Skip to main content
Log in

N-Cadherin signaling in synapse formation and neuronal physiology

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Neural cadherin (N-cadherin) is an adhesion receptor that is localized in abundance at neuron-to-neuron synapses. N-cadherin contains an extracellular domain that binds to other cadherins on juxtaposed cell membranes, a single-pass transmembrane region, and a cytoplasmic tail that interacts with various proteins, including catenins, kinases, phosphatases, and presenilin 1. N-cadherin contributes to the structural and functional organization of the synaptic complex by ensuring the adhesion between synaptic membranes and organizing the underlying actin cytoskeleton. Additionally, recent findings have shown that N-cadherin may participate in synaptic physiology by regulating calcium influx through voltage-activated calcium currents. The diverse activities of N-cadherin stem from its ability to operate as both an adhesion molecule that links cytoskeletons across cell membranes and a ligand-activated homophilic receptor capable of initiating intracellular signaling. An important mechanism of cadherin signaling is the regulation of small Rho guanosine triphosphatase activity that affects cytoskeleton dynamics and calcium influx. Because both the regulation of cadherin adhesive activity and cadherin-mediated signaling are affected by the binding of molecules to the intracellular domain, changes in the composition of the N-cadherin complex are central to the regulation of cadherin-mediated functions. This article focuses on the roles that N-cadherin might play at the level of the synapse through its effect on adhesion and signaling in the proximity of the synaptic junction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hatta K., Okada T. S., and Takeichi M. (1985) A monoclonal antibody disrupting calcium-dependent cell-cell adhesion of brain tissues: possible role of its target antigen in animal pattern formation. Proc. Natl. Acad. Sci. USA 82(9), 2789–2793.

    PubMed  CAS  Google Scholar 

  2. Takeichi M. (1991) Cadherin cell adhesion receptors as a morphogenetic regulator. Science 251(5000), 1451–1455.

    PubMed  CAS  Google Scholar 

  3. Hatta K., Takagi S. Fujisawa H. and Takeichi M. (1987) Spatial and temporal expression pattern of N-cadherin cell adhesion molecules correlated with morphogenetic processes of chicken embryos. Dev. Biol. 120(1), 215–227.

    PubMed  CAS  Google Scholar 

  4. Hatta K. and Takeichi M. (1986) Expression of N-cadherin adhesion molecules associated with early morphogenetic events in chick development. Nature 320(6061), 447–449.

    PubMed  CAS  Google Scholar 

  5. Takeichi M. (1990) Cadherins: a molecular family important in selective cell-cell adhesion. Annu. Rev. Biochem. 59, 237–252.

    PubMed  CAS  Google Scholar 

  6. Fannon A. M. and Colman D. R. (1996) A model for central synaptic junctional complex formation based on the differential adhesive specificities of the cadherins. Neuron 17(3), 423–434.

    PubMed  CAS  Google Scholar 

  7. Uchida N., Honjo Y., Johnson K. R., Wheelock M. J., and Takeichi M. (1996) The catenin/cadherin adhesion system is localized in synaptic junctions bordering transmitter release zones. J. Cell Biol. 135(3), 767–779.

    PubMed  CAS  Google Scholar 

  8. Nollet F., Kools, P., and van Roy F. (2000) Phylogenetic analysis of the cadherin superfamily allows identification of six major subfamilies besides several solitary members. J. Mol. Biol. 299(3), 551–572.

    PubMed  CAS  Google Scholar 

  9. Redies C. (1995) Cadherin expression in the developing vertebrate CNS: from neuromeres to brain nuclei and neural circuits. Exp. Cell Res. 220(2), 243–256.

    PubMed  CAS  Google Scholar 

  10. Suzuki S. C., Inoue T., Kumura Y., Tanaka T., and Takeichi M. (1997) Neuronal circuits are subdivided by differential expression of type-II classic cadherins in postnatal mouse brains. Mol. Cell Neurosci. 9(5/6), 433–447.

    PubMed  CAS  Google Scholar 

  11. Price S. R., De Marco Garcia N. V., Ranscht B., and Jessell T. M. (2002) Regulation of motor neuron pool sorting by differential expression of type II cadherins. Cell 109(2), 205–216.

    PubMed  CAS  Google Scholar 

  12. Lee C. H., Herman T., Clandinin T. R., Lee R., and Zipursky S. L. (2001) N-cadherin regulates target specificity in the Drosophila visual system. Neuron 30(2), 437–450.

    PubMed  CAS  Google Scholar 

  13. Prakash S., Caldwell J. C., Eberl D. F., and Clandinin T. R. (2005) Drosophila N-cadherin mediates an attractive interaction between photoreceptor axons and their targets. Nat. Neurosci. 8(4), 443–450.

    PubMed  CAS  Google Scholar 

  14. Shapiro L. and Colman D. R. (1999) The diversity of cadherins and implications for a synaptic adhesive code in the CNS. Neuron 23(3), 427–430.

    PubMed  CAS  Google Scholar 

  15. Sano, K., Tanihara H. Heimark R. L. (1993) Protocadherins: a large family of cadherin-related molecules in central nervous system. EMBO J. 12(6) 2249–2256.

    PubMed  CAS  Google Scholar 

  16. Wu Q. and Maniatis T. (1999) A striking organization of a large family of human neural cadherin-like cell adhesion genes. Cell 97(6), 779–790.

    PubMed  CAS  Google Scholar 

  17. Wu Q. and Maniatis T. (2000) Large exons encoding multiple ectodomains are a characteristics feature of protocadherin genes. Proc. Natl. Acad. Sci. USA 97(7), 3124–3129.

    PubMed  CAS  Google Scholar 

  18. Kohmura N., Senzaki K., Hamada S., et al. (1998) Diversity revealed by a novel family of cadherins expressed in neurons at a synaptic complex. Neuron 20(6), 1137–1151.

    PubMed  CAS  Google Scholar 

  19. Wheelock M. J. and Johnson K. R. (2003) Cadherin-mediated cellular signaling. Curr. Opin. Cell Biol. 15(5), 509–514.

    PubMed  CAS  Google Scholar 

  20. Yap A. S. and Kovasc E. M. (2003) Direct cadherin-activated cell signaling: a view from the plasma membrane. J. Cell Biol. 160(1), 11–16.

    PubMed  CAS  Google Scholar 

  21. Gumbiner B. M. (2005) Regulation of cadherin-mediated adhesion in morphogenesis. Nat. Rev. Mol. Cell Biol. 6(8), 622–634.

    PubMed  CAS  Google Scholar 

  22. Salinas P. C. and Price S. R. (2005) Cadherins and catenins in synapse development. Curr. Opin. Neurobiol. 15(1), 73–80.

    PubMed  CAS  Google Scholar 

  23. Braga V. M. (2002) Cell-cell adhesion and signalling. Curr. Opin. Cell Biol. 14(5), 546–556.

    PubMed  CAS  Google Scholar 

  24. Piccoli, G., Rutishauser U., and Brusés J. L. (2004) N-cadherin juxtamembrane domain modulates voltage-gated Ca2+ current via RhoA GTPase and Rho-associated kinase. J. Neurosci. 24(48), 10,918–10,923.

    CAS  Google Scholar 

  25. Marambaud P. Wen P. H., Dutt A., et al. (2003) A CBP binding transcriptional repressor produced by the PS1/epsilon-cleavage of N-cadherin is inhibited by PS1 FAD mutations. Cell 114(5), 635–645.

    PubMed  CAS  Google Scholar 

  26. Nelson W. J. and Nusse R. (2004) Convergence of Wnt, beta-catenin, and cadherin pathways. Science 303(5663), 1483–1487.

    PubMed  CAS  Google Scholar 

  27. Hatta K., Nose A., Nagafuchi A., and Takeichi M. (1988) Cloning and expression of cDNA encoding a neural calcium-dependent cell adhesion molecule: its identity in the cadherin gene family. J. Cell Biol. 106(3), 873–881.

    PubMed  CAS  Google Scholar 

  28. Miyatani S., Shimamura K., Hatta M., et al. (1989) Neural cahderin: role in selective cell-cell adhesion. Science 245(4918), 631–635.

    PubMed  CAS  Google Scholar 

  29. Shapiro L., Fannon A. M., Kwong, P. D., et al. (1995) Structural basis of cell-cell adhesion by cadherins. Nature 374(6520), 327–337.

    PubMed  CAS  Google Scholar 

  30. Gumbiner B. M. (1993) Proteins associated with the cytoplasmic surface of adhesion molecules. Neuron 11(4), 551–564.

    PubMed  CAS  Google Scholar 

  31. Yap A. S., Brieher W. M., and Gumbiner B. M. (1997) Molecular and functional analysis of cadherin-based adherens junctions. Annu. Rev. Cell Dev. Biol. 13, 119–146.

    PubMed  CAS  Google Scholar 

  32. Kim J. B., Islam S., Kim Y. J., et al. (2000) N-Cadherin extracellular repeat 4 mediates epithelial to mesenchymal transition and increased motility. J. Cell Biol. 151(6), 1193–1206.

    PubMed  CAS  Google Scholar 

  33. Koch A. W., Pokutta S., Lustig A., and Engel J. (1997) Calcium binding and homoassociation of E-cadherin domains. Biochemistry 36(25), 7697–7705.

    PubMed  CAS  Google Scholar 

  34. Tamura K., Shan W. S., Hendrickson W. A., Colman D. R., and Shapiro L. (1998) Structure-function analysis of cell adhesion by neural (N-) cadherin. Neuron 20(6), 1153–1163.

    PubMed  CAS  Google Scholar 

  35. Murase S. and Schuman E. M. (1999) The role of cell adhesion molecules in synaptic plasticity and memory. Curr. Opin. Cell Biol. 11(5), 549–553.

    PubMed  CAS  Google Scholar 

  36. Kemler R. (1993) From cadherins to catenins: cytoplasmic protein interactions and regulation of cell adhesion. Trends Genet. 9(9), 317–321.

    PubMed  CAS  Google Scholar 

  37. Daniel J. M. and Reynolds A. B. (1995) The tyrosine kinase substrate p120cas binds directly to E-cadherin but not to the adenomatous polyposis coli protein or alpha-catenin. Mol. Cell Biol. 15(9), 4819–4824.

    PubMed  CAS  Google Scholar 

  38. Aberle H., Butz S., Stappert J., Weissig H., Kemler R., and Hoschuetzky H. (1994) Assembly of the cadherin-catenin complex in vitro with recombinant proteins. J. Cell Sci. 107(Pt 12), 3655–3663.

    PubMed  CAS  Google Scholar 

  39. Hoschuetzky H., Aberle H., and Kemler R. (1994) Beta-catenin mediates the interaction of the cadherin-catenin complex with epidermal growth factor receptor. J. Cell Biol. 127(5), 1375–1380.

    PubMed  CAS  Google Scholar 

  40. Pece S., Chiariello M., Murga C., and Gutkind J. S. (1999) Activation of the protein kinase Akt/PKB by the formation of E-cadherin-mediated cell-cell junctions. Evidence for the association of phosphatidylinositol 3-kinase with the E-cadherin adhesion complex. J. Biol. Chem. 274(27), 19,347–19,351.

    CAS  Google Scholar 

  41. Brady-Kalnay S. M., Rimm D. L., and Tonks N. K. (1995) Receptor protein tyrosine phosphatase PTPmu associates with cadherins and catenins in vivo. J. Cell Biol. 130(4), 977–986.

    PubMed  CAS  Google Scholar 

  42. Steinberg M. S. and McNutt P. M. (1999) Cadherins and their connections: adhesion junctions have broader functions. Curr. Opin. Cell Biol. 11(5), 554–560.

    PubMed  CAS  Google Scholar 

  43. Meigs T. E., Fields T. A., McKee D. D., and Casey P. J. (2001) Interaction of Galpha 12 and Galpha 13 with the cytoplasmic domain of cadherin provides a mechanism for beta—catenin release. Proc. Natl. Acad. Sci. USA 98(2), 519–524.

    PubMed  CAS  Google Scholar 

  44. Fujita Y., Krause G., Scheffner M., et al. (2002) Hakai, a c-Cbl-like protein, ubiquitinates and induces endocytosis of the E-cadherin complex. Nat. Cell Biol. 4(3), 222–231.

    PubMed  CAS  Google Scholar 

  45. Xu Y., Guo D. F., Davidson M., Inagami T., and Carpenter G. (1997) Interaction of the adaptor protein Shc and the adhesion molecule cadherin. J. Biol. Chem. 272(21) 13463–13466.

    PubMed  CAS  Google Scholar 

  46. Baki L., Marambaud P., Efthimiopoulos S., et al. (2001) Presenilin-1 binds cytoplasmic epithelial cadherin, inhibits cadherin/p120 association, and regulates stability and function of the cadherin/catenin adhesion complex. Proc. Natl. Acad. Sci. USA 98(5) 2381–2386.

    PubMed  CAS  Google Scholar 

  47. Nagafuchi A. and Takeichi M. (1988) Cell binding function of E-cadherin is regulated by the cytoplasmic domain. EMBO J. 7(12) 3679–3684.

    PubMed  CAS  Google Scholar 

  48. Knudsen K. A., Soler A. P., Johnson K. R., and Wheelock M. J. (1995) Interaction of alphaactinin with the cadherin/catenin cell-cell adhesion complex via alpha-catenin. J. Cell. Biol. 130(1), 67–77.

    PubMed  CAS  Google Scholar 

  49. Anastasiadis P. Z. and Reynolds A. B. (2000) The p120 catenin family: complex roles in adhesion, signaling and cancer. J. Cell Sci. 113(Pt 8), 1319–1334.

    PubMed  CAS  Google Scholar 

  50. Yap A. S., Niessen C. M., and Gumbiner B. M. (1998) The juxtamembrane region of the cadherin cytoplasmic tail supports lateral clustering, adhesive strengthening, and interaction with p120ctn. J. Cell Biol. 141 (3), 779–789.

    PubMed  CAS  Google Scholar 

  51. Yap A. S., Brieher W. M., Pruschy M., and Gumbiner B. M. (1997) Lateral clustering of the adhesive ectodomain: a fundamental determinant of cadherin function. Curr. Biol. 7(5), 308–315.

    PubMed  CAS  Google Scholar 

  52. Gumbiner B. M. (2000) Regulation of cadherin adhesive activity. J. Cell Biol. 148(3), 399–404.

    PubMed  CAS  Google Scholar 

  53. Anastasiadis P. Z., Moon S. Y., Thoreson M. A., et al. (2000) Inhibition of RhoA by p120 catenin. Nat. Cell Biol. 2(9), 637–644.

    PubMed  CAS  Google Scholar 

  54. Noren N. K., Liu B. P., Burridge K., and Kreft B. (2000) p120 catenin regulates the actin cytoskeleton via Rho family GTPases. J. Cell Biol. 150(3), 567–580.

    PubMed  CAS  Google Scholar 

  55. Gottardi C. J. and Gumbiner B. M. (2001) Adhesion signaling: how beta-catenin interacts with its partners. Curr Biol. 11(19), R792-R794.

    PubMed  CAS  Google Scholar 

  56. Anastasiadis P. Z. and Reynolds A. B. (2001) Regulation of Rho GTPases by p120-catenin. Curr. Opin. Cell Biol. 13(5), 604–610.

    PubMed  CAS  Google Scholar 

  57. Heasman J., Crawford A., Goldstone K., et al. (1994) Overexpression of cadherins and under-expression of beta-catenin inhibit dorsal mesoderm induction in early Xenopus embryos. Cell 79(5), 791–803.

    PubMed  CAS  Google Scholar 

  58. Fagotto F., Funayama N., Gluck U., and Gumbiner B. M. (1996) Binding to cadherins antagonizes the signaling activity of beta-catenin during axis formation in Xenopus. J. Cell Biol. 132(6), 1105–1114.

    PubMed  CAS  Google Scholar 

  59. Gottardi C. J., Wong E., and Gumbiner B. M. (2001) E-cadherin suppresses cellular transformation by inhibiting beta-catenin signaling in an adhesion-independent manner. J. Cell Biol. 153(5), 1049–1060.

    PubMed  CAS  Google Scholar 

  60. Chen H., Paradies N. E., Fedor-Chaiken M., and Brackenbury R. (1997) E-cadherin mediates adhesion and suppresses cell motility via distinct mechanisms. J. Cell Sci. 110 (Pt 3), 345–356.

    PubMed  CAS  Google Scholar 

  61. Horikawa K. and Takeichi M. (2001) Requirement of the juxtamembrane domain of the cadherin cytoplasmic tail for morphogenetic cell rearrangement during myotome development. J. Cell Biol. 155(7) 1297–1306.

    PubMed  CAS  Google Scholar 

  62. Riehl R., Johnson K., Bradley R., et al. (1996) Cadherin function is required for axon outgrowth in retinal ganglion cells in vivo. Neuron 17(5), 837–848.

    PubMed  CAS  Google Scholar 

  63. Fukata M. and Kaibuchi K. (2001) Rho-family GTPases in cadherin-mediated cell-cell adhesion. Nat. Rev. Mol. Cell Biol. 2(12), 887–897.

    PubMed  CAS  Google Scholar 

  64. Takaishi K., Sasaki T., Kotani H., Nishioka H., and Takai Y. (1997) Regulation of cell-cell adhesion by rac and rho small G proteins in MDCK cells. J. Cell Biol. 139(4), 1047–1059.

    PubMed  CAS  Google Scholar 

  65. Braga V. M., Del Maschio A., Machesky L., and Dejana E. (1999) Regulation of cadherin function by Rho and Rac: modulation by junction maturation and cellular context Mol. Biol. Cell. 10(1), 9–22.

    PubMed  CAS  Google Scholar 

  66. Jou T. S. and Nelson W. J. (1998) Effects of regulated expression of mutant RhoA and Rac1 small GTPases on the development of epithelial (MDCK) cell polarity. J. Cell Biol. 142(1), 85–100.

    PubMed  CAS  Google Scholar 

  67. Jou T. S., Schneeberger E. E., and Nelson W. J. (1998) Structural and functional regulation of tight junctions by RhoA and Rac1 small GTPases. J. Cell Biol. 142(1), 101–115.

    PubMed  CAS  Google Scholar 

  68. Braga V. (2000) Epithelial cell shape: cadherins and small GTPases. Exp. Cell Res. 261 (1), 83–90.

    PubMed  CAS  Google Scholar 

  69. Ehrlich J. S., Hansen M. D., and Nelson W. J. (2002) Spatio-temporal regulation of Rac1 localization and lamellipodia dynamics during epithelial cell-cell adhesion. Dev. Cell. 3(2), 259–270.

    PubMed  CAS  Google Scholar 

  70. Noren N. K., Arthur W. T., and Burridge K. (2003) Cadherin engagement inhibits RhoA via p190RhoGAP. J. Biol. Chem. 278(16), 13,615–13,618.

    CAS  Google Scholar 

  71. Noren N. K., Niessen C. M., Gumbiner B. M., and Burridge K. (2001). Cadherin engagement regulates Rho family GTPases. J. Biol. Chem. 276(36), 33,305–33,308.

    CAS  Google Scholar 

  72. Kovacs E. M., Ali P. G., McCormack A. J., and Yap A. S. (2002) E-cadherin homophilic ligation directly signals through Rac and phosphatidylinositol 3-kinase to regulate adhesive contacts. J. Biol. Chem. 277(8), 6708–6718.

    PubMed  CAS  Google Scholar 

  73. Charrasse S., Meriane M., Comunale F., Blangy A., and Gauthier-Rouviere C. (2002) N-cadherin-dependent cell-cell contact regulates Rho GTPases and beta-catenin localization in mouse C2C12 myoblasts. J. Cell Biol. 158(5), 953–965.

    PubMed  CAS  Google Scholar 

  74. Kim S. H., Li Z., and Sacks D. B. (2000) E-cadherin-mediated cell-cell attachment activates Cdc42. J. Biol. Chem. 275(47), 36,999–37,005.

    CAS  Google Scholar 

  75. Sander E. E., van Delft S., ten Klooster J. P., et al. (1998) Matrix-dependent Tiam1/Rac signaling in epithelial cells promotes either cell-cell adhesion or cell migration and is regulated by phosphatidylinositol 3-kinase. J. Cell Biol. 143(5), 1385–1398.

    PubMed  CAS  Google Scholar 

  76. Rottner K., Hall A., and Small J. V. (1999) Interplay between Rac and Rho in the control of substrate contact dynamics. Curr. Biol. 9(12), 640–648.

    PubMed  CAS  Google Scholar 

  77. Li Z., Aizenman C. D., and Cline H. T. (2002) Regulation of rho GTPases by crosstalk and neuronal activity in vivo. Neuron 33(5), 741–750.

    PubMed  CAS  Google Scholar 

  78. Hawkins P. T., Eguinoa A., Qiu R. G., et al. (1995) PDGF stimulates an increase in GTP-Rac via activation of phosphoinositide 3-kinase. Curr. Biol. 5(4), 393–403.

