Skip to main content
Log in

Molecular profiling of antipsychotic drug function

Convergent mechanisms in the pathology and treatment of psychiatric disorders

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Despite great progress in antipsychotic drug research, the molecular mechanisms by which these drugs work have remained elusive. High-throughput gene profiling methods have advanced this field by allowing the simultaneous investigation of hundreds to thousands of genes. However, different methodologies, choice of brain region, and drugs studied have made comparisons across different studies difficult. Because of the complexity of gene expression changes caused by drugs, teasing out the most relevant expression differences is a challenging task. One approach is to focus on gene expression changes that converge on the same systems that were previously deemed important to the pathology of psychiatric disorders. From the microarray studies performed on human postmortem brain samples from schizophrenics, the systems most implicated to be dysfunctional are synaptic machinery, oligodendrocyte/myelin function, and mitochondrial/ubiquitin metabolism. Drugs may act directly or indirectly to compensate for underlying pathological deficits in schizophrenia or via other mechanisms that converge on these pathways. Side effects, consisting of motor and metabolic dysfunction (which occur with typical and atypical drugs, respectively), also may be mediated by gene expression changes that have been reported in these studies. This article surveys both the convergent antipsychotic mechanisms and the genes that may be responsible for other effects elicited by antipsychotic drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lewis D. A. and Lieberman J. A. (2000) Catching up on schizophrenia: natural history and neurobiology. Neuron 28, 325–334.

    Article  PubMed  CAS  Google Scholar 

  2. Kerwin R and Taylor D. (1996) Antipsychotics—a review of the current status and clinical potential. CNS Drugs 6, 71–82.

    CAS  Google Scholar 

  3. Bymaster F. P., Calligaro D. O., Falcone J. F., et al. (1996) Radioreceptor binding profile of the atypical antipsychotic olanzapine. Neuropsychopharmacology 14, 87–96.

    Article  PubMed  CAS  Google Scholar 

  4. Jann M. W. (1991) Clozapine. Pharmacotherapy 11, 179–195.

    PubMed  CAS  Google Scholar 

  5. Iqbal M. M., Rahman A., Husain Z., Mahmud S. Z., Ryan W. G., and Feldman J. M. (2003) Clozapine: a clinical review of adverse effects and management. Ann. Clin. Psychiatry 15, 33–48.

    Article  PubMed  Google Scholar 

  6. Ciapparelli A., Dell'Osso L., Pini S., Chiavacci M. C., Fenzi M., and Cassano G. B. (2000) Clozapine for treatment-refractory schizophrenia, schizoaffective disorder, and psychotic bipolar disorder: a 24-month naturalistic study. J. Clin. Psychiatry 61, 329–334.

    Article  PubMed  CAS  Google Scholar 

  7. Baptista T. (1999) Body weight gain induced by antipsychotic drugs: mechanisms and management. Acta. Psychiatr. Scand. 100, 3–16.

    PubMed  CAS  Google Scholar 

  8. Baptista T., Kin N. M., Beaulieu S., and de Baptista E. A. (2002) Obesity and related metabolic abnormalities during antipsychotic drug administration: mechanisms, management and research perspectives. Pharmacopsychiatry 35, 205–219.

    Article  PubMed  CAS  Google Scholar 

  9. Gupta S., Droney T., Al-Samarrai S., Keller P., and Frank B. (1999) Olanzapine: weight gain and therapeutic efficacy. J. Clin. Psychopharmacol. 19, 273–275.

    Article  PubMed  CAS  Google Scholar 

  10. Carlsson A. and Lindqvist M. (1963) Effect of chlorpromazine or haloperidol on formation of 3-methoxytyramine and normetanephrine in mouse brain. Acta. Pharmacol. Toxicol. 20, 140–144.

    Article  CAS  Google Scholar 

  11. Rossum V. (1966) The significance of dopamine receptor blockade for the mechanism of action of neuroleptic drugs. Arch. Int. Pharmacodyn. Ther. 160, 492–494.

    PubMed  Google Scholar 

  12. Seeman P. and Lee T. (1975) Antipsychotic drugs: direct correlation between clinical potency and presynaptic action on dopamine neurons. Science 188, 1217–1219.

    Article  PubMed  CAS  Google Scholar 

  13. Creese I., Burt D. R., and Snyder S. H. (1976) Dopamine receptor binding predicts clinical and pharmacological potencies of antischizophrenic drugs. Science 192, 481–483.

    Article  PubMed  CAS  Google Scholar 

  14. Meltzer H. Y. and Nash J. F. (1991) Effects of antipsychotic drugs on serotonin receptors. Pharmacol. Rev. 43, 587–604.

    PubMed  CAS  Google Scholar 

  15. Schmidt C. J., Sorensen S. M., Kehne J. H., Carr A. A., and Palfreyman M. G. (1995) The role of 5-HT2A receptors in antipsychotic activity. Life Sci. 56, 2209–2222.

    Article  PubMed  CAS  Google Scholar 

  16. Dean B. and Scarr E. (2004) Antipsychotic drugs: evolving mechanism of action with improved therapeutic benefits. Curr. Drug Targets CNS Neurol. Discord. 3, 217–225.

    Article  CAS  Google Scholar 

  17. Sedvall G., Farde L., Persson A. and Wiesel F. (1986) Imaging of neurotransmitter receptors in the living human brain. Arch. Gen. Psychiatry 43, 995–1005.

    PubMed  CAS  Google Scholar 

  18. Miller J. (1990) Induction of c-fos mRNA expression in rat striatum by neuroleptic drugs. J. Neurochem. 54, 1453–1455.

    Article  PubMed  CAS  Google Scholar 

  19. Rogue P. and Vincedon G. (1992) Dopamine D2 receptor antagonists induce immediate early genes in the rat striatum. Brain Res. Bull. 29, 469–472.

    Article  PubMed  CAS  Google Scholar 

  20. Fibiger H. C. (1994) Neuroanatomical targets of neuroleptic drugs as revealed by fos immunochemistry. J Clin. Psychiatry 55, 33–36.

    PubMed  Google Scholar 

  21. MacGibbon G. A., Lawlor P. A., Bravo R. and Dragunow M. (1994) Clozapine and haloperidol produce a differential pattern of immediate early gene expression in rat caudate-putamen, nucleus accumbens, lateral septum and islands of Calleja. Mol. Brain Res. 23, 21–32.

    Article  PubMed  CAS  Google Scholar 

  22. Kontkanen O., Lakso M., Wong G., and Castren E. (2002) Chronic antipsychotic drug treatment induces long-lasting expression of fos and jun family genes and activator protein 1 complex in the rat prefrontal cortex. Neuropsychopharmacology 27, 152–162.

    Article  PubMed  CAS  Google Scholar 

  23. Marsden C. D. and Jenner P. (1980) The pathophysiology of extrapyramidal side effects of neuroleptic drugs. Psychol. Med. 10, 55–72.

    PubMed  CAS  Google Scholar 

  24. Tsuang M. T., Gilbertson M. W., and Faraone S. V. (1991) The genetics of schizophrenia. Current knowledge and future directions. Schizophr. Res. 4, 157–171.

    Article  PubMed  CAS  Google Scholar 

  25. Sutcliffe J. G. (2001) Open-system approaches to gene expression in the CNS. J. Neurosci. 21, 8306–8309.

    PubMed  CAS  Google Scholar 

  26. Mirnics K., Middleton F. A., Lewis D. A., and Levitt P. (2001) Analysis of complex brain disorders with gene expression microarrays: schizophrenia as a disease of the synapse. Trends Neurosci. 24, 479–486.

    Article  PubMed  CAS  Google Scholar 

  27. Goldman-Rakic P. S. and Seleman L. D. (1997) Functional and anatomical aspects of prefrontal pathology in schizophrenia. Schizophr. Bull. 23, 437–458.

    PubMed  CAS  Google Scholar 

  28. Khan Z. U., Gutierrez A., Martin R., Penafiel A., Rivera A., and De La Calle A. (1998) Differential regional and cellular distribution of dopamine D2-like receptors: an immunocytochemical study of subtype-specific antibodies in rat and human brain. J. Comp. Neurol. 402, 353–371.

    Article  PubMed  CAS  Google Scholar 

  29. Kennedy H. and Dehay C. (1993) Cortical specification of mice and men. Cereb. Cortex 3, 171–186.

    Article  PubMed  CAS  Google Scholar 

  30. Berger B., Gaspar P., and Verney C. (1991) Dopaminergic innervation of the cerebral cortex: unexpected differences between rodents and primates. Trends Neurosci. 14, 21–27.

    Article  PubMed  CAS  Google Scholar 

  31. Cragg S. J., Hille C. J., and Greenfield S. A. (2002) Functional domains in dorsal striatum of the nonhuman primate are defined by the dynamic behavior of dopamine. J. Neurosci. 22, 5705–5712.

    PubMed  CAS  Google Scholar 

  32. Cragg S. J., Hille C. J., and Greenfield S. A. (2000) Dopamine release and uptake dynamics within nonhuman primate striatum in vitro. J. Neurosci. 20, 8209–8217.

    PubMed  CAS  Google Scholar 

  33. Mirnics K., Middleton F. A., Marquez A., Lewis D. A., and Levitt P. (2000) Molecular characterization of schizophrenia viewed by microarray analysis of gene expression in prefrontal cortex. Neuron 28, 53–67.

    Article  PubMed  CAS  Google Scholar 

  34. Vawter M. P., Crook J. M., Hyde T. M., et al. (2002) Microarray analysis of gene expression in the prefrontal cortex in schizophrenia: a preliminary study. Schizophr. Res. 58, 11–20.

    Article  PubMed  Google Scholar 

  35. Knable M. B., Torrey E. F., Webster M. J., and Bartko J. J. (2001) Multivariate analysis of prefrontal cortical data from the Stanley Foundation Neuropathology Consortium. Brain Res. Bull. 55, 651–659.

    Article  PubMed  CAS  Google Scholar 

  36. Bahn S., Augood S. J., Ryan M., Standaert D. G., Starkey M., and Emson P. C. (2001) Gene expression profiling in the post-mortem human brain—no cause for dismay. J. Chem. Neuroanat. 22, 79–94.

    Article  PubMed  CAS  Google Scholar 

  37. Hemby S. E., Ginsberg S. D., Brunk B., Arnold S. E., Troianowski J. Q., and Eberwine J. H. (2002) Gene expression profile for schizophrenia: discrete neuron transcription patterns in the entorhinal cortex. Arch. Gen. Psychiatry 59, 631–640.

    Article  PubMed  CAS  Google Scholar 

  38. Vawter M. P., Thatcher L., Usen N., Hyde T. M., Kleinman J. E., and Freed W. J. (2002) Reduction of synapsin in the hippocampus of patients with bipolar disorder and schizophrenia. Mol. Psychiatry, 7, 571–578.

    Article  PubMed  CAS  Google Scholar 

  39. Halim N. D., Weickert C. S., McClintock B. W., et al. (2003) Presynaptic proteins in the prefrontal cortex of patients with schizophrenia and rats with abnormal prefrontal development. Mol. Psychiatry 8, 797–810.

    Article  PubMed  CAS  Google Scholar 

  40. Browning M. D., Dudek E. M., Rapier J. L., Leonard S., and Freedman R. (1993) Significant reductions in synapsin but not synaptophysin specific activity in the brains of some schizophrenics. Biol. Psychiatry 34, 529–535.

    Article  PubMed  CAS  Google Scholar 

  41. Glantz L. A., and Lewis D. A. (1997) Reduction of synaptophysin immunoreactivity in the prefrontal cortex of subjects with schizophrenia. Regional and diagnostic specificity. Arch. Gen. Psychiatry 54, 943–952.

    PubMed  CAS  Google Scholar 

  42. Karson C. N., Mrak R. E., Schluterman K. O., Sturner W. Q., Sheng J. C., and Griffin W. S. (1999) Alterations in synaptic proteins and their encoding mRNAs in prefrontal cortex in schizophrenia: a possible neurochemical basis for ‘hypofrontality’. Mol. Psychiatry 4, 39–45.

    Article  PubMed  CAS  Google Scholar 

  43. Thompson P. M., Egbufoama S., and Vawter M. P. (2003) SNAP-25 reduction in the hippocampus of patients with schizophrenia. Prog. Neuropsychopharmacol. Biol. Psychiatry 27, 411–417.

