Skip to main content
Log in

Ever-expanding network of dynamin-interacting proteins

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Clathrin-mediated endocytosis is a major cellular pathway for internalization of proteins and lipids and for recycling of synaptic vesicles. The GTPase dynamin plays a key role in this process, and the proline-rich domain of dynamin participates in various protein-protein interactions to ensure a proper coordination of endocytic processes. Although dynamin is not directly associated with actin, several dynamin-binding proteins can interact with actin or with proteins that regulate actin assembly, thereby coordinately regulating actin assembly and trafficking events. This article summarizes dynamin interactions with various Src homology 3-containing proteins, many of which are actin-binding proteins. It also discusses the recently identified two new dynamin binding proteins, SH3 protein interacting with Nck, 90 kDa/Wiskott-Aldrich syndrome protein interacting with SH3 protein (SPIN90/WISH) and sorting nexin 9, and outlines their potential role as a link between endocytosis and actin dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cousin, M. A. (2000) Synaptic vesicle endocytosis: calcium works overtime in the nerve terminal. Mol. Neurobiol. 22, 115–128.

    Article  PubMed  CAS  Google Scholar 

  2. Deitcher, D. (2002) Exocytosis, endocytosis, and development Semin. Cell Dev. Biol. 13, 71–76.

    Article  PubMed  CAS  Google Scholar 

  3. Hinshaw, J. E. (2000) Dynamin and its role in membrane fission Annu. Rev. Cell Dev. Biol. 16, 483–519.

    Article  PubMed  CAS  Google Scholar 

  4. Qualmann, B. and Kessels, M. M. (2002) Endocytosis and the cytoskeleton. Int. Rev. Cytol. 220, 93–144.

    Article  PubMed  CAS  Google Scholar 

  5. Sever, S. (2002) Dynamin and endocytosis. Curr. Opin. Cell Biol. 14, 463–467.

    Article  PubMed  CAS  Google Scholar 

  6. Damke, H., Baba, T., Warnock, D. E., and Schmid, S. L. (1994) Induction of mutant dynamin specifically blocks endocytic coated vesicle formation. J. Cell Biol. 127, 915–934.

    Article  PubMed  CAS  Google Scholar 

  7. Takei, K., Slepnev, V. I., Haucke, V. and De Camilli, P. (1999) Functional partnership between amphiphysin and dynamin in clathrin-mediated endocytosis. Nat. Cell. Biol. 1, 33–39.

    Article  PubMed  CAS  Google Scholar 

  8. Gad, H., Ringstad, N., Low, P., et al. (2000) Fission and uncoating of synaptic clathrin-coated vesicles are perturbed by disruption of interactions with the SH3 domain of endophilin. Neuron 27, 301–312.

    Article  PubMed  CAS  Google Scholar 

  9. Qualmann, B. and Kelly, R. B. (2000) Syndapin isoforms participate in receptor-mediated endocytosis and actin organization. J. Cell Biol. 148, 1047–1062.

    Article  PubMed  CAS  Google Scholar 

  10. Klein, D. E., Lee, A., Frank, D. W., Marks, M. S., and Lemmon, M. A. (1998) The pleckstrin homology domains of dynamin isoforms require oligomerization for high affinity phosphoinositide binding. J. Biol. Chem. 273, 27,725–27,733.

    CAS  Google Scholar 

  11. Lemmon, M. A. and Ferguson, K. M. (2000) Signal-dependent membrane targeting by pleckstrin homology (PH) domains. Biochem. J. 350(pt 1), 1–18.

    Article  PubMed  CAS  Google Scholar 

  12. Schafer, M. A. (2002) Coupling actin dynamics and membrane dynamics during endocytosis. Curr. Opin. Cell. Biol. 14, 76–81.

    Article  PubMed  CAS  Google Scholar 

  13. Lee, E. and De Camilli, P. (2002) Dynamin at actin tails. Proc. Natl. Acad. Sci. USA 99, 161–166.

    Article  PubMed  CAS  Google Scholar 

  14. Merrifield, C. J., Feldman, M. E., Wan, L., and Almers, W. (2002) Imaging actin and dynamin recruitment during invagination of single clathrin-coated pits. Nat. Cell. Biol. 4, 691–698.

    Article  PubMed  CAS  Google Scholar 

  15. Witke, W., Podtelejnikov, A. V., Di Nardo, A., et al. (1998). In mouse brain profilin I and profilin II associate with regulators of the endocytic pathway and actin assembly. EMBO J. 17, 967–976.

    Article  PubMed  CAS  Google Scholar 

  16. Kessels, M. M., Engqvist-Goldstein, A. E., Drubin, D. G., and Qualmann, B. (2001) Mammalian Abp1, a signal-responsive F-actin-binding protein, links the actin cytoskeleton to endocytosis via the GTPase dynamin. J. Cell. Biol. 153, 351–366.

    Article  PubMed  CAS  Google Scholar 

  17. McNiven, M. A., Kim, L., Krueger, E. W., Orth, J. D., Cao, H. and Wong, T. W. (2000) Regulated interactions between dynamin and the actin-binding protein cortactin modulate cell shape. J. Cell. Biol. 151, 187–198.

    Article  PubMed  CAS  Google Scholar 

  18. Schafer, D. A. and Schroer, T. A. (1999) Actin-related proteins. Annu. Rev. Cell. Dev. Biol. 15, 341–363.

    Article  PubMed  CAS  Google Scholar 

  19. Carlsson, L., Nystrom, L. E., Sundkvist, I., Markey, F. and Lindberg, U. (1977) Actin polymerizability is influenced by profilin, a low molecular weight protein in non-muscle cells. J. Mol. Biol. 115, 465–483.

    Article  PubMed  CAS  Google Scholar 

  20. Ochoa, G. C., Slepnev, V. I., Neff, L., et al. (2000) A functional link between dynamin and the actin cytoskeleton, at podosomes. J. Cell. Biol. 150, 377–389.

    Article  PubMed  CAS  Google Scholar 

  21. Hussain, N. K., Jenna, S., Glogauer, M., et al. (2001) Endocytic protein intersectin-1 regulates actin assembly via Cdc42 and N-WASP. Nat. Cell. Biol. 3, 927–932.

    Article  PubMed  CAS  Google Scholar 

  22. Miki, H., Miura, K., Matuoka, K., et al. (1994) Association of Ash/Grb-2 with dynamin through the Src homology 3 domain. J. Biol. Chem. 269, 5489–5492.

    PubMed  CAS  Google Scholar 

  23. Benesch, S., Lommel, S., Steffen, A., et al. (2002) Phosphatidylinositol 4,5-biphosphate (PIP2)-induced vesicle movement depends on N-WASP and involves Nck, WIP, and Grb2. J. Biol. Chem. 277, 37,771–37,776.

    Article  CAS  Google Scholar 

  24. Kessels, M. M. and Qualmann, B. (2006) Syndapin oligomers interconnect the machineries for endocytic vesicle formation and actin polymerization. J. Biol. Chem. 281, 13,285–13,299.

    Article  CAS  Google Scholar 

  25. Wunderlich, L., Farago, A. and Buday, L. (1999) Characterization of interactions of Nck with Sos and dynamin. Cell Signal 11, 25–29.

    Article  PubMed  CAS  Google Scholar 

  26. Moreau, V., Frischknecht, F., Reckmann, I., et al. (2000) A complex of N-WASP and WIP integrates signalling cascades that lead to actin polymerization. Nat. Cell Biol. 2, 441–448.

    Article  PubMed  CAS  Google Scholar 

  27. Yoon, S. Y., Jeong, M. J., Yoo, J., et al. (2001) Grb2 dominantly associates with dynamin II in human hepatocellular carcinoma HepG2 cells. J. Cell. Biochem. 84, 150–155.