    PubMed  CAS  Google Scholar 

  79. Sander E. E., ten Klooster J. P., van Delft S., van der Kammen R. A., and Collard J. G. (1999) Rac downregulates Rho activity: reciprocal balance between both GTPases determines cellular morphology and migratory behavior J. Cell Biol. 147(5), 1009–1022.

    PubMed  CAS  Google Scholar 

  80. Lampugnani M. G., Zanetti A., Breviario F., et al. (2002) VE-cadherin regulates endothelial actin activating Rac and increasing membrane association of Tian. Mol. Biol. Cell. 13(4), 1175–1189.

    PubMed  CAS  Google Scholar 

  81. Schuebel K. E., Movilla N., Rosa J. L., and Bustelo X. R. (1998) Phosphorylation-dependent and constitutive activation of Rho proteins by wild-type and oncogenic Vav-2. EMBO J. 17(22), 6608–6621.

    PubMed  CAS  Google Scholar 

  82. Abe K., Rossman K. L., Liu B., et al. (2000) Vav2 is an activator of Cdc42, Rac1, and RhoA. J. Biol. Chem. 275(14), 10,141–10,149.

    CAS  Google Scholar 

  83. Tricaud N., Perrin-Tricaud C., Brusés J. L., and Rutishauser U. (2005) Adherens junctions in myelinating Schwann cells stabilize Schmidt-Lanterman incisures via recruitment of p120 catenin to E-cadherin. J. Neurosci. 25(13), 3259–3269.

    PubMed  CAS  Google Scholar 

  84. Kovacs E. M., Goodwin M., Ali R. G., Paterson A. D., and Yap A. S. (2002) Cadherin-directed actin assembly: E-cadherin physically associates with the Arp2/3 complex to direct actin assembly in nascent adhesive contacts. Curr. Biol. 12(5), 379–382.

    PubMed  CAS  Google Scholar 

  85. Kovacs E. M. and Yap A. S. (2002) The web and the rock: cell adhesion and the ARP2/3 complex. Dev. Cell. 3(6), 760–761.

    PubMed  CAS  Google Scholar 

  86. Fukata M., Kuroda S., Nakagawa M., et al. (1999) Cdc42 and Rac1 regulate the interaction of IOGAP1 with beta-catenin. J. Biol. Chem. 274(37), 26,044–26,050.

    CAS  Google Scholar 

  87. Kuroda S., Fukata M., Nakagawa M., et al. (1998) Role of IQGAP1, a target of the small GTPases Cdc42 and Rac1, in regulation of E-cadherin-mediated cell-cell adhesion. Science 281(5378), 832–835.

    PubMed  CAS  Google Scholar 

  88. Li Z., Kim S. H., Higgins J. M., Brenner M. B., and Sacks D. B. (1999) IQGAP1 and calmodulin modulate E-cadherin function. J. Biol. Chem. 274(53), 37,885–37,892.

    CAS  Google Scholar 

  89. Magie C. R., Pinto-Santini D., and Parkhurst S. M. (2002) Rho1 interacts with p120ctn and alpha-catenin, and regulates cadherin-based adherens junction components in Drosophila. Development 129(16), 3771–3782.

    PubMed  CAS  Google Scholar 

  90. Braga V. M., Hajibagheri N., and Watt F. M. (1998) Calcium-induced intercellular adhesion of keratinocytes does not involve accumulation of beta 1 integrins at cell-cell contacts and does not involve changes in the levels or phosphorylation of catenins. Cell Adhes. Commun. 5(2), 137–149.

    PubMed  CAS  Google Scholar 

  91. Brieher W. M. and Gumbiner B. M. (1994) Regulation of C-cadherin function during activin induced morphogenesis of Xenopus animal caps. J. Cell Biol. 126(2), 519–527.

    PubMed  CAS  Google Scholar 

  92. Shibamoto S., Hayakawa M., Takeuchi K., et al. (1994) Tyrosine phosphorylation of beta-catenin and plakoglobin enhanced by hepatocyte growth factor and epidermal growth factor in human carcinoma cells. Cell Adhes. Commun. 1(4), 295–305.

    PubMed  CAS  Google Scholar 

  93. Weidner K. M., Behrens J., Vandekerckhove J., and Birchmeier W. (1990) Scatter factor: molecular characteristics and effect on the invasiveness of epithelial cells. J. Cell Biol. 111(5 Pt 1), 2097–2108.

    PubMed  CAS  Google Scholar 

  94. Rubio M. E., Curcio C., Chauvet N., and Brusés J. L. (2005) Assembly of the N-cadherin complex during synapse formation involves uncoupling of p120-catenin and association with presenilin 1. Mol. Cell Neurosci. 30(4), 611–623.

    PubMed  CAS  Google Scholar 

  95. Chauvet N., Prieto M., Fabre C., Noren N. K., and Privat A. (2003) Distribution of p120 catenin during rat brain development: potential role in regulation of cadherin-mediated adhesion and actin cytoskeleton organization. Mol. Cell Neurosci. 22(4), 467–486.

    PubMed  CAS  Google Scholar 

  96. Huntley G. W. and Benson D. L. (1999) Neural (N)-cadherin at developing thalamocortical synapses provides an adhesion mechanism for the formation of somatopically organized connections. J. Comp. Neurol. 407(4), 453–471.

