Skip to main content
Log in

Gap junctions

Their importance for the dynamics of neural circuits

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Electrical coupling through gap junctions constitutes a mode of signal transmission between neurons (electrical synaptic transmission). Originally discovered in invertebrates and in lower vertebrates, electrical synapses have recently been reported in immature and adult mammalian nervous systems. This has renewed the interest in understanding the role of electrical synapses in neural circuit function and signal processing. The present review focuses on the role of gap junctions in shaping the dynamics of neural networks by forming electrical synapses between neurons. Electrical synapses have been shown to be important elements in coincidence detection mechanisms and they can produce complex input-output functions when arranged in combination with chemical synapses. We postulate that these synapses may also be important in redefining neuronal compartments, associating anatomically distinct cellular structures into functional units. The original view of electrical synapses as static connecting elements in neural circuits has been revised and a considerable amount of evidence suggests that electrical synapses substantially affect the dynamics of neural circuits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bennett M. V. L., et al. (1991) Gap junctions: new tools, new answers, new questions. Neuron 6, 305–320.

    Article  PubMed  CAS  Google Scholar 

  2. Phelan P. and Starich T. A. (2001) Innexins get into the gap. BioEssays 23, 388–396.

    Article  PubMed  CAS  Google Scholar 

  3. Bruzzone R., et al. (2003) Pannexins, a family of gap junction proteins expressed in brain. Proc. Natl. Acad. Sci. USA 100, 13644–13649.

    Article  PubMed  CAS  Google Scholar 

  4. Hua V. B., et al. (2003) Sequence and phylogenetic analyses of 4 TMS junctional proteins of animals: connexins, innexins, claudins and occludins. J. Membr. Biol. 194, 59–76.

    Article  PubMed  CAS  Google Scholar 

  5. Swenson K. I., et al. (1989) Formation of gap junctions by expression of connexins in xenopus oocyte pairs. Cell 57, 145–155.

    Article  PubMed  CAS  Google Scholar 

  6. Landesman Y., et al. (1999) Innexin-3 forms connexin-like intercellular channels. J. Cell Sci. 112, 2391–2396.

    PubMed  CAS  Google Scholar 

  7. Dermietzel R. (1998) Gap junction wiring: a “new” principle in cell-to-cell communication in the nervous system? Brain Research Rev. 26, 176–183.

    Article  CAS  Google Scholar 

  8. Kumar N. M. and Gilula N. B. (1996) The gap junction communication channel. Cell 84, 381–388.

    Article  PubMed  CAS  Google Scholar 

  9. Evans W. H. and Martin P. E. M. (2002) Gap junctions: structure and function. Mol. Membr. Biol. 19, 121–136.

    Article  PubMed  CAS  Google Scholar 

  10. Moreno A. P., et al. (1994) Gap junction channels: distinct voltage-sensitive and -insensitive conductance states. Biophys. J. 67, 113–119.

    Article  PubMed  CAS  Google Scholar 

  11. Veenstra R. D., et al. (1995) Selectivity of connexin-specific gap junctions does not correlate with channel conductance. Circ. Res. 77, 1156–1165.

    PubMed  CAS  Google Scholar 

  12. Oh S., et al. (1999) Molecular determinants of electrical rectification of single channel conductance in gap junctions formed by connexins 26 and 32. J. Gen. Physiol. 114, 339–364.

    Article  PubMed  CAS  Google Scholar 

  13. Revilla A., et al. (2000) Molecular determinants of membrane potential dependence in vertebrate gap junction channels. Proc. Natl. Acad. Sci. USA 97, 14,760–14,765.

    Article  CAS  Google Scholar 

  14. Stebbings L. A., et al. (2000) Two drosophila innexins are expressed in overlapping domains and cooperate to form gap-junction channels. Mol. Biol. Cell 11, 2459–2470.

    PubMed  CAS  Google Scholar 

  15. Cottrell G. T. and Burt J. M. (2001) Heterotypic gap junction channel formation between heteromeric and homomeric Cx40 and Cx43 connexons. Am. J. Physiol.-Cell Ph. 281, C1559-C1567.

    CAS  Google Scholar 

  16. White T. W., et al. (2002) Virtual cloning, functional expression, and gating analysis of human connexin31.9. Am. J. Physiol.-Cell Ph. 283, C960-C970.

    CAS  Google Scholar 

  17. Teranishi T., et al. (1983) Dopamine modulates S-potential amplitude and dye-coupling between external horizontal cells in the carp retina. Nature 301, 243–246.

