Advertisement

Molecular Neurobiology

, Volume 32, Issue 3, pp 205–216 | Cite as

Stages of motor skill learning

  • Andreas R. LuftEmail author
  • Manuel M. Buitrago
Article

Abstract

Successful learning of a motor skill requires repetitive training. Once the skill is mastered, it can be remembered for a long period of time. The durable memory makes motor skill learning an interesting paradigm for the study of learning and memory mechanisms. To gain better understanding, one scientific approach is to dissect the process into stages and to study these as well as their interactions. This article covers the growing evidence that motor skill learning advances through stages, in which different storage mechanisms predominate. The acquisition phase is characterized by fast (within session) and slow learning (between sessions). For a short period following the initial training sessions, the skill is labile to interference by other skills and by protein synthesis inhibition, indicating that consolidation processes occur during rest periods between training sessions. During training as well as rest periods, activation in different brain regions changes dynamically. Evidence for stages in motor skill learning is provided by experiments using behavioral, electrophysiological, functional imaging, and cellular/molecular methods.

Index Entries

Motor learning plasticity memory electrophysiology gene functional imaging protein synthesis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Thompson R. F. (1986) The neurobiology of learning and memory. Science 233, 941–947.PubMedCrossRefGoogle Scholar
  2. 2.
    Ito M. (1993) Neurophysiology of the nodulofloccular system. Rev. Neurol. (Paris) 149, 692–697.Google Scholar
  3. 3.
    Laubach M., Wessberg J., and Nicolelis M. A. (2000) Cortical ensemble activity increasingly predicts behaviour outcomes during learning of a motor task. Nature 405, 567–571.PubMedCrossRefGoogle Scholar
  4. 4.
    Nissen M. J., Knopman D. S., and Schacter D. L. (1987) Neurochemical dissociation of memory systems. Neurology 37, 789–794.PubMedGoogle Scholar
  5. 5.
    Brashers-Krug T., Shadmehr R., and Bizzi E. (1996) Consolidation in human motor memory. Nature 382, 252–255.PubMedCrossRefGoogle Scholar
  6. 6.
    Sanes J. N. (2003) Neocortical mechanisms in motor learning. Curr. Opin. Neurobiol. 13, 225–231.PubMedCrossRefGoogle Scholar
  7. 7.
    Asanuma H. and Pavlides C. (1997) Neurobiological basis of motor learning in mammals. Neuroreport 8, i-vi.PubMedGoogle Scholar
  8. 8.
    Lee T. D. and Genovese E. D. (1989) Distribution of practice in motor skill acquisition: different effects for discrete and continuous tasks. Res. Q. Exerc. Sport. 60, 59–65.PubMedGoogle Scholar
  9. 9.
    Lee T. D. and Genovese E. D. (1989) Some reminiscences on distribution of practice effects. Res. Q. Exerc. Sport. 60, 297–299.PubMedGoogle Scholar
  10. 10.
    Adams J. A. (1961) The second facet of forgetting: a review of the warm-up decrement. Psycholog. Bull. 58, 257–273.CrossRefGoogle Scholar
  11. 11.
    Luft A. R., Buitrago M. M., Kaelin-Lang A., Dichgans J., and Schulz J. B. (2004) Protein synthesis inhibition blocks consolidation of an acrobatic motor skill. Learn. Mem. 11, 379–382.PubMedCrossRefGoogle Scholar
  12. 12.
    Walker M. P., Brakefield T., Hobson J. A., and Stickgold R. (2003) Dissociable stages of human memory consolidation and reconsolidation. Nature 425, 616–620.PubMedCrossRefGoogle Scholar
  13. 13.
    Jeannerod M. (1995) Mental imagery in the motor context. Neuropsychologia 33, 1419–1432.PubMedCrossRefGoogle Scholar
  14. 14.
    Mulder T., Zijlstra S., Zijlstra W., and Hochstenbach J. (2004) The role of motor imagery in learning a totally novel movement. Exp. Brain Res. 154, 211–217.PubMedCrossRefGoogle Scholar
  15. 15.
    Karni A., Meyer G., Rey-Hipolito C., et al. (1998) The acquisition of skilled motor performance: fast and slow experience-driven changes in primary motor cortex. Proc. Natl. Acad. Sci. USA 95, 861–868.PubMedCrossRefGoogle Scholar
  16. 16.
    Buitrago M. M., Schulz J. B., Dichgans J., and Luft A. R. (2004) Short and long-term motor skill learning in an accelerated rotarod training paradigm. Neurobiol. Learn. Mem. 81, 211–216.PubMedCrossRefGoogle Scholar
  17. 17.
    Buitrago M. M., Ringer T., Schulz J. B., Dichgans J., and Luft A. R. (2004) Characterization of motor skill and instrumental learning time scales in a skilled reaching task in rat. Behav. Brain Res. 155, 249–256.PubMedCrossRefGoogle Scholar
  18. 18.
    Flanagan J. R., Vetter P., Johansson R. S., and Wolpert D. M. (2003) Prediction precedes control in motor learning. Curr. Biol. 13, 146–150.PubMedCrossRefGoogle Scholar
  19. 19.
    Hikosaka O., Nakahara H., Rand M. K., et al. (1999) Parallel neural networks for learning sequential procedures. Trends Neurosci. 22, 464–471.PubMedCrossRefGoogle Scholar
  20. 20.
    Pascual-Leone A., Grafman J., and Hallett M. (1994) Modulation of cortical motor output maps during development of implicit and explicit knowledge. Science 263, 1287–1289.PubMedCrossRefGoogle Scholar
  21. 21.
    Rizzolatti G. and Craighero L. (2004) The mirror-neuron system. Annu. Rev. Neurosci. 27, 169–192.PubMedCrossRefGoogle Scholar
  22. 22.
    Sakai K., Hikosaka O., and Nakamura K. (2004) Emergence of rhythm during motor learning. Trends Cogn. Sci. 8, 547–553.PubMedCrossRefGoogle Scholar
  23. 23.
    Eversheim U. and Bock O. (2001) Evidence for processing stages in skill acquisition: a dualtask study. Learn. Mem. 8, 183–189.PubMedCrossRefGoogle Scholar
  24. 24.
    Shadmehr R. and Brashers-Krug T. (1997) Functional stages in the formation of human long-term motor memory. J. Neurosci. 17, 409–419.PubMedGoogle Scholar
  25. 25.
    Halsband U. and Freund H. J. (1993) Motor learning. Curr. Opin. Neurobiol. 3, 940–949.PubMedCrossRefGoogle Scholar
  26. 26.
    Floyer-Lea A. and Matthews P. M. (2005) Distinguishable brain activation networks for short- and long-term motor skill learning. J. Neurophysiol., 94, 512–518.PubMedCrossRefGoogle Scholar
  27. 27.
    Karni A., Meyer G., Jezzard P., Adams M. M., Turner R., and Ungerleider L. G. (1995) Functional MRI evidence for adult motor cortex plasticity during motor skill learning. Nature 377, 155–158.PubMedCrossRefGoogle Scholar
  28. 28.
    Honda M., Deiber M. P., Ibanez V., Pascual-Leone A., Zhuang P., and Hallett M. (1998) Dynamic cortical involvement in implicit and explicit motor sequence learning. A PET study. Brain 121 (Pt 11), 2159–2173.PubMedCrossRefGoogle Scholar
  29. 29.