    Article  PubMed  CAS  Google Scholar 

  44. Kontkanen O., Toronen P., Lakso M., Wong G., and Castren E. (2002) Antipsychotic drug treatment induces differential gene expression in the rat cortex. J. Neurochem. 83, 1043–1053.

    Article  PubMed  CAS  Google Scholar 

  45. MacDonald M. L., Eaton M. E., Dudman J. T., and Konradi C. (2005) Antipsychotic drugs elevate mRNA levels of presynaptic proteins in the frontal cortex of the rat. Biol. Psychiatry 57, 1041–1051.

    Article  PubMed  CAS  Google Scholar 

  46. Chong V. Z., Young L. T., and Mishra R. K. (2002) cDNA array reveals differential gene expression following chronic neuroleptic administration: implications of synapsin II in haloperidol treatment. J. Neurochem. 82, 1533–1539.

    Article  PubMed  CAS  Google Scholar 

  47. Fasulo W. H. and Hemby S. E. (2003) Time-dependent changes in gene expression profiles of midbrain dopamine neurons following haloperidol administration. J. Neurochem. 87, 205–219.

    Article  PubMed  CAS  Google Scholar 

  48. Chong V. Z., Skoblenick K., Morin F., Xu Y. and Mishra R. K. (2006) Dopamine-D1 and-D2 receptors differentially regulate synapsin II expression in the rat brain. Neuroscience 138, 587–599.

    Article  PubMed  CAS  Google Scholar 

  49. Chen Q., He G., Qin W., et al. (2004) Familybased association study of synapsin II and schizophrenia. Am. J. Hum. Genet. 75, 873–877.

    Article  PubMed  CAS  Google Scholar 

  50. Chen Q., He G., Wang X. Y., et al. (2004) Positive association between synapsin II and schizophrenia. Biol. Psychiatry 56, 177–181.

    Article  PubMed  CAS  Google Scholar 

  51. Vawter M. P., Barrett T., Cheadle C., et al. (2001) Application of cDNA microarrays to examine gene expression differences in schizophrenia. Brain Res. Bull. 55, 641–650.

    Article  PubMed  CAS  Google Scholar 

  52. Iwata S., Morioka H., Iwabuchi M., et al. (2005) Administration of haloperidol with biperiden reduces mRNAs related to the ubiquitin-proteasome system in mice. Synapse 56, 175–184.

    Article  PubMed  CAS  Google Scholar 

  53. Kandell E. R. and Siegelbaum S. A. (2000) Transmitter Release. In: Kandel E. R., Schwartz J. H. Jessel T. M. (eds.), Principles of Neural Science. McGraw Hill, pp. 253–278.

  54. Weber T., Zemelman B. V., McNew J. A., et al. (1998) SNAREpins: minimal machinery for membrane fusion. Cell 92, 759–772.

    Article  PubMed  CAS  Google Scholar 

  55. Davis K. L., Stewart D. G., Friedman J. I., et al. (2003) White matter changes in schizophrenia: evidence for myelin-related dysfunction. Arch. Gen. Psychiatry 60, 443–456.

    Article  PubMed  Google Scholar 

  56. Hakak Y., Walker J. R., Li C., et al. (2001) Genome-wide expression analysis reveals dysregulation of myelination-related genes in chronic schizophrenia. Proc. Natl. Acad. Sci. USA 98, 4746–4751.

    Article  PubMed  CAS  Google Scholar 

  57. Pongrac J., Middleton F. A., Lewis D. A., Levitt P., and Mirnics K. (2002) Gene expression profiling with DNA microarrays: advancing our understanding of psychiatric disorders. Neurochem. Res. 27, 1049–1063.

    Article  PubMed  CAS  Google Scholar 

  58. Tkachev D., Mimmack M. L., Ryan M. M., et al. (2003) Oligodendrocyte dysfunction in schizophrenia and bipolar disorder. Lancet 362, 798–805.

    Article  PubMed  CAS  Google Scholar 

  59. Sugai T., Kawamura M., Iritani S., et al. (2004) Prefrontal abnormality of schizophrenia revealed by DNA microarray: impact on glial and neurotrophic gene expression. Ann. NY Acad. Sci. 1025, 84–91.