    Article  PubMed  CAS  Google Scholar 

  28. Lim, C.S., Park, E. S., Kim, D. J., et al. (2001) GPIN90 (SH3 protein interacting with Nck, 90 kDa), an adaptor protein that is developmentally regulated during cardiac myocyte differentiation. J. Biol. Chem. 276, 12,871–12,878.

    CAS  Google Scholar 

  29. Fukuoka, M., Suetsugu, S., Miki, H., Fukami, K., Endo, T., and Takenawa, T. (2001) A novel neural Wiskott-Aldrich syndrome protein (N-WASP) binding protein, WISH, induces Arp2/3 complex activation independent of Cdc42. J. Cell Biol, 152, 471–482.

    Article  PubMed  CAS  Google Scholar 

  30. Lim, C. S., Kim, S. H., Jung, J. G., Kim, J. K., and Song, W. K. (2003) Regulation of SPIN90 phosphorylation and interaction with Nck by ERK and cell adhesion. J. Biol. Chem. 278, 52,116–52,123.

    CAS  Google Scholar 

  31. Kim, D. J., Kim, S. H., Lim, C. S., et al. (2006) Interaction of SPIN90 with the Arp2/3 complex mediates lamellipodia and actin tail formation. J. Biol. Chem. 281, 617–625.

    Article  PubMed  CAS  Google Scholar 

  32. Kim, Y., Kim, S., Lee, S., et al. (2005). Interaction of SPIN90 with dynamin I and its participation in synaptic vesicle endocytosis. J. Neurosci. 25, 9515–9523.

    Article  PubMed  CAS  Google Scholar 

  33. Howard, L., Nelson, K. K., Maciewicz, R. A., and Blobel, C. P. (1999) Interaction of the metalloprotease disintegrins MDC9 and MDC15 with two SH3 domain-containing proteins, endophilin I and SH3PX1. J. Biol. Chem. 274, 31,693–31,699.

    CAS  Google Scholar 

  34. Worby, C. A., Simonson-Leff, N., Clemens, J. C., Kruger, R. P., Muda, M. and Dixon, J. E. (2001) The sorting nexin, DSH3PX1, connects the axonal guidance receptor, Dscam, to the actin cytoskeleton. J. Biol. Chem. 276, 41,782–41,789.

    Article  CAS  Google Scholar 

  35. Lundmark, R. and Carlsson, S. R. (2003) Sorting nexin 9 participates in clathrin-mediated endocytosis through interactions with the core components. J. Biol. Chem. 278, 46,772–46,781.

    Article  CAS  Google Scholar 

  36. Lundmark, R. and Carlsson, S. R. (2004) Regulated membrane recruitment of dynamin-2 mediated by sorting nexin 9. J. Biol. Chem. 379, 42,694–42,702.

    Google Scholar 

  37. Yeow-Fong, L., Lim, L., and Manser, E. (2005) SNX9 as an adaptor for linking synaptojanin-1 to the Cdc42 effector ACK1. FEBS Lett. 579, 5040–5048.

    Article  PubMed  CAS  Google Scholar 

  38. Lundmark, R. and Carlsson, S. R. (2002) The beta-appendages of the four adaptor-protein (AP) complexes: structure and binding properties, and identification of sorting nexin 9 as an accessory protein to AP-2. Biochem. J. 362, 597–607.

    Article  PubMed  CAS  Google Scholar 

  39. Soulet, F., Yarar, D., Leonard, M., and Schmid, S. L. (2005) SNX9 regulates dynamin assembly and is required for efficient clathrin-mediated endocytosis. Mol. Biol. Cell. 16, 2058–2067.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunghoe Chang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, Y., Chang, S. Ever-expanding network of dynamin-interacting proteins. Mol Neurobiol 34, 129–135 (2006). https://doi.org/10.1385/MN:34:2:129

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/MN:34:2:129

Index Entries

Navigation