Skip to main content
Log in

Gliotoxin is a dual inhibitor of farnesyltransferase and geranylgeranyltransferase I with antitumor activity against breast cancer in vivo

  • Original Article
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Gliotoxin is a natural mycotoxin with immunosuppressive and antimicrobial activity. Inhibition of farnesyltransferase (IC50 80 µM) and geranylgeranyltransferase I (IC50 17 µM) stimulated interest in the potential antitumor activity of this epidithiodioxopiperazine. Gliotoxin inhibited proliferation of six breast cancer cell lines in culture with mean±SD IC50 289±328 µM (range 38–985 µM); intracellular farnesylation of Lamin B and geranylgeranylation of Rap1A were inhibited in a dose-dependent manner. In randomized controlled studies using the N-methyl-N-nitrosourea rat mammary carcinoma model, gliotoxin had pronounced antitumor activity in vitro and little systemic toxicity when administered to 10 animals at 10 mg/kg by subcutaneous injection weekly for 4 wk compared with 10 controls. Single doses up to 25 mg/kg were well tolerated. The present studies confirm that gliotoxin is a dual inhibitor of farnesyltransferase and geranylgeranyltransferase I with pronounced antitumor activity and favorable toxicity profile against breast cancer in vitro and in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Johnson JR, Bruce WF, Dutcher JD. Gliotoxin, the antibiotic principle of Gliocladium fimbriatum. I. Production, physical and biological properties. J Am Chem Soc 1943; 65:2005–2009.

    Article  CAS  Google Scholar 

  2. Bruce WF, Dutcher JD, Johnson JR, Miller LL. Gliotoxin, the antibiotic principle of Gliocladium fimbriatum. II. General chemical behavior and crystalline derivatives. J Am Chem Soc 1944; 66:614–616.

    Article  CAS  Google Scholar 

  3. Fridrichsons J, Mathieson AM. The crystal structure of gliotoxin. Acta Crystallogr 1967; 23:439–448.

    Article  PubMed  CAS  Google Scholar 

  4. Mullbacher A, Eichner RD. Immunosuppression in vitro by a metabolite of a human pathogenic fungus. Proc Natl Acad Sci USA 1984; 81:3835–3837.

    Article  PubMed  CAS  Google Scholar 

  5. Sutton P, Newcombe NR, Waring P, Mullbacher A. In vivo immunosuppressive activity of gliotoxin, a metabolite produced by human pathogenic fungi. Infect Immun 1994; 62:1192–1198.

    PubMed  CAS  Google Scholar 

  6. Sutton P, Beaver J, Waring P. Evidence that gliotoxin enhances lymphocyte activation and induces apoptosis by effects on cyclic AMP levels. Biochem Pharmacol 1995; 50:2009–2014.

    Article  PubMed  CAS  Google Scholar 

  7. Sutton P, Moreland A, Hutchinson IV, Mullbacher A. Investigation of the potential use of immunosuppressive agent gliotoxin in organ transplantation. Transplantation 1995; 60:900–902.

    Article  PubMed  CAS  Google Scholar 

  8. Waring P, Eichner RD, Mullbacher A. The chemistry and biology of the immunomodulating agent gliotoxin and related epipolythiodioxopiperazines. Med Res Rev 1988; 8:499–524.

    Article  PubMed  CAS  Google Scholar 

  9. Waring P, Eichner RD, Mullbacher A, Sjaarda A. Gliotoxin induces apoptosis in macrophages unrelated to its antiphagocytic properties. J Biol Chem 1988; 263:18493–18499.

    PubMed  CAS  Google Scholar 

  10. Waring P, et al. Cellular uptake and release of the immunomodulating fungal toxin gliotoxin. Toxicon 1994; 32:491–504.

    Article  PubMed  CAS  Google Scholar 

  11. Pahl HL, et al. The immunosuppressive fungal metabolite gliotoxin specifically inhibits transcription factor NF-kappaB. J Exp Med 1996; 183:1829–1840.

    Article  PubMed  CAS  Google Scholar 

  12. Waring P, Khan T, Sjaarda A. Apoptosis induced by gliotoxin is preceded by phosphorylation of histone H3 and enhanced sensitivity of chromatin to nuclease digestion. J Biol Chem 1997; 272:17929–17936.

    Article  PubMed  CAS  Google Scholar 

  13. Hara M, Han M. Ras farnesyltransferase inhibitors suppress the phenotype resulting from an activated ras mutation in Caenorhabditis elegans. Proc Natl Acad Sci USA 1995; 92:3333–3337.

    Article  PubMed  CAS  Google Scholar 

  14. Nagase T, et al. Manumycin and gliotoxin derivative KT7595 block Ras farnesylation and cell growth but do not disturb lamin farnesylation and localization in human tumour cells. Br J Cancer 1997; 76:1001–1010.

    PubMed  CAS  Google Scholar 

  15. Van der Pyl D, Inokoshi J, Shiomi K, Yang H, Takeshima H, Omura S. Inhibition of farnesyl-protein transferase by gliotoxin and acetylgliotoxin. J Antibiot (Tokyo) 1992; 45:1802–1805.

    Google Scholar 

  16. Kidd JG. Effects of an antibiotic from Aspergillus fumigatus fresenius on tumor cells in vitro, and its possible identity with gliotoxin. Science 1947; 105:511–513.

    Article  CAS  PubMed  Google Scholar 

  17. Zhang FL, Casey PJ. Protein prenylation: molecular mechanisms and functional consequences. Annu Rev Biochem 1996; 65:241–269.

    Article  PubMed  CAS  Google Scholar 

  18. Gibbs JB, Oliff A, Kohl NE. Farnesyltransferase inhibitors: Ras research yields a potential cancer therapeutic. Cell 1994; 77:175–178.

    Article  PubMed  CAS  Google Scholar 

  19. Willumsen BM, Norris K, Papageorge AG, Hubbert NL, Lowy DR. Harvey murine sarcoma virus p21 ras protein: biological and biochemical significance of the cysteine nearest the carboxy terminus. EMBO J 1984; 3:2581–2585.

    PubMed  CAS  Google Scholar 

  20. Hancock JF, Magee AI, Childs JE, Marshall CJ. All ras proteins are polyisoprenylated but only some are palmitoylated. Cell 1989; 57:1167–1177.

    Article  PubMed  CAS  Google Scholar 

  21. Jackson JH, Cochrane CG, Bourne JR, Solski PA, Buss JE, Der CJ. Farnesol modification of Kirsten-ras exon 4B protein is essential for transformation. Proc Natl Acad Sci USA 1990; 87:3042–3046.

    Article  PubMed  CAS  Google Scholar 

  22. Kato K, Cox AD, Hisaka MM, Graham SM, Buss JE, Der CJ. Isoprenoid addition to Ras protein is the critical modification for its membrane association and transforming activity. Proc Natl Acad Sci USA 1992; 89:6403–6407.

    Article  PubMed  CAS  Google Scholar 

  23. Casey PJ, Thissen JA, Moomaw JF. Enzymatic modification of proteins with a geranylgeranyl isoprenoid. Proc Natl Acad Sci USA 1991; 88:8631–8635.

    Article  PubMed  CAS  Google Scholar 

  24. James GL, Goldstein JL, Brown MS. Polylysine and CVIM sequences of K-RasB dictate specificity of prenylation and confer resistance to benzodiazepine peptidomimetic in vitro. J Biol Chem 1995; 270:6221–6226.

    Article  PubMed  CAS  Google Scholar 

  25. Whyte DB, et al. K- and N-Ras are geranylgeranylated in cells treated with farnesyl protein transferase inhibitors. J Biol Chem 1997; 272:14459–14464.

    Article  PubMed  CAS  Google Scholar 

  26. Rowell CA, Kowalczyk JJ, Lewis MD, Garcia AM. Direct demonstration of geranylgeranylation and farnesylation of Ki-Ras in vivo. J Biol Chem 1997; 272:14093–14097.

    Article  PubMed  CAS  Google Scholar 

  27. Sebti SM, Hamilton AD. Farnesyltransferase and geranylgeranyltransferase I inhibitors in cancer therapy: important mechanistic and bench to bedside issues. Expert Opin Investig Drugs 2000; 9:2767–2782.