    Article  PubMed  CAS  Google Scholar 

  60. Aston C., Jiang L., and Sokolov B. P. (2004) Microarray analysis of postmortem temporal cortex from patients with schizophrenia. J. Neurosci. Res. 77, 858–866.

    Article  PubMed  CAS  Google Scholar 

  61. Katsel P. L., Davis K. L., and Haroutunian V. (2005) Large-scale microarray studies of gene expression in multiple regions of the brain in schizophrenia and Alzheimer's disease. Int. Rev. Neurobiol. 63, 41–82.

    Article  PubMed  CAS  Google Scholar 

  62. Peirce T. R., Bray N. J., Williams N. M., et al. (2006) Convergent evidence for 2′,3′-cyclic nucleotide 3′-phosphodiesterase as a possible susceptibility gene for schizophrenia. Arch. Gen. Psychiatry 63, 18–24.

    Article  PubMed  CAS  Google Scholar 

  63. Saher G., Brugger B., Lappe-Siefke C., et al. (2005) High cholesterol level is essential for myelin membrane growth. Nat. Neurosci. 8, 468–475.

    PubMed  CAS  Google Scholar 

  64. Morell P., Quarles R. H., and Norton W. T. (1989) Formation, structure and biochemistry of myelin. In: Siegel G, Agranoff B, Albers RW, Molinoff P (eds.) Basic Neurochemistry. Raven Press, pp. 109–136.

  65. Ferno J., Raeder M. B., Vik-Mo A. O., et al. (2005) Antipsychotic drugs activate SREBP-regulated expression of lipid biosynthetic genes in cultured human glioma cells: a novel mechanism of action? Pharmacogenomics J. 5, 298–304.

    Article  PubMed  CAS  Google Scholar 

  66. Goritz C., Mauch D. H., and Pfrieger F. W. (2005) Multiple mechanisms mediate cholesterol-induced synaptogenesis in a CNS neuron. Mol. Cell Neurosci. 29, 190–201.

    Article  PubMed  CAS  Google Scholar 

  67. Thomas E. A., George R. C., Danielson P. E., et al. (2003) Antipsychotic drug treatment alters expression of mRNAs encoding lipid metabolism-related proteins. Mol. Psychiatry 8, 983–993.

    Article  PubMed  CAS  Google Scholar 

  68. Thomas E. A., Danielson P. E., Nelson P. A., et al. (2001) Clozapine increases apolipoprotein D expression in rodent brain: towards a mechanism for neuroleptic pharmacotherapy. J. Neurochem. 76, 789–796.

    Article  PubMed  CAS  Google Scholar 

  69. Khan M. M., Parikh V. V., and Mahadik S. P. (2002) Effects of chronic exposure of antipsychotics on apolipoprotein D in rat brain. Biol. Psychiatry 51, 168S.

    Google Scholar 

  70. Khan M. M., Parikh V. V., and Mahadik S. P. (2003) Antipsychotic drugs differentially modulate apolipoprotein D in rat brain. J. Neurochem. 86, 1089–1100.

    Google Scholar 

  71. Grobin A., Gizerian S., and Lieberman J. (2003) Olanzapine increases apolipoprotein D protein levels in rat frontal cortex. Society for neuroscience, Washington DC.

  72. Morais-Cabral J. H., Atkins G. L., Sanchez L. M., Lopez-Boado Y. S., Lopez-Otin C., and Sawyer L. (1995) Arachidonic acid binds to apoliprotein D: implications for the protein's function. FEBS Lett. 366, 53–56.

    Article  PubMed  CAS  Google Scholar 

  73. Vogt M. and Skerra A. (2001) Bacterially produced apolipoprotein D binds progesterone and arachidonic acid, but not bilirubin or E3M2H. J. Mol. Recognit. 14, 79–86.

    Article  PubMed  CAS  Google Scholar 

  74. O'Brien J. S. and Sampson E. L. (1965) Fatty acid and fatty aldehyde composition of the major brain lipids in normal human gray matter, white matter, and myelin. J. Lipid Res. 6, 545–551.