    Article  PubMed  CAS  Google Scholar 

  18. Neyton J. and Trautmann A. (1986) Physiological modulation of gap junction permeability. J. Exp. Biol. 124, 993–114.

    PubMed  CAS  Google Scholar 

  19. Kwak B. R., et al. (1995) Differential regulation of distinct types of gap junctional channels by similar phosphorilation conditions. Mol. Biol. Cell 6, 1707–1719.

    PubMed  CAS  Google Scholar 

  20. Bennett M. V. L. (1997) Gap junctions as electrical synapses. J. Neurocytol. 26, 349–366.

    Article  PubMed  CAS  Google Scholar 

  21. Bevans C. G. and Harris A. L. (1999) Regulation of connexin channels by PH. J. Biol. Chem. 27, 3711–3719.

    Article  Google Scholar 

  22. van Rijen H. V. M., et al. (2000) Human connexin40 gap junction channels are modulated by cAMP. Cardiovasc. Res. 45, 941–951.

    Article  PubMed  Google Scholar 

  23. Bennett M. V., et al. (1994) The connexins and their family tree. Soc. Gen. Physiol. Ser. 49, 223–233.

    PubMed  CAS  Google Scholar 

  24. Dermietzel R., et al. (2000) Molecular and functional diversity of neural connexins in the retina. J. Neurosci. 20, 8331–8343.

    PubMed  CAS  Google Scholar 

  25. Venance L., et al. (2000) Connexin expression in electrically coupled postnatal rat brain neurons. Proc. Natl. Acad. Sci. USA 97, 10,260–10,265.

    Article  CAS  Google Scholar 

  26. Rozental R., et al. (2000) Temporal expression of neuronal connexins during hippocampal ontogeny. Brain Res. Rev. 32, 57–71.

    Article  PubMed  CAS  Google Scholar 

  27. Stebbings L. A., et al. (2002) Gap junctions in drosophila: developmental expression of the entire innexin gene family. Mech. Develop. 113, 197–205.

    Article  CAS  Google Scholar 

  28. Trimarchi J. R. and Murphey R. K. (1997) The shaking-B 2 mutation disrupts electrical synapses in a flight circuit in adult drosophila. J. Neurosci. 17, 4700–4710.

    PubMed  CAS  Google Scholar 

  29. White T. W. and Paul D. L. (1999) Genetic diseases and gene knockouts reveal diverse connexin functions. Annu. Rev. Physiol. 61, 283–310.

    Article  PubMed  CAS  Google Scholar 

  30. Furshpan E. J. and Potter D. D. (1959) Transmission at the giant motor synapses of the crayfish. J. Physiol. (London) 145, 289–325.

    CAS  Google Scholar 

  31. Korn H. and Bennett M. V. L. (1975) Vestibular nystagmus and teleost oculomotor neurons: functions of electrotonic coupling and dendritic impulse initiation. J. Neurophysiol. 38, 430–451.

    PubMed  CAS  Google Scholar 

  32. Werblin F. S. (1978) Transmission along and between rods in the tiger salamander retina. Journal of Physiology 280, 449–470.

    PubMed  CAS  Google Scholar 

  33. Detwiler P. B. and Hodgkin A. L. (1979) Electrical coupling between cones in the turtle retina. J. Physiol. (London) 291, 75–100.

    CAS  Google Scholar 

  34. Peinado A., et al. (1993) Extensive dye coupling between rat neocortical neurons during the period of circuit formation. Neuron 10, 103–114.

    Article  PubMed  CAS  Google Scholar 

  35. Sutor B. (2002) Gap junctions and their implications for neurogenesis and maturation of synaptic circuitry in the developing neocortex. Results Probl. Cell Differ. 39, 53–73.

    PubMed  CAS  Google Scholar 

  36. Personius K. E. and Balice-Gordon R. J. (2001) Loss of correlated motor neuron activity during synaptic competition at developing neuromuscular synapses. Neuron 31, 395–408.

    Article  PubMed  CAS  Google Scholar 

  37. Pastor A. M., et al. (2003) Increased electrotonic coupling in spinal motoneurons after transient botulinum neurtotoxin paralysis in the neonatal rat. J. Neurophysiol. 89, 793–805.

    Article  PubMed  Google Scholar 

  38. Vaney D. I. (1991) Many diverse types of retinal neurons show tracer coupling when injected with biocytin or neurobiotin. Neurosci. Lett. 125.

  39. Kolb H. and Famiglietti E. V. (1974) Rod and cone pathways in the inner plexiform layer of the cat retina. Science 186, 47–49.

    Article  PubMed  CAS  Google Scholar 

  40. Gibson J. R., et al. (1999) Two networks of electrically coupled inhibitory neurons in neocortex. Nature 402, 75–79.

    Article  PubMed  CAS  Google Scholar 

  41. Galarreta M. and Hestrin S. (2001) Electrical synapses between GABA-releasing interneurons. Nat. Rev. Neurosci. 2, 425–433.

    Article  PubMed  CAS  Google Scholar 

  42. Galarreta M. and Hestrin S. (2002) Electrical and chemical synapses among parvalbumin fast-spiking GABAergic interneurons in adult mouse neocortex. Proc. Natl. Acad. Sci. USA 99, 12,438–12,443.

    Article  CAS  Google Scholar 

  43. Meyer A. H., et al. (2002) In vivo labeling of parvalbumin-positive interneurons and analysis of electrical coupling. J. Neurosci. 22, 7055–7064.

    PubMed  CAS  Google Scholar 

  44. Bartos M., et al. (2002) Fast synaptic inhibition promotes synchronized gamma oscillations in hippocampal interneuron networks. Proc. Natl. Acad. Sci. USA 99, 13,222–13,227.

    Article  CAS  Google Scholar 

  45. Veruki M. L. and Hartveit E. (2002) AII (rod) amacrine cells form a network of electrically coupled interneurons in the mammalian retina. Neuron 33, 935–946.

    Article  PubMed  CAS  Google Scholar 

  46. Marder E. (1984) Roles for electrical coupling in neural circuits as revealed by selective neuronal deletions. J. Exp. Biol. 112, 147–167.

    PubMed  CAS  Google Scholar 

  47. Marder E. (1998) Electrical synapses: beyond speed and synchrony to computation. Curr. Biol. 8, R795-R797.

    Article  PubMed  CAS  Google Scholar 

  48. Kepler T. B., et al. (1990) The effect of electrical coupling on the frequency of model neuronal oscillators. Science 248, 83–85.

    Article  PubMed  CAS  Google Scholar 

  49. Sherman A. and Rinzel J. (1992) Rhythmogenic effects of weak electrotonic coupling in neuronal models. Proc. Natl. Acad. Sci. USA 89, 2471–2474.

    Article  PubMed  CAS  Google Scholar 

  50. Vardi N. and Smith R. G. (1996) The all amacrine network: coupling can increase correlated activity. Vision Res. 36, 3743–3757.

    Article  PubMed  CAS  Google Scholar 

  51. Ammermüller J., et al. (1996) Effects of horizontal cell network architecture on signal spread in the turtle outer retina. Experiments and simulations. Vision Res. 36, 4089–4103.

    Article  PubMed  Google Scholar 

  52. Manor Y., et al. (1997) Low amplitude oscillations in the inferior olive: a model based on electrical coupling of neurons with heterogeneous channel densities. J. Neurophysiol. 77, 2736–2752.

    PubMed  CAS  Google Scholar 

  53. Traub R. D. and Bibbig A. (2000) A model of high-frequency ripples in the hippocampus based on synaptic coupling plus axon-axon gap junctions between pyramidal neurons. J. Neurosci. 20, 2086–2093.

    PubMed  CAS  Google Scholar 

  54. Traub R. D., et al. (2001) Gap junctions between interneuron dendrites can enhance synchrony of gamma oscillations in distributed networks. J. Neurosci. 21, 9478–9486.

    PubMed  CAS  Google Scholar 

  55. Lewis T. J. and Rinzel J. (2003) Dynamics of spiking neurons connected by both inhibitory and electrical coupling. J. Comput. Neurosci. 14, 283–309.

    Article  PubMed  Google Scholar 

  56. Mann-Metzer P. and Yarom Y. (1999) Electrotonic coupling interacts with intrinsic properties to generate synchronized activity in cerebellar networks of inhibitory interneurons. J. Neurosci. 19, 3298–3306.

    PubMed  CAS  Google Scholar 

  57. Christie M. J., et al. (1999) Electrical coupling synchronizes subthreshold activity in locus coeruleus in vitro from neonatal rats. J. Neurosci. 9, 3584–3589.

    Google Scholar 

  58. Alvarez V., et al. (2000) Frequency-dependent synchrony in locus coeruleus: role of electronic coupling. Proc. Natl. Acad. Sci. USA 99, 4032.

    Article  CAS  Google Scholar 

  59. De-Miguel F. F., et al. (2001) Spread of synaptic potentials through electrical synapses in Retzius neurones of the leech. J. Exp. Biol. 204, 3241–3250.

    PubMed  CAS  Google Scholar 

  60. Deans M. R., et al. (2001) Synchronous activity of inhibitory networks in neocortex requires electrical synapses containing conexin36. Neuron 31, 477–485.

    Article  PubMed  CAS  Google Scholar 

  61. Hormuzdi S. G., et al. (2001) Impaired electrical signaling disrupts gamma frequency oscillations in connexin 36-deficient mice. Neuron 31, 487–495.

    Article  PubMed  CAS  Google Scholar 

  62. Long M. A., et al. (2002) Rhythmicity without synchrony in the electrically uncoupled inferior olive. J. Neurosci. 22, 10,898–10,905.

    CAS  Google Scholar 

  63. Tresch M. C. and Kiehn O. (2002) Synchronization of motor neurons during locomotion in the neonatal rat: predictors and mechanisms. J. Neurosci. 22, 9997–10,008.

    PubMed  CAS  Google Scholar 

  64. Friedman D. and Strowbridge B. W. (2003) Both electrical and chemical synapses mediate fast network oscilations in the olfactory bulb. J. Neurophysiol. 89, 2601–2610.

    Article  PubMed  Google Scholar 

  65. Bennett, M. V. L. (1968), in Physiological and biochemical aspects of nervous integration, Carlson, F. D. ed., Prentice-Hall, Englewood Cliffs, NJ, p. 73.

    Google Scholar 

  66. Galarreta M. and Hestrin S. (1999) A network of fast-spiking cells in the neocortex connected by electrical synapses. Nature 402, 72–75.

    Article  PubMed  CAS  Google Scholar 

  67. Koós T. and Tepper J. M. (1999) Inhibitory control of neostriatal projection neurons by GABAergic interneurons. Nature 2, 467–472.

    Google Scholar 

  68. Perez Velazquez J. L. and Carlen P. L. (2000) Gap junctions, synchrony and seizures. Trends Neurosci. 23, 68–74.

    Article  PubMed  CAS  Google Scholar 

  69. Beierlein M., et al. (2000) A network of electrically coupled interneurons drives synchronized inhibition in neocortex. Nat. Neurosci. 3, 904–910.

    Article  PubMed  CAS  Google Scholar 

  70. Amitai Y., et al. (2002) The spatial dimensions of electrically coupled networks of interneurons in the neocortex. J. Neurosci. 22, 4142–4152.

    PubMed  CAS  Google Scholar 

  71. Schmitz D., et al. (2001) Axo-axonal coupling: a novel mechanism for ultrafast neuronal communication. Neuron 31, 831–840.

    Article  PubMed  CAS  Google Scholar 

  72. Herberholz J., et al. (2002) A lateral excitatory netweork in the escape circuit of crayfish. J. Neurosci. 22, 9078–9085.

    PubMed  CAS  Google Scholar 

  73. Perrins R. and Weiss K. R. (1998) Compartmentalization of information processing in an Aplysia feeding circuit interneuron through membrane properties and synaptic interactions. J. Neurosci. 18, 3977–3989.

    PubMed  CAS  Google Scholar 

  74. Spira M. E., et al. (1980) Synaptic organization of expansion motoneurons of Navanax intermis. Brain Res. 195, 241–269.

    Article  PubMed  CAS  Google Scholar 

  75. Llinás R., et al. (1974) Electrotonic coupling between neurons in the cat inferior olive. J. Neurophysiol. 37, 560–571.

    PubMed  Google Scholar 

  76. Norekian T. P. (1999) GABAergic excitatory synapses and electrical coupling sustain prolonged discharges in the prey capture neural network of Clione limacina. J. Neurosci. 19, 1863–1875.

    PubMed  CAS  Google Scholar 

  77. Graubard K. and Hartline D. K. (1987) Full-wave rectification from a mixed electrical-chemical synapse. Science 237, 535–537.

    Article  PubMed  CAS  Google Scholar 

  78. Sharpe L. T. and Stockman A. (1999) Rod pathways: the importance of seeing nothing. Trends Neurosci. 22, 497–504.

    Article  PubMed  CAS  Google Scholar 

  79. Bloomfield S. A. and Dacheux R. F. (2001) Rod vision: pathways and processing in the mammalian retina. Prog. Ret. Eye Res. 20, 351–384.

    Article  CAS  Google Scholar 

  80. Heitler W. J., et al. (1991) Different types of rectification at electrical synapses made by a single crayfish neurone investigated experimentally and by a computer simulation. J. Comp. Physiol. A 169, 707–718.

    Article  PubMed  CAS  Google Scholar 

  81. Veruki M. L. and Hartveit E. (2002) Electrical synapses mediate signal transmission in the rod pathway of the mammalian retina. J. Neurosci. 22, 10,558–10,566.

    CAS  Google Scholar 

  82. Acklin S. E. (1988) Electrical properties and anion permeability of doubly rectifying junctions in the leech central nervous system. J. Exp. Biol. 137, 1–11.

    Google Scholar 

  83. Joris P. X., et al. (1998) Coincidence detection in the auditory system: 50 years after Jeffress. Neuron 21, 1235–1238.

    Article  PubMed  CAS  Google Scholar 

  84. Tsien J. Z. (2000) Linking Hebb’s coincidence-detection to memory formation. Curr. Opin. Neurobiol. 10, 266–273.

    Article  PubMed  CAS  Google Scholar 

  85. Anholt R. R. (1994) Signal integration in the nervous system: adenylate cyclases as molecular coincidence detectors. Trends Neurosci. 17, 37–41.

    Article  PubMed  CAS  Google Scholar 

  86. Agmon-Snir H., et al. (1998) The role of dendrites in auditory coincidence detection. Nature 393, 268–272.

    Article  PubMed  CAS  Google Scholar 

  87. Edwards D. H., et al. (1999) Fifty years of a command neuron: the neurobiology of escape behavior in the crayfish. Trends Neurosci. 22, 153–161.

    Article  PubMed  CAS  Google Scholar 

  88. Edwards D. H., et al. (1998) Neuronal coincidence detection by voltage-sensitive electrical synapses. Proc. Nat. Acad. Sci. USA 95, 7145–7150.

    Article  PubMed  CAS  Google Scholar 

  89. Galarreta M. and Hestrin S. (2001) Spike transmission and synchrony detection in networks of GABAergic interneurons. Science 292, 2295–2299.

    Article  PubMed  CAS  Google Scholar 

  90. Rela L. and Szczupak L. (2003) Coactivation of motoneurons regulated by a network combining electrical and chemical synapses. J. Neurosci. 23, 682–692.

    PubMed  CAS  Google Scholar 

  91. Wadepuhl M. (1989) Depression of excitatory motoneurones by a single neurone in the leech central nervous system. J. Exp. Biol. 143, 509–527.

    PubMed  CAS  Google Scholar 

  92. Stuart A. E. (1970) Physiological and morphological properties of motoneurones in the central nervous system of the leech. J. Physiol. (London) 209, 627–646.

    CAS  Google Scholar 

  93. Kristan W. B. and Shaw B. K. (1997) Population coding and behavioral choice. Curr. Opin. Neurobiol. 7, 826–831.

    Article  PubMed  Google Scholar 

  94. Esch T., et al. (2002) Evidence for sequential decision making in the medicinal leech. J. Neurosci. 22, 11,045–11,054.

    CAS  Google Scholar 

  95. Katz P. S. (1995) Intrinsic and extrinsic neuromodulation of motor circuits. Curr. Opin. Neurobiol. 7, 826–831.

    Google Scholar 

  96. Hormuzdi S. G., et al. (2004) Electrical synapses: a dynamic signaling system that shapes the activity of neuronal networks. Biochim. Biophys. Acta 1662, 113–137.

    Article  PubMed  CAS  Google Scholar 

  97. Rekling J. C., et al. (2000) Electrical coupling and excitatory synaptic transmission between rhythmogenic respiratory neurons in the pre-Bötzinger complex. J. Neurosci. 20, RC113-RC117.

    PubMed  CAS  Google Scholar 

  98. Gutstein D. E., et al. (2001) Conduction slowing and sudden arrhythmic death in mice with cardiac-restricted inactivation of connexin43. Circ. Res. 88, 333–339.

    PubMed  CAS  Google Scholar 

  99. Cohen-Salmon M., et al. (2002) Targeted ablation of connexin26 in the inner ear epithelial gap junction network causes hearing impairment and cell death. Curr. Biol. 12, 1106–1111.

    Article  PubMed  CAS  Google Scholar 

  100. Jordan K., et al. (1999) Trafficking, assembly, and function of a connexin43-green fluorescent protein chimera in live mammalian cells. Mol. Biol. Cell 10, 2033–2050.

    PubMed  CAS  Google Scholar 

  101. Falk M. M. (2000) Connexin-specific distribution within gap junctions revealed in living cells. J. Cell Sci. 113, 4109–4120.

    PubMed  CAS  Google Scholar 

  102. Evans W. H. and Martin P. E. (2002) Lighting up gap junction channels in a flash. BioEssays 24, 876–880.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lorena Rela.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rela, L., Szczupak, L. Gap junctions. Mol Neurobiol 30, 341–357 (2004). https://doi.org/10.1385/MN:30:3:341

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/MN:30:3:341

Index Entries

Navigation