Skip to main content
Log in

Humanin

After the discovery

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Humanin (HN) is a novel neuroprotective factor that consists of 24 amino acid residues. HN suppresses neuronal cell death caused by Alzheimer’s disease (AD)-specific insults, including both amyloid-β (βAβ) peptides and familial AD-causative genes. Cerebrovascular smooth muscle cells are also protected from Aβ toxicity by HN, suggesting that HN affects both neuronal and non-neuronal cells when they are exposed to AD-related cytotoxicity. HN peptide exerts a neuroprotective effect through the cell surface via putative receptor(s). HN activates a cellular signaling cascade that intervenes (at least) in activation of c-Jun N-terminal kinase. The highly selective effect of HN on AD-relevant cell death indicates that HN is promising for AD therapy. Additionally, a recent study showed that intracellularly overexpressed HN suppressed mitochondria-mediated apoptosis by inhibiting Bax activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hashimoto Y., Niikura T., Ito Y., and Nishimoto I. (2000) Multiple mechanisms underlie neurotoxicity by different types of Alzheimer’s disease mutations of amyloid precursor protein. J. Biol. Chem. 275, 34,541–34,551.

    CAS  Google Scholar 

  2. Hashimoto Y., Ito Y., Arakawa E., et al. (2002) Neurotoxic mechanisms triggered by Alzheimer’s disease-linked mutant M146L presenilin 1: involvement of NO synthase via a novel pertussis toxin target. J. Neurochem. 80, 426–437.

    Article  PubMed  CAS  Google Scholar 

  3. Hashimoto Y., Niikura T., Ito Y., Kita Y., Terashita K., and Nishimoto I. (2002) Neurotoxic mechanisms by Alzheimer’s disease-linked N141I mutant presenilin2. J. Pharmacol. Exp. Ther. 300, 736–745.

    Article  PubMed  CAS  Google Scholar 

  4. Niikura T., Hashimoto Y., Tajima H., and Nishimoto I. (2002) Death and survival of neuronal cells exposed to Alzheimer’s insults. J. Neurosci. Res. 70, 380–391.

    Article  PubMed  CAS  Google Scholar 

  5. Vito P., Lacana E., and D’Adamio L. (1996) Interfering with apoptosis: Ca(2+)-binding protein ALG-2 and Alzheimer’s disease gene ALG-3. Science 271, 521–525.

    Article  PubMed  CAS  Google Scholar 

  6. Hashimoto Y., Niikura T., Tajima H., et al. (2001) A rescue factor abolishing neuronal cell death by a wide spectrum of familial Alzheimer’s disease genes and Aβ. Proc. Natl. Acad. Sci. USA 98, 6336–6341. Correction in: Proc. Natl. Acad. Sci. USA 98, 12,854.

    Article  PubMed  CAS  Google Scholar 

  7. Yamagishi Y., Hashimoto Y., Niikura T., and Nishimoto I. (2003) Identification of essential amino acids in Humanin, a neuroprotective factor against Alzheimer’s disease relevant insults. Peptides 24, 585–595.

    Article  PubMed  CAS  Google Scholar 

  8. von Heijne G. (1985) Signal sequences. The limits of variation. J. Mol. Biol. 184, 99–105.

    Article  Google Scholar 

  9. Hashimoto Y., Niikura T., Ito Y., et al. (2001) Detailed characterization of neuroprotection by a rescue factor Humanin against various Alzheimer’s disease-relevant insults. J. Neurosci. 21, 9235–9245.

    PubMed  CAS  Google Scholar 

  10. Caricasole A., Bruno V., Cappuccio I., Melchiorri D., Copani A., and Nicoletti F. (2002) A novel rat gene encoding a Humanin-like peptide endowed with broad neuroprotective activity. FASEB J. 16, 1331–1333.

    PubMed  CAS  Google Scholar 

  11. Terashita K., Hashimoto Y., Niikura T., et al. (2003) Two serine residues distinctly regulate the rescue function of Humanin, an inhibiting factor of Alzheimer’s disease-related neurotoxicity: functional potentiation by isomerization and dimerization. J. Neurochem. 85, 1521–1538.

    Article  PubMed  CAS  Google Scholar 

  12. Wolosker H., Blackshaw S., and Snyder S. H. (1999) Serine racemase: a glial enzyme synthesizing d-serine to regulate glutamate-N-methyl-d-aspartate neurotransmission. Proc. Natl. Acad. Sci. USA 96, 13,409–13,414.

    CAS  Google Scholar 

  13. Hashimoto Y., Ito Y., Niikura T., et al. (2001) Mechanisms of neuroprotection by a novel rescue factor Humanin from Swedish mutant amyloid precursor protein. Biochem. Biophys. Res. Commun. 283, 460–468.

    Article  PubMed  CAS  Google Scholar 

  14. Kawasumi M., Hashimoto Y., Chiba T., et al. (2002) Molecular mechanisms for meuronal cell death by Alzheimer’s amyloid precursor protein relevant insults. NeuroSignals 11, 236–250.

    Article  PubMed  CAS  Google Scholar 

  15. Yaar M., Zhai S., Pilch P. F., et al. (1997) Binding of β-amyloid to the p75 neurotrophin receptor induces apoptