Medical Oncology

, Volume 20, Issue 2, pp 147–155 | Cite as

Laminin-5 γ2-chain expression and DNA ploidy as predictors of prognosis in endometrial carcinoma

  • C. Lundgren
  • B. Frankendal
  • C. Silfverswärd
  • B. Nilsson
  • K. Tryggvason
  • G. Auer
  • B. Nordström
Original Article


Expression of the laminin-5 γ2-chain in carcinoma cells has been implicated in tumor invasion. The aim was to investigate the expression and prognostic significance of the In-5 γ2-chain compared with clinicopathological factors and tumor cell DNA ploidy in endometrial carcinoma. Histological specimens from 80 endometrial carcinomas were examined with respect to immunohistochemical In-5 γ2-chain expression and correlated to the clinicopathological characteristics, DNA ploidy, and survival. Sixty-eight of 80 investigated cases were judged to be positive for the In-5 γ2-chain. Ln-5 γ2-chain did not show any correlation to stage, histopathological subtype, grade, and DNA ploidy. In univariate analyses, advanced stage (p<0.001), nonendometrioid carcinoma (p=0.030), low grade (p<0.001), aneuploid tumors (p<0.001), and In-5 γ2-chain expression (p=0.017) were highly associated with poor survival. Aneuploid tumors in combination with strong In-5 γ2-chain expression were significant predictors (p<0.001) of poor prognosis. In multivariate analyses including stage, histopathological subgroup, grade, DNA ploidy, and In-5 γ2-chain expression, all lost their significant prognostic information except for stage (p<0.001) and grade (p<0.05). Ln-5 γ2-chain expression and DNA ploidy both as a single parameter and in combination were demonstrated to be significant prognostic factors in univariate analysis. However, stage and grade provided more useful clinical information beyond histopathological subgroup, DNA ploidy, and In-5 γ2-chain expression. The results also indicate that In-5 γ2-chain expression is upregulated during the progression of endometrial carcinoma.