    PubMed  Google Scholar 

  75. Thomas E. A., George R. C., and Sutcliffe J. G. (2003) Apolipoprotein D modulates arachidonic acid signaling in cultured cells: Implications for psychiatric disorders. Prostaglandins Leukot. Essent. Fatty Acids 69, 421–427.

    Article  PubMed  CAS  Google Scholar 

  76. Thomas E. A., Copolov D. L., and Sutcliffe J. G. (2003) From pharmacotherapy to pathophysiology: emerging mechanisms of apolipoprotein D in psychiatric disorders. Curr. Mol. Med. 3, 408–418.

    Article  PubMed  CAS  Google Scholar 

  77. Wible C. G., Anderson J., Shenton M. E., et al. (2001) Prefrontal cortex, negative symptoms, and schizophrenia: an MRI study. Psychiatry Res. 108, 65–78.

    Article  PubMed  CAS  Google Scholar 

  78. Sigmundsson T., Suckling J., Maier M., et al. (2001) Structural abnormalities in frontal, temporal, and limbic regions and interconnecting white matter tracts in schizophrenic patients with prominent negative symptoms. Am. J. Psychiatry 158, 234–243.

    Article  PubMed  CAS  Google Scholar 

  79. Middleton F. A., Mirnics K., Pierri J. N., Lewis D. A., and Levitt P. (2002) Gene expression profiling reveals alterations of specific metabolic pathways in schizophrenia. J. Neurosci. 22, 2718–2729.

    PubMed  CAS  Google Scholar 

  80. Altar C. A., Jurata L. W., Charles V., et al. (2005) Deficient hippocampal neuron expression of proteasome, ubiquitin, and mitochondrial genes in multiple schizophrenia cohorts. Biol. Psychiatry 58, 85–96.

    Article  PubMed  CAS  Google Scholar 

  81. Chen M. L. and Chen C. H. (2005) Microarray analysis of differentially expressed genes in rat frontal cortex under chronic risperidone treatment. Neuropsychopharmacology 30, 268–277.

    Article  PubMed  CAS  Google Scholar 

  82. Feher L. Z., Kalman J., Puskas L. G., et al. (2005) Impact of haloperidol and risperidone on gene expression profile in the rat cortex. Neurochem. Int. 47, 271–280.

    Article  PubMed  CAS  Google Scholar 

  83. Kontkanen O., Lakso M., Wong G., and Castren E. (2000) A functional genomic study of the effects of antipsychotic agent chlorpromazine in PC12 cells. Clin. Chem. Lab. Med. 38, 911–915.

    Article  PubMed  CAS  Google Scholar 

  84. Ben-Shachar D. (2002) Mitochondrial dysfunction in schizophrenia: a possible linkage to dopamine. J. Neurochem. 83, 1241–1251.

    Article  PubMed  CAS  Google Scholar 

  85. Graybiel A. M. (1995) The basal ganglia. Trends Neurosci. 18, 60–62.

    Article  PubMed  CAS  Google Scholar 

  86. Thomas E. A., Danielson P. E., and Sutcliffe J. G. (1998) RGS9: a regulator of G-protein signalling with specific expression in rat and mouse striatum. J. Neurosci. Res. 52, 118–124.

    Article  PubMed  CAS  Google Scholar 

  87. Polli J. W. and Kincaid R. L. (1992) Molecular cloning of DNA encoding a calmodulin-dependent phosphodiesterase enriched in striatum. Proc. Natl. Acad. Sci. USA 89, 11,079–11,083.

    Article  CAS  Google Scholar 

  88. Castets F., Bartoli M., Barnier J. V., et al. (1996) A novel calmodulin-binding protein, belonging to the WD-repeat family, is localized in dendrites of a subset of CNS neurons. J. Cell Biol. 134, 1051–1062.

    Article  PubMed  CAS  Google Scholar 

  89. Svenningsson P., Le Moine C., Kull B., Sunahara R., Bloch B., and Fredholm B. B. (1997) Cellular expression of adenosine A2A receptor messenger RNA in the rat central nervous system with special reference to dopamine innervated areas. Neuroscience 80, 1171–1185.

    Article  PubMed  CAS  Google Scholar 

  90. de Chaldee M., Gaillard M. C., Bizat N., et al. (2003) Quantitative assessment of transcriptome differences between brain territories. Genome Res. 13, 1646–1653.

    Article  PubMed  CAS  Google Scholar 

  91. Allison D. B. and Casey D. E. (2001) Antipsychotic-induced weight gain: a review of the literature. J. Clin. Psychiatry 7, 22–31.

    Google Scholar 

  92. Ganguli R. (1999) Weight gain associated with antipsychotic drugs. J. Clin. Psychiatry 21, 20–24.

    Google Scholar 

  93. Sondhi S., Castellano J. M., Chong V. Z., et al. (2005) cDNA array reveals increased expression of glucose-dependent insulinotropic polypeptide following chronic clozapine treatment: role in atypical antipsychotic drug-induced adverse metabolic effects. Pharmacogenomics J. 6, 131–140.

    Article  CAS  Google Scholar 

  94. McConathy W. J. and Alaupovic P. (1973) isolation and partial characterization of apolipoprotein D: a new protein moiety of the human plasma lipoprotein system. Fedn. Eur. Biochem. Socs. Lett. 37, 178–182.

    CAS  Google Scholar 

  95. Landsberg L. (1996) Obesity and the insulin resistance syndrome. Hypertens. Res. 19, S51-S55.

    PubMed  Google Scholar 

  96. Van Gaal L. F., Zhang A., Steijaert M. M., and De Leeuw I. H. (1995) Human obesity: from lipid abnormalities to lipid oxidation. Int. J. Obes. Relat. Metab. Disord. 19, S21-S26.

    PubMed  Google Scholar 

  97. Liu Z., Chang G. Q., and Leibowitz S. F. (2001) Apolipoprotein D interacts with the long-form leptin receptor: a hypothalamic function in the control of energy homeostasis. FASEB J. 15, 1329–1331.

    Article  PubMed  CAS  Google Scholar 

  98. Elmquist J. K., Elias C. F., and Saper C. B. (1999) From lesions to leptin: hypothalamic control of food intake and body weight. Neuron 22, 221–232.

    Article  PubMed  CAS  Google Scholar 

  99. Williams G., Bing C., Cai X. J., Harrold J. A., King P. J., and Liu X. H. (2001) The hypothalamus and the control of energy homeostasis: different circuits, different purposes. Physiol. Behav. 74, 683–701.

    Article  PubMed  CAS  Google Scholar 

  100. Friedman J. M. and halaas J. L. (1998) Leptin and the regulation of body weight in mammals. Nature 395, 763–770.

    Article  PubMed  CAS  Google Scholar 

  101. Hwa J. J., Ghibaudi L., Compton D., Fawzi A. B., and Strader C. D. (1996) Intracerebroventricular injection of leptin increases thermogenesis and mobilizes fat metabolism in ob/ob mice. Horm. Metab. Res. 28, 659–663.

    Article  PubMed  CAS  Google Scholar 

  102. Tartaglia L. A., Dembski M., Weng X., et al. (1995) Identification and expression cloning of a leptin receptor, OB-R. Cell 83, 1263–1271.

    Article  PubMed  CAS  Google Scholar 

  103. Baker W. A., Hitman G. A., Hawrami K., et al. (1994) Apolipoprotein D gene polymorphism: a new genetic marker for type 2 diabetic subjects in Nauru and south India. Diabet. Med. 11, 947–952.

    Article  PubMed  CAS  Google Scholar 

  104. Vijayaraghavan S., Hitman G. A., and Kopelman P. G. (1994) Apolipoprotein-D polymorphism: a genetic marker for obesity and hyperinsulinemia. J. Clin. Endocrinol. Metab. 79, 568–570.

    Article  PubMed  CAS  Google Scholar 

  105. Ntambi J. M., Miyazaki M., and Dobrzyn A. (2004) Regulation of stearoyl-CoA desaturase expression. Lipids 39, 1061–1065.

    Article  PubMed  CAS  Google Scholar 

  106. Hulver M. W., Berggren J. R., Carper M. J., et al. (2005) Elevated stearoyl-CoA desaturase-1 expression in skeletal muscle contributes to abnormal fatty acid partitioning in obese humans. Cell Metab. 2, 251–261.

    Article  PubMed  CAS  Google Scholar 

  107. Ronnett G. V., Kim E. K., Landree L. E., and Tu Y. (2005) Fatty acid metabolism as a target for obesity treatment. Physiol. Behav. 85, 25–35.

    Article  PubMed  CAS  Google Scholar 

  108. Loftus T. M., Jaworsky D. E., Frehywot G. L., et al. (2000) Reduced food intake and body weight in mice treated with fatty acid synthase inhibitors. Science 288, 2379–2381.

    Article  PubMed  CAS  Google Scholar 

  109. Jellinger K. (1977) Neuropathologic findings after neuroleptic long-term therapy. In: Roizin L., Shiraki H., and Grcevic N. (eds.) Neurotoxicology Raven, New York, pp. 25–42.

    Google Scholar 

  110. Dean C. E. (2005) Antipsychotic-associated neuronal changes in the brain: toxic, therapeutic, or irrelevant to the long-term outcome of schizophrenia? Prog. Neuropsychopharmacol. Biol. Psychiatry 30, 174–189.

    Article  PubMed  CAS  Google Scholar 

  111. Gil-ad I., Shtaif B., Shiloh R., and Weizman A. (2001) Evaluation of the neurotoxic activity of typical and atypical neuroleptics: relevance to iatrogenic extrapyramidal symptoms. Cell. Mol. Neurobiol. 21, 705–716.

    Article  PubMed  CAS  Google Scholar 

  112. Jentsch J. D. and Roth R. H. (1999) The neuropsychopharmacology of phencyclidine: from NMDA receptor hypofunction to the dopamine hypothesis of schizophrenia. Neuropsychopharmacology 20, 201–225.

    Article  PubMed  CAS  Google Scholar 

  113. Krystal J. H., Karper L. P., Seibyl J. P., et al. (1994) Subanesthetic effects of the noncompetitive NMDA antagonist, ketamine, in humans. Psychotomimetic, perceptual, cognitive, and neuroendocrine responses. Arch. Gen. Psychiatry 51, 199–214.

    PubMed  CAS  Google Scholar 

  114. Konradi C. and Heckers S. (2003) Molecular aspects of glutamate dysregulation: implications for schizophrenia and its treatment. Pharmacol. Ther. 97, 153–179.

    Article  PubMed  CAS  Google Scholar 

  115. Randall R. D. and Thayer S. A. (1992) Glutamate-induced calcium transient triggers delayed calcium overload and neurotoxicity in rat hippocampal neurons. J. Neurosci. 12, 1882–1895.

    PubMed  CAS  Google Scholar 

  116. Reed J. C. (2000) Mechanisms of apoptosis. Am. J. Pathol. 157, 1415–1430.

    PubMed  CAS  Google Scholar 

  117. Hilfiker S. (2003) Neuronal calcium sensor-1: a multifunctional regulator of secretion. Biochem. Soc. Trans. 31, 828–832.

    Article  PubMed  CAS  Google Scholar 

  118. Lal A., Kawai T., Yang X., Mazan-Mamczarz K., and Gorospe M. (2005) Antiapoptotic function of RNA-binding protein HuR effected through prothymosin alpha. EMBO J. 24, 1852–1862.

    Article  PubMed  CAS  Google Scholar 

  119. Bridler R. and Umbricht D. (2003) Atypical antipsychotics in the treatment of schizophrenia. Swiss Med. Wkly. 133, 63–76.

    PubMed  CAS  Google Scholar 

  120. Chong V. Z., Costain W., Marriott J., et al. (2004) Differential display polymerase chain reaction reveals increased expression of striatal rat glia-derived nexin following chronic clozapine treatment. Pharmacogenomics J. 4, 379–387.

    Article  PubMed  CAS  Google Scholar 

  121. Takahashi Y., Kumanishi T., and Hayashi S. (2004) Using a DNA microarray method to examine gene expression in brain from clozapine-injected mice. Ann. NY Acad. Sci. 1025, 561–569.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elizabeth A. Thomas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thomas, E.A. Molecular profiling of antipsychotic drug function. Mol Neurobiol 34, 109–128 (2006). https://doi.org/10.1385/MN:34:2:109

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/MN:34:2:109

Index Entries

Navigation