Briefing: Medical Device Manufacturing and Technology. World Markets Research Center, London, pp. 80–82.

    Google Scholar 

  13. Gilligan, B. J., Shults, M. C., Rhodes, R. K., and Updike, S. J. (1994), Diabetes Care 17(8), 882–887.

    Article  CAS  Google Scholar 

  14. Mercado, R. C. and Moussy, F. (1998), Biosens. Bioelectron 13(2), 133–145.

    Article  CAS  Google Scholar 

  15. Moussy, F., Harrison, D. J., and Rajotte, R. V. (1994), Int. J. Artif. Organ 17, 95–101.

    Google Scholar 

  16. Desai, T. A., Hansford, D. J., Kulinsky, L., et al. (1999), Biomed. Microdev. 2(1), 11–40.

    Article  CAS  Google Scholar 

  17. Desai, T. A., Hansford, D. J., Leoni, L., Essenpreis, M., and Ferrari, M. (2000), Nanoporous antifouling silicon membranes for biosensor applications. Biosens. Bioelectron 15, 453–462.

    Article  CAS  Google Scholar 

  18. Desai, T. A., Ferrari, M., and Mazzoni, G. (1995), Materials and Design Technology, Kozik, T. (ed.) ASME, New York, pp. 97–103.

    Google Scholar 

  19. Sharma, S., Popat, K. C., and Desai, T. A. (2002), Langmuir 18(23), 8728–8731.

    Article  CAS  Google Scholar 

  20. Anderson, J. M. and Langone, J. J. (1999), J. Control Release 57(2), 107–113.

    Article  CAS  Google Scholar 

  21. Fournier, E., Passirani, C., Montero-Menei, C. N., and Benoit, J. P. (2003), Biomaterials 24(19), 3311–3331.

    Article  CAS  Google Scholar 

  22. Giavaresi, G., Tschon M., Borsari, V., et al. (2004), Biomed. Pharmacother. 58(8), 411–417.

    Article  CAS  Google Scholar 

  23. Kotzar, G., Freas, M., Abel, P., et al. (2002), Biomaterials 23(13), 2737–2750.

    Article  CAS  Google Scholar 

  24. Park, H. and Park, K. (1996), Pharmaceutical Research 13(12), 1770–1776.

    Article  CAS  Google Scholar 

  25. Risbud, M. V. and Bhonde, R. R. (2000), Drug Deliv. 7(2), 69–75.

    Article  CAS  Google Scholar 

  26. Shastri, V. P., Padera, R. F., Tarcha, P., and Langer, R. (2004), Biomaterials 25(4), 715–721.

    Article  CAS  Google Scholar 

  27. Voskerician, G., Shive, M. S., Shawgo, R. S., et al. (2003), Biomaterials 24(11), 1959–1967.

    Article  CAS  Google Scholar 

  28. Wood, R. C., LeCluse, E. L., and Fix, J. A. (1995), Biomaterials 16(12), 957–959.

    Article  CAS  Google Scholar 

  29. Martin, F., Walczak, R., Boiarski, A. et al. (2005). J. Controlled Release 102(1), 123–133.

    Article  CAS  Google Scholar 

  30. Lave, T., Levet-Trafit, B., Schmitt-Hoffmann, A., Morgenroth, B., Richter, W., and Chou, R.C. (1995), J. Pharm. Sci. 84(11), 1285–1290.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mauro Ferrari.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Walczak, R.J., Boiarski, A., Cohen, M. et al. Long-term biocompatibility of NanoGATE drug delivery implant. Nanobiotechnol 1, 35–42 (2005). https://doi.org/10.1385/NBT:1:1:035

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/NBT:1:1:035

Key Words

  • Silicon nanopore membrane
  • NanoGATE
  • biocompatibility
  • drug delivery
  • implant