Key Words

Endometrial carcinoma laminin-5 γ2 chain DNA ploidy prognosis basement membranes 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Pettersson, F. (ed.) (1994). Annual Report on the Results of Treatment in Gynecological Cancer, 1987–93. FIGO, Stockholm, Vol. 22.Google Scholar
  2. 2.
    Geisler, J.P., Wiemann, M.C., Zhou, Z., Miller, G.A. and Geisler, H.E. (1996). p53 as a prognostic indicator in endometrial cancer. Gynecol. Oncol. 61(2):245–248.PubMedCrossRefGoogle Scholar
  3. 3.
    Strang, P., Nordstom, B., Nilsson, S., Bergstrom, R. and Tribukait, B. (1996). Mutant p53 protein as a predictor of survival in endometrial carcinoma. Eur. J. Cancer 32A(4):598–602.PubMedCrossRefGoogle Scholar
  4. 4.
    Salvesen, H.B., Iversen, O.E. and Akslen, L.A. (1999). Prognostic significance of angiogenesis and Ki-67, p53, and p21 expression: a population-based endometrial carcinoma study. J. Clin. Oncol. 17(5):1382–1390.PubMedGoogle Scholar
  5. 5.
    Geisler, J.P., et al. (1999). MIB-1 in endometrial carcinoma: prognostic significance with 5-year follow-up. Gynecol. Oncol. 75(3):432–436.PubMedCrossRefGoogle Scholar
  6. 6.
    Nordstrom, B., Strang, P., Bergstrom, R., Nilsson, S. and Tribukait, B. (1996). A comparison of proliferation markers and their prognostic value for women with endometrial carcinoma. Ki-67, proliferating cell nuclear antigen, and flow cytometric S-phase fraction. Cancer 78(9):1942–1951.PubMedCrossRefGoogle Scholar
  7. 7.
    Stendahl, U., Wagenius, G., Strang, P. and Tribukait, B. (1988). Flow cytometry in invasive endometrial carcinoma. Correlations between DNA content S-phase rate and clinical parameters. In Vivo 2(2):123–127.PubMedGoogle Scholar
  8. 8.
    Lundgren, C., et al. (2002). Nuclear DNA content, proliferative activity, and p53 expression related to clinical and histopathologic features in endometrial carcinoma. Int. J. Gynecol. Cancer 12(1):110–118.PubMedCrossRefGoogle Scholar
  9. 9.
    Biesterfeld, S., Leitloff, M., Rath, W. and Schroder, W. (2001). DNA image cytometry in the differential diagnosis of endometrial hyperplasia and adenocarcinoma. Anal. Quant. Cytol. Histol. 23(2):123–128.PubMedGoogle Scholar
  10. 10.
    Pyke, C., et al. (1994). The gamma 2 chain of kalinin/laminin 5 is preferentially expressed in invading malignant cells in human cancers. Am. J. Pathol. 145(4):782–791.PubMedGoogle Scholar
  11. 11.
    Salo, S., et al. (1999). Laminin-5 promotes adhesion and migration of epithelial cells: identification of a migration-related element in the gamma2 chain gene (LAMC2) with activity in transgenic mice. Matrix Biol. 18(2):197–210.PubMedCrossRefGoogle Scholar
  12. 12.
    Giannelli, G. and Antonaci, S. (2000). Biological and clinical relevance of laminin-5 in cancer. Clin. Exp. Metastasis 18(6):439–443.PubMedCrossRefGoogle Scholar
  13. 13.
    Gagnoux-Palacios, L., et al. (2001). The short arm of the laminin gamma2 chain plays a pivotal role in the incorporation of laminin 5 into the extracellular matrix and in cell adhesion. J. Cell Biol. 153(4):835–850.PubMedCrossRefGoogle Scholar
  14. 14.
    Pyke, C., et al. (1995). Laminin-5 is a marker of invading cancer cells in some human carcinomas and is coexpressed with the receptor for urokinase plasminogen activator in budding cancer cells in colon adenocarcinomas. Cancer Res. 55(18):4132–4139.PubMedGoogle Scholar
  15. 15.
    Sordat, I., et al. (1998). Differential expression of laminin-5 subunits and integrin receptors in human colorectal neoplasia. J. Pathol. 185(1):44–52.PubMedCrossRefGoogle Scholar
  16. 16.
    Lenander, C., et al. (2001). Laminin-5 gamma 2 chain expression correlates with unfavorable prognosis in colon carcinomas. Anal. Cell Pathol. 22(4):201–209.PubMedGoogle Scholar
  17. 17.
    Kainulainen, T., et al. (1997). Altered distribution and synthesis of laminin-5 (kalinin) in oral lichen planus, epithelial dysplasias and squamous cell carcinomas. Br. J. Dermatol. 136(3):331–336.PubMedCrossRefGoogle Scholar
  18. 18.
    Skyldberg, B., et al. (1999). Laminin-5 as a marker of invasiveness in cervical lesions. J. Natl. Cancer Inst. 91(21):1882–1887.PubMedCrossRefGoogle Scholar
  19. 19.