    Hund-Georgiadis M. and von Cramon D. Y. (1999) Motor-learning-related changes in piano players and non-musicians revealed by functional magnetic-resonance signals. Exp. Brain Res. 125, 417–425.PubMedCrossRefGoogle Scholar
  30. 30.
    Costa R. M., Cohen D., and Nicolelis M. A. (2004) Differential corticostriatal plasticity during fast and slow motor skill learning in mice. Curr. Biol. 14, 1124–1134.PubMedCrossRefGoogle Scholar
  31. 31.
    Nudo R. J., Milliken G. W., Jenkins W. M., and Merzenich M. M. (1996) Use-dependent alterations of movement representations in primary motor cortex of adult squirrel monkeys. J. Neurosci. 16, 785–807.PubMedGoogle Scholar
  32. 32.
    Kleim J. A., Barbay S., and Nudo R. J. (1998) Functional reorganization of the rat motor cortex following motor skill learning. J. Neurophysiol. 80, 3321–3325.PubMedGoogle Scholar
  33. 33.
    Kleim J. A., Bruneau R., Calder K., et al. (2003) Functional organization of adult motor cortex is dependent upon continued protein synthesis. Neuron 40, 167–176.PubMedCrossRefGoogle Scholar
  34. 34.
    Kleim J. A., Hogg T. M., VandenBerg P. M., Cooper N. R., Bruneau R., and Remple M. (2004) Cortical synaptogenesis and motor map reorganization occur during late, but not early, phase of motor skill learning. J. Neurosci. 24, 628–633.PubMedCrossRefGoogle Scholar
  35. 35.
    Sakai K., Hikosaka O., Miyauchi S., Sasaki Y., Fujimaki N., and Putz B. (1999) Presupplementary motor area activation during sequence learning reflects visuo-motor association. J. Neurosci. 19, RC1.Google Scholar
  36. 36.
    Nakamura K., Sakai K., and Hikosaka O. (1998) Neuronal activity in medial frontal cortex during learning of sequential procedures. J. Neurophysiol. 80, 2671–2687.PubMedGoogle Scholar
  37. 37.
    Sakai K., Hikosaka O., Miyauchi S., Takino R., Sasaki Y., and Putz B. (1998) Transition of brain activation from frontal to parietal areas in visuomotor sequence learning. J. Neurosci. 18, 1827–1840.PubMedGoogle Scholar
  38. 38.
    Kennerley S. W., Sakai K., and Rushworth M. F. (2004) Organization of action sequences and the role of the pre-SMA. J. Neurophysiol. 91, 978–993.PubMedCrossRefGoogle Scholar
  39. 39.
    Jenkins I. H., Brooks D. J., Nixon P. D., Frackowiak R. S., and Passingham R. E. (1994) Motor sequence learning: a study with positron emission tomography. J. Neurosci. 14, 3775–3790.PubMedGoogle Scholar
  40. 40.
    Muller R. A., Kleinhans N., Pierce K., Kemmotsu N., and Courchesne E. (2002) Functional MRI of motor sequence acquisition: effects of learning stage and performance. Brain Res. Cogn. Brain Res. 14, 277–293.PubMedCrossRefGoogle Scholar
  41. 41.
    Grafton S. T., Hazeltine E., and Ivry R. B. (2002) Motor sequence learning with the nondominant left hand. A PET functional imaging study. Exp. Brain Res. 146, 369–378.PubMedCrossRefGoogle Scholar
  42. 42.
    Toni I., Krams M., Turner R., and Passingham R. E. (1998) The time course of changes during motor sequence learning: a whole-brain fMRI study. Neuroimage 8, 50–61.PubMedCrossRefGoogle Scholar
  43. 43.
    Binkofski F., Amunts K., Stephan K. M., et al. (2000) Broca’s region subserves imagery of motion: a combined cytoarchitectonic and fMRI study. Hum. Brain Mapp. 11, 273–285.PubMedCrossRefGoogle Scholar
  44. 44.
    Hikosaka O., Nakamura K., Sakai K., and Nakahara H. (2002) Central mechanisms of motor skill learning. Curr. Opin. Neurobiol. 12, 217–222.PubMedCrossRefGoogle Scholar