    Article  PubMed  CAS  Google Scholar 

  28. Sun J, Qian Y, Hamilton AD, Sebti SM. Both farnesyltransferase and geranylgeranyltransferase I inhibitors are required for inhibition of oncogenic K-Ras prenylation but each alone is sufficient to suppress human tumor growth in nude mouse xenografts. Oncogene 1998; 16:1467–1473.

    Article  PubMed  CAS  Google Scholar 

  29. Lerner EC, Zhang TT, Knowles DB, Qian Y, Hamilton AD, Sebti SM. Inhibition of the prenylation of K-Ras, but not H-or N-Ras, is highly resistant to CAAX peptidomimetics and requires both a farnesyltransferase and a geranylgeranyl-transferase I inhibitor in human tumor cell lines. Oncogene 1997; 15:1283–1288.

    Article  PubMed  CAS  Google Scholar 

  30. Reiss Y, Seabra MC, Goldstein JL, Brown MS. Purification of ras farnesyl:protein transferase. Methods Enzymol 1990; 1:241–245.

    Article  CAS  Google Scholar 

  31. Harwood HJ, Jr. Protein farnesyltransferase: measurement of enzymatic activity in 96-well format using TopCount microplate scintillation counting technology. Anal Biochem 1995; 226:268–278.

    Article  PubMed  CAS  Google Scholar 

  32. James GL, Brown MS, Goldstein JL. Assays for inhibitors of CAAX farnesyltransferase in vitro and in intact cells. Methods Enzymol 1995; 255:38–46.

    Article  PubMed  CAS  Google Scholar 

  33. Skehan P, et al. New colorimetric cytotoxicity assay for anti-cancer-drug screening. J Natl Cancer Inst 1990; 82:1107–1112.

    Article  PubMed  CAS  Google Scholar 

  34. Wilkinson JR, Williams JC, Singh D, goss PE, Easton D, Coombes RC. Response of nitrosomethylurea-induced rat mammary tumor to endocrine therapy and comparison with clinical response. Cancer Res 1986; 46:4862–4865.

    PubMed  CAS  Google Scholar 

  35. Farnsworth CC, Wolda SL, Gelb MH, Glomset JA. Human lamin B contains a farnesylated cysteine residue. J Biol Chem 1989; 264:20422–20429.

    PubMed  CAS  Google Scholar 

  36. Vogt A, Qian Y, McGuire TF, Hamilton AD, Sebti SM. Protein geranylgeranylation, not farnesylation, is required for the G1 to S phase transition in mouse fibroblasts. Oncogene 1996; 13:1991–1999.

    PubMed  CAS  Google Scholar 

  37. Adjei AA, Davis JN, Erlichman C, Svingen PA, Kaufmann SH. Comparison of potential markers of farnesyltransferase inhibition. Clin Cancer Res 2000; 6:2318–2325.

    PubMed  CAS  Google Scholar 

  38. De Clercq E, Billiau A, Ottenheijm HC, Herscheid JD. Antireverse transcriptase activity of gliotoxin analogs. Biochem Pharmacol 1978; 27:635–639.

    Article  PubMed  Google Scholar 

  39. Ho PP, Walters CP. Specific inhibition of influenza virus-induced ribonucleic acid polymerase by gliotoxin. Antimicrobial Agents Chemother 1968; 8:68–71.

    CAS  Google Scholar 

  40. McMinn PC, Halliday GM, Muller HK. Effects of gliotoxin on Langerhans’ cell function: contact hypersensitivity responses and skin graft survival. Immunology 1990; 71:46–51.

    PubMed  CAS  Google Scholar 

  41. Jones RW, Hancock JG. Mechanism of gliotoxin action and factors mediating gliotoxin sensitivity. J Gen Microbiol 1988; 134:2067–2075.

    CAS  Google Scholar 

  42. Mullbacher A, Waring P, Tiwari-Palni U, Eichner RD. Structural relationship of epipolythiodioxopiperazines and their immunomodulating activity. Mol Immunol 1986; 23:231–235.

    Article  PubMed  CAS  Google Scholar 

  43. Trown PW, Bilello JA. Mechanism of action of gliotoxin: elimination of activity by sulfhydryl compounds. Antimicrob Agents Chemother 1972; 2:261–266.

    PubMed  CAS  Google Scholar 

  44. Waring P, Sjaarda A, Lin QH. Gliotoxin inactivates alcohol dehydrogenase by either covalent modification or free radical damage mediated by redox cycling. Biochem Pharmacol 1995; 49:1195–1201.

    Article  PubMed  CAS  Google Scholar 

  45. Schweizer M, Richter C. Gliotoxin stimulates Ca2+ release from intact rat liver mitochondria. Biochemistry 1994; 33:13401–13405.

    Article  PubMed  CAS  Google Scholar 

  46. Braithwaite AW, Eichner RD, Waring P, Mullbacher A. The immunomodulating agent gliotoxin causes genomic DNA fragmentation. Mol Immunol 1987; 24:47–55.

    Article  PubMed  CAS  Google Scholar 

  47. Mullbacher A, Hume D, Braithwaite AW, Waring P, Eichner RD. Selective resistance of bone marrow-derived hemopoietic progenitor cells to gliotoxin. Proc Natl Acad Sci USA 1987; 84:3822–3825.

    Article  PubMed  CAS  Google Scholar 

  48. Waring P. DNA fragmentation induced in macrophages by gliotoxin does not require protein synthesis and is preceded by raised inositol triphosphate levels. J Biol Chem 1990; 265:14476–14480.

    PubMed  CAS  Google Scholar 

  49. Taylor A. The toxicology of sporidesmins and other epipolythiadioxopiperazines. In: Kadis AC, Ajl SJ (eds). Microbial Toxins. Academic Press: New York, 1971, pp. 337–376.

    Google Scholar 

  50. Frame R, Carlton WW. Acute toxicity of gliotoxin in hamsters. Toxicol Lett 1988; 40:269–273.

    Article  PubMed  CAS  Google Scholar 

  51. Barbacid M. ras genes. Annu Rev Biochem 1987; 56:779–827.

    Article  PubMed  CAS  Google Scholar 

  52. Bos JL. ras oncogenes in human cancer: a review. Cancer Res 1989; 49:4682–4689.

    PubMed  CAS  Google Scholar 

  53. Rochlitz CF, et al. Incidence of activating ras oncogene mutations associated with primary and metastatic human breast cancer. Cancer Res 1989; 49:357–360.

    PubMed  CAS  Google Scholar 

  54. DeBortoli ME. Abou-Issa H, Haley BE, Cho-Chung YS. Amplified expression of p21 ras protein in hormone-dependent mammary carcinomas of humans and rodents. Biochem Biophys Res Commun 1985; 127:699–706.

    Article  PubMed  CAS  Google Scholar 

  55. Clair T, Miller WR, Cho-Chung YS. Prognostic significance of the expression of a ras protein with a molecular weight of 21,000 by human breast cancer. Cancer Res 1987; 47:5290–5293.

    PubMed  CAS  Google Scholar 

  56. Slamon DJ, et al. Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer. Science 1989; 244:707–712.

    Article  PubMed  CAS  Google Scholar 

  57. Janes PW, Daly RJ, deFazio A, Sutherland RL. Activation of the Ras signalling pathway in human breast cancer cells overexpressing erbB-2. Oncogene 1994; 9:3601–3608.

    PubMed  CAS  Google Scholar 

  58. Thompson TA, Haag JD, Gould MN. ras gene mutations are absent in NMU-induced mammary carcinomas from aging rats. Carcinogenesis 2000; 21:1917–1922.

    Article  PubMed  CAS  Google Scholar 

  59. Kohl NE, et al. Inhibition of farnesyltransferase induces regression of mammary and salivary carcinomas in ras transgenic mice. Nat Med 1995; 1:792–797.

    Article  PubMed  CAS  Google Scholar 

  60. Liu M, et al. Antitumor activity of SCH 66336, an orally bioavailable tricyclic inhibitor of farnesyl protein transferase, in human tumor xenograft models and wap-ras transgenic mice. Cancer Res 1998; 58:4947–4956.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. M. Vigushin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vigushin, D.M., Mirsaidi, N., Brooke, G. et al. Gliotoxin is a dual inhibitor of farnesyltransferase and geranylgeranyltransferase I with antitumor activity against breast cancer in vivo. Med Oncol 21, 21–30 (2004). https://doi.org/10.1385/MO:21:1:21

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/MO:21:1:21

Key Words

Navigation