    PubMed  CAS  Google Scholar 

  97. Phillips G. R., Huang J. K., Wang Y., et al. (2001) The presynaptic particle web: ultrastructure, composition, dissolution, and reconstitution. Neuron 32(1), 63–77.

    PubMed  CAS  Google Scholar 

  98. Beesley P. W., Mummery R., and Tibaldi J. (1995) N-cadherin is a major glycoprotein component of isolated rat forebrain postsynaptic densities. J. Neurochem. 64(5), 2288–2294.

    PubMed  CAS  Google Scholar 

  99. Yamagata M., Herman J. P., and Sanes J. R. (1995) Lamina-specific expression of adhesion molecules in developing chick optic tectum. J. Neurosci. 15(6), 4556–4571.

    PubMed  CAS  Google Scholar 

  100. Squitti R., De Stefano M. E., Edgar D., and Toschi G. (1999) Effects of axotomy on the expression and ultrastructural localization of N-cadherin and neural cell adhesion molecule in the quail ciliary ganglion: an in vivo model of neuroplasticity. Neuroscience 91(2), 707–722.

    PubMed  CAS  Google Scholar 

  101. Benson D. L. and Tanaka H. (1998) N-cadherin redistribution during synaptogenesis in hippocampal neurons. J. Neurosci. 18(17), 6892–6904.

    PubMed  CAS  Google Scholar 

  102. Bozdagi O., Shan W., Tanaka H., Benson D. L., and Huntley G. W. (2000) Increasing numbers of synaptic puncta during late-phase LTP: N-cadherin is synthesized, recruited to synaptic sites, and required for potentiation, Neuron 28(1), 245–259.

    PubMed  CAS  Google Scholar 

  103. Buchanan J., Sun Y. A., and Poo M. M. (1989) Studies of nerve-muscle interactions in Xenopus cell culture: fine structure of early functional contacts, J. Neurosci. 9(5), 1540–1554.

    PubMed  CAS  Google Scholar 

  104. Evers J., Laser M., Sun Y. A., Xie Z. P., and Poo M. M. (1989) Studies of nerve-muscle interactions in Xenopus cell culture: analysis of early synaptic currents. J. Neurosci. 9(5), 1523–1539.

    PubMed  CAS  Google Scholar 

  105. Pilar G., Tuttle J., and Vaca K. (1981) Functional maturation of motor nerve terminals in the avian iris: ultrastructure, transmitter metabolism and synaptic reliability. J. Physiol. (Lond.) 321, 175–193.

    CAS  Google Scholar 

  106. Gumbiner B., Stevenson B., and Grimaldi A. (1988) The role of the cell adhesion molecule uvomorulin in the formation and maintenance of the epithelial junctional complex. J. Cell Biol. 107(4), 1575–1587.

    PubMed  CAS  Google Scholar 

  107. Meyer R. A., Laird D. W., Revel J. P., and Johnson R. G. (1992) Inhibition of gap junction and adherens junction assembly by connexin and A-CAM antibodies. J. Cell. Biol. 119(1), 179–189.

    PubMed  CAS  Google Scholar 

  108. Watabe M., Nagafuchi A., Tsukita S., and Takeichi M. (1994) Induction of polarized cell-cell association and retardation of growth by activation of the E-cadherin-catenin adhesion system in a dispersed carcinoma line. J. Cell Biol. 127(1), 247–256.

    PubMed  CAS  Google Scholar 

  109. Brusés J. L. (2000) Cadherin-mediated adhesion at the interneuronal synapse. Curr. Opin. Cell Biol. 12(5), 593–597.

    PubMed  Google Scholar 

  110. Peters, A., Palay, S. L., and Webster, H. D. (1991) The fine structure of the nervous system, New York: Oxford University Press.

    Google Scholar 

  111. Vaughn J. E. (1989) Fine structure of synaptogenesis in the vertebrate central nervous system. Synapse. 3(3), 255–285.

    PubMed  CAS  Google Scholar 

  112. Tanaka H., Shan W., Phillips G. R., et al. (2000) Molecular modification of N-cadherin in response to synaptic activity. Neuron 25(1), 93–107.

    PubMed  CAS  Google Scholar 

  113. Aono S., Nakagawa S., Reynolds A. B., and Takeichi M. (1999) p120(ctn) acts as an inhibitory regulator of cadherin function in colon carcinoma cells. J. Cell Biol. 145(3), 551–562.

    PubMed  CAS  Google Scholar 

  114. Ohkubo T. and Ozawa M. (1999) p120ctn binds to the membrane-proximal region of the E-cadherin cytoplasmic domain and is involved in modulation of adhesion activity. J. Cell Biol. 274, 21,409–21,415.

    CAS  Google Scholar 

  115. Yu G., Chen G., Levesque G., et al. (1998) The presenilin 1 protein is a component of a high molecular weight intracellular complex that contains beta-catenin. J. Biol. Chem. 273(26), 16,470–16,475

    CAS  Google Scholar 

  116. Zhang W. and Benson D. L. (2001) Stages of synapse development defined by dependence on F-actin. J. Neurosci. 21(14), 5169–5181.

    PubMed  CAS  Google Scholar 

  117. Vasioukhin V., Bauer C., Yin M., and Fuchs E. (2000) Directed actin polymerization is the driving force for epithelial cell-cell adhesion. Cell 100(2), 209–219.

    PubMed  CAS  Google Scholar 

  118. Hall A. (1998) Rho GTPases and the actin cytoskeleton. Science 279(5350), 509–514.

    PubMed  CAS  Google Scholar 

  119. Amano M., Ito M., Kimura, K., et al. (1996) Phosphorylation and activation of myosin by Rho-associated kinase (Rho-kinase). J. Biol. Chem. 271(34), 20,246–20,249.

    CAS  Google Scholar 

  120. Sahai E. and Marshall C. J. (2002) ROCK and Dia have opposing effects on adherens junctions downstream of Rho. Nat. Cell Biol. 4(6), 408–415.

    PubMed  CAS  Google Scholar 

  121. Rueckschloss U. and Isenberg G. (2001) Cytochalasin D reduces Ca2+ currents via cofilin-activated depolymerization of F-actin in guinea-pig cardiomyocytes. J. Physiol. 537(Pt 2), 363–370.

    PubMed  CAS  Google Scholar 

  122. Ward Y., Yap S. F., Ravichandran V., et al. (2002) The GTP binding proteins Gem and Rad are negative regulators of the Rho-Rho kinase pathway. J. Cell Biol. 157(2), 291–302.

    PubMed  CAS  Google Scholar 

  123. Wilk-Blaszczak M. A., Singer W. D., Quill T., et al. (1997) The monomeric G-proteins Racl and/or Cdc42 are required for the inhibition of voltage-dependent calcium current by bradykinin. J. Neurosci. 17(11), 4094–4100.

    PubMed  CAS  Google Scholar 

  124. White M. G., Crumling M. A., and Meriney S. D. (1997) Developmental changes in calcium current pharmacology and somatostatin inhibition in chick parasympathetic neurons. J. Neurosci. 17(16), 6302–6313.

    PubMed  CAS  Google Scholar 

  125. Scheiffele P., Fan J., Choih J., Fetter, R., and Serafini T. (2000) Neuroligin expressed in nonneuronal cells triggers presynaptic development in contacting axons. Cell 101(6), 657–669.

    PubMed  CAS  Google Scholar 

  126. Bamji S. X., Shimazu K., Kimes N., et al. (2003) Role of beta-catenin in synaptic vesicle localization and presynaptic assembly. Neuron 40(4), 719–731.

    PubMed  CAS  Google Scholar 

  127. Togashi H., Abe K., Mizoguchi A., Takaoka K., Chisaka O., and Takeichi M. (2002) Gadherin regulates dendritic spine morphogenesis. Neuron 35(1), 77–89.

    PubMed  CAS  Google Scholar 

  128. Bozdagi O., Valcin M., Poskanzer K., Tanaka H., and Benson D. L. (2004) Temporally distinct demands for classic cadherins in synapse formation and maturation. Mol. Cell Neurosci. 27(4), 509–521.

    PubMed  CAS  Google Scholar 

  129. Erdmann B., Kisch F. P., Ratnjen F. G., More, M. I. (2003) N-cadherin is essential for retinal lamination in the zebrafish. Dev. Dyn. 226(3), 570–577.

    PubMed  CAS  Google Scholar 

  130. Perego C, Vanoni C., Massari S., Longhi R., and Pietrini G. (2000) Mammalian LIN-7 PDZ proteins associate with beta-catenin at the cell-cell junctions of epithelia and neurons. EMBO J. 19(15), 3978–3989.

    PubMed  CAS  Google Scholar 

  131. Abe K., Chisaka O., Van Roy F., and Takeichi M. (2004) Stability of dendritic spines and synaptic contacts is controlled by alpha N-catenin. Nat. Neurosci. 7(4), 357–363.

    PubMed  CAS  Google Scholar 

  132. Okamura K., Tanaka H., Yagita Y., et al. (2004) Cadherin activity is required for activity-induced spine remodeling. J. Cell Biol. 167(5), 961–972.

    PubMed  CAS  Google Scholar 

  133. Zhai R. G., Vardinon-Friedman H., Cases-Lang-hoff, C., et al. (2001) Assembling the presynaptic active zone: a characterization of an active one precursor vesicle. Neuron 29(1), 131–143.

    PubMed  CAS  Google Scholar 

  134. Iwai Y., Hirota Y., Ozaki K., Okano H., Takeichi M., and Uemura T. (2002) DN-cadherin is required for spatial arrangement of nerve terminals and ultrastructural organization of synapses. Mol. Cell Neurosci. 19(3), 375–388.

    PubMed  CAS  Google Scholar 

  135. Tang L., Hung C. P., and Schuman E. M. (1998) A role for the cadherin family of cell adhesion molecules in hippocampal long-term potentiation. Neuron 20(6), 1165–1175.

    PubMed  CAS  Google Scholar 

  136. Vassilev P. M., Mitchel J., Vassilev M., Kanazirska, M., and Brown E. M. (1997) Assessment of frequency-dependent alterations in the level of extracellular Ca2+ in the synaptic cleft. Biophys. J. 72(5), 2103–2116.

    PubMed  CAS  Google Scholar 

  137. Nicholson C, ten Bruggencate G., Stockle H., and Steinberg R. (1978) Calcium and potassium changes in extracellular microenvironment of cat cerebellar cortex. J. Neurophysiol. 41(4), 1026–1039.

    PubMed  CAS  Google Scholar 

  138. Krnjevic K., Morris M. E., and Reiffenstein R. J. (1982) Stimulation-evoked changes in extracellular K+ and Ca2+ in pyramidal layers of the rat's hippocampus, Can. J. Physiol. Pharmacol. 60(12), 1643–1657.

    PubMed  CAS  Google Scholar 

  139. Borst J. G. and Sakmann B. (1999) Depletion of calcium in the synaptic cleft of a calyx-type synapse in the rat brainstem. J. Physiol. 521(Pt 1), 123–133.

    PubMed  CAS  Google Scholar 

  140. Spafford J. D. and Zamponi G. W. (2003) Functional interactions between presynaptic calcium channels and the neurotransmitter release machinery. Curr. Opin. Neurobiol. 13(3), 308–314.

    PubMed  CAS  Google Scholar 

  141. Bixby J. L., Grunwald G. B., and Bookman R. J. (1994) Ca2+ influx and neurite growth in response to purified N-cadherin and laminin. J. Cell Biol. 127(5), 1461–1475.

    PubMed  CAS  Google Scholar 

  142. Steinberg M. S. and Takeichi M. (1994) Experimental specification of cell sorting, tissue spreading, and specific spatial patterning by quantitative differences in cadherin expression. Proc. Natl. Acad. Sci. USA 91(1), 206–209.

    PubMed  CAS  Google Scholar 

  143. Nose A., Nagafuchi A., and Takeichi M. (1988) Expressed recombinant cadherins mediate cell sorting in model systems. Cell 54(7), 993–1001.

    PubMed  CAS  Google Scholar 

  144. Brieher W. M., Yap A. S., and Gumbiner B. M. (1996) Lateral dimerization is required for the homophilic binding activity of C-cadherin. J. Cell Biol. 135(2), 487–496.

    PubMed  CAS  Google Scholar 

  145. Tomschy A., Fauser C., Landwehr R., and Engel J. (1996) Homophilic adhesion of E-cadherin occurs by a co-operative two-step interaction of N-terminal domains. EMBO J. 15(14), 3507–3514.

    PubMed  CAS  Google Scholar 

  146. Sheng M., McFadden G., and Greenberg M. E. (1990). Membrane depolarization and calcium induced c-fos transcription via phosphorylation of transcription factor CREB. Neuron 4(4), 571–582.

    PubMed  CAS  Google Scholar 

  147. Morishita W., Connor J. H., Xia H., Quinlan E. M.. Shenolikar S., and Malenka R. C. (2001) Regulation of synaptic strength by protein phosphatase 1. Neuron 32(6), 1133–1148.

    PubMed  CAS  Google Scholar 

  148. Vaillant A. R., Mazzoni I., Tudan C., Boudreau M., Kaplan D. R., and Miller F. D. (1999) Depolarization and neurotrophins converge on the phosphatidylinositol 3-kinase-Akt pathway to synergistically regulate neuronal survival. J. Cell Biol. 146(5), 955–966.

    PubMed  CAS  Google Scholar 

  149. Lisman J., Schulman H., and Cline H. (2002) The molecular basis of CaMKII function in synaptic and behavioural memory. Nat. Rev. Neurosci. 3(3), 175–190.

    PubMed  CAS  Google Scholar 

  150. Daniel J. M. and Reynolds A. B. (1997) Tyrosine phosphorylation and cadherin/catenin function. Bioessays 19(10), 883–891.

    PubMed  CAS  Google Scholar 

  151. Matsuyoshi N., Hamaguchi M., Taniguchi S., Nagafuchi A., Tsukita S., and Takeichi M. (1992) Cadherin-mediated cell-cell adhesion is perturbed by v-src tyrosine phosphorylation in metastatic fibroblasts. J. Cell Biol. 118(3), 703–714.

    PubMed  CAS  Google Scholar 

  152. Behrens J., Vakaet L., Friis R., et al. (1993) Loss of epithelial differentiation and gain of invasiveness correlates with tyrosine phosphorylation of the E-cadherin/beta-catenin complex in cells transformed with a temperature-sensitive v-SRC gene. J. Cell Biol. 120(3), 757–766.

    PubMed  CAS  Google Scholar 

  153. Gottardi C. J. and Gumbiner B. M. (2004) Distinct molecular forms of beta-catenin are targeted to adhesive or transcriptional complexes. J. Cell Biol. 167(2), 339–349.

    PubMed  CAS  Google Scholar 

  154. Bixby J. L. and Zhang R. (1990) Purified N-cadherin is a potent substrate for the rapid induction of neurite outgrowth. J. Cell Biol. 110(4), 1253–1260.

    PubMed  CAS  Google Scholar 

  155. Lo Y. J. and Poo M. M. (1991) Activity-dependent synaptic competition in vitro: heterosynaptic suppression of developing synapses. Science 254(5034), 1019–1022.

    PubMed  CAS  Google Scholar 

  156. Wan J. and Poo M. (1999) Activity-induced potentiation of developing neuromuscular synapses. Science 285(5434), 1725–1728.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan L. Brusés.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brusés, J.L. N-Cadherin signaling in synapse formation and neuronal physiology. Mol Neurobiol 33, 237–252 (2006). https://doi.org/10.1385/MN:33:3:237

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/MN:33:3:237

Index Entries

Navigation