    Fukushima, N., Sakamoto, M. and Hirohashi, S. (2001). Expression of laminin-5-gamma-2 chain in intraductal papillary-mucinous and invasive ductal tumors of the pancreas. Mod. Pathol. 14(5):404–409.PubMedCrossRefGoogle Scholar
  20. 20.
    Hellman, K., et al. (2000). Cancer of the vagina: laminin-5 gamma2 chain expression and prognosis. Int. J. Gynecol. Cancer 10(5):391–396.PubMedCrossRefGoogle Scholar
  21. 21.
    Yamamoto, H., Itoh, F., Iku, S., Hosokawa, M. and Imai, K. (2001). Expression of the gamma(2) chain of laminin-5 at the invasive front is associated with recurrence and poor prognosis in human esophageal squamous cell carcinoma. Clin. Cancer Res. 7(4):896–900.PubMedGoogle Scholar
  22. 22.
    Nordstrom, B., et al. (2002). Laminin-5 gamma 2 chain as an invasivity marker for uni- and multifocal lesions in the lower anogenital tract. Int. J. Gynecol. Cancer 12(1):105–109.PubMedCrossRefGoogle Scholar
  23. 23.
    Nordemar, S., et al. (2001). Laminin-5 as a predictor of invasiveness in cancer in situ lesions of the larynx. Anticancer Res. 21(1B):509–512.PubMedGoogle Scholar
  24. 24.
    Hao, J., et al. (2001). Investigation into the mechanism of the loss of laminin 5 (alpha3beta3gamma2) expression in prostate cancer. Am. J. Pathol. 158(3):1129–1135.PubMedGoogle Scholar
  25. 25.
    Martin, K.J., et al. (1998). Down-regulation of laminin-5 in breast carcinoma cells. Mol. Med. 4(9):602–613.PubMedGoogle Scholar
  26. 26.
    Sobin, L. (ed.) (1978). A Coded Compendium of Internanational Histological Classifications of Tumours, 11th ed. World Health Organization, Geneva.Google Scholar
  27. 27.
    FIGO (1989). FIGO stages–1988 revisions: Vulva, ovary, corpus. Gynecol. Oncol. 35:125–127.CrossRefGoogle Scholar
  28. 28.
    Gaub, J.A. and Zetterberg, A. (1965). Quantitative cytochemical aspects of a combined Feulgen naphtol-yellow-s staining procedure for the simultaneous determination of nuclear and cytoplasmic proteins and DNA in mammalian cells. Exp. Cell Res. 92:323–332.CrossRefGoogle Scholar
  29. 29.
    Steinbeck, R.G., Auer, G.U. and Zetterberg, A.D. (1999). Reliability and significance of DNA measurements in interphase nuclei and division figures in histological sections. Eur. J. Cancer 35(5):787–795.PubMedCrossRefGoogle Scholar
  30. 30.
    Auer, G. and Tribukait, B. (1980). Comparative single cell and flow DNA analysis in aspiration biopsies from breast carcinomas. Acta Pathol. Microbiol. Scand. [A] 88(6):355–358.Google Scholar
  31. 31.
    Hellstrom, A., Hue, J., Silfverswärd, C. and Auer, G. (1994). DNA-ploidy and mutant p53 overexpression in primary fallopian tube cancer. Int. J. Gynecol. Cancer 4:408–413.PubMedCrossRefGoogle Scholar
  32. 32.
    Auer, G.U., Caspersson, T.O. and Wallgren, A.S. (1980). DNA content and survival in mammary carcinoma. Anal. Quant. Cytol. 2(3):161–165.PubMedGoogle Scholar
  33. 33.
    Nordstrom, B., Strang, P., Lindgren, A., Bergstrom, R. and Tribukait, B. (1996). Carcinoma of the endometrium: do the nuclear grade and DNA ploidy provide more prognostic information than do the FIGO and WHO classifications? Int. J. Gynecol. Pathol. 15(3):191–201.PubMedCrossRefGoogle Scholar
  34. 34.
    Zaino, R.J., Davis, A.T., Ohlsson-Wilhelm, B.M. and Brunetto, V.L. (1998). DNA content is an independent prognostic indicator in endometrial adenocarcinoma. A Gynecologic Oncology Group study. Int. J. Gynecol. Pathol. 17(4):312–319.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc 2003

Authors and Affiliations

  • C. Lundgren
    • 1
  • B. Frankendal
    • 1
  • C. Silfverswärd
    • 2
  • B. Nilsson
    • 3
  • K. Tryggvason
    • 4
  • G. Auer
    • 2
  • B. Nordström
    • 1
  1. 1.Department of Gynaecologic OncologyRadiumhemmet, Karolinska HospitalStockholmSweden
  2. 2.Department of Pathology and Cell AnalysisMedical Biochemistry and Biophysics, Karolinska Hospital and InstituteStockholmSweden
  3. 3.Department of Cancer EpidemiologyMedical Biochemistry and Biophysics, Karolinska Hospital and InstituteStockholmSweden
  4. 4.Department of Matrix BiologyMedical Biochemistry and Biophysics, Karolinska Hospital and InstituteStockholmSweden

Personalised recommendations