  45. 45.
    Tracy J. I., Faro S. S., Mohammed F., Pinus A., Christensen H., and Burkland D. (2001) A comparison of ‘Early’ and ‘Late’ stage brain activation during brief practice of a simple motor task. Brain Res. Cogn. Brain Res. 10, 303–316.PubMedCrossRefGoogle Scholar
  46. 46.
    Miyachi S., Hikosaka O., and Lu X. (2002) Differential activation of monkey striatal neurons in the early and late stages of procedural learning. Exp. Brain Res. 146, 122–126.PubMedCrossRefGoogle Scholar
  47. 47.
    Doyon J., Song A. W., Karni A., Lalonde F., Adams M. M., and Ungerleider L. G. (2002) Experience-dependent changes in cerebellar contributions to motor sequence learning. Proc. Natl. Acad. Sci. USA 99, 1017–1022.PubMedCrossRefGoogle Scholar
  48. 48.
    Deiber M. P., Wise S. P., Honda M., Catalan M. J., Grafman J., and Hallett M. (1997) Frontal and parietal networks for conditional motor learning: a positron emission tomography study. J. Neurophysiol. 78, 977–991.PubMedGoogle Scholar
  49. 49.
    Shadmehr R. and Holcomb H. H. (1997) Neural correlates of motor memory consolidation. Science 277, 821–825.PubMedCrossRefGoogle Scholar
  50. 50.
    Schlaug G., Sanes J. N., Thangaraj V., et al. (1996) Cerebral activation covaries with movement rate. Neuroreport 22, 879–883.CrossRefGoogle Scholar
  51. 51.
    van Mier H., Tempel L. W., Perlmutter J. S., Raichle M. E., and Petersen S. E. (1998) Changes in brain activity during motor learning measured with PET: effects of hand of performance and practice. J. Neurophysiol. 80, 2177–2199.PubMedGoogle Scholar
  52. 52.
    Luft A. R., Buitrago M. M., Ringer T., Dichgans J., and Schulz J. B. (2004) Motor skill learning depends on protein synthesis in motor cortex after training. J. Neurosci. 24, 6515–6520.PubMedCrossRefGoogle Scholar
  53. 53.
    Debiec J., LeDoux J. E., and Nader K. (2002) Cellular and systems reconsolidation in the hippocampus. Neuron 36, 527–538.PubMedCrossRefGoogle Scholar
  54. 54.
    Milekic M. H. and Alberini C. M. (2002) Temporally graded requirement for protein synthesis following memory reactivation. Neuron 36, 521–525.PubMedCrossRefGoogle Scholar
  55. 55.
    Seeds N. W., Williams B. L., and Bickford P. C. (1995) Tissue plasminogen activator induction in Purkinje neurons after cerebellar motor learning. Science 270, 1992–1994.PubMedCrossRefGoogle Scholar
  56. 56.
    Kleim J. A., Lussnig E., Schwarz E. R., Comery T. A., and Greenough W. T. (1996) Synaptogenesis and Fos expression in the motor cortex of the adult rat after motor skill learning. J. Neurosci. 16, 4529–4535.PubMedGoogle Scholar
  57. 57.
    Kleim J. A., Vij K., Ballard D. H., and Greenough W. T. (1997) Learning-dependent synaptic modifications in the cerebellar cortex of the adult rat persist for at least four weeks. J. Neurosci. 17, 717–721.PubMedGoogle Scholar
  58. 58.
    Seitz R. J., Canavan A. G., Yaguez L., et al. (1994) Successive roles of the cerebellum and premotor cortices in trajectorial learning. Neuroreport 20, 2541–2544.CrossRefGoogle Scholar

Copyright information

© The Humana Press Inc 2005

Authors and Affiliations

  1. 1.Abteilung Allgemeine Neurologie, Hertie Institut für Klinische HirnforschungUniversität TübingenTübingenGermany

Personalised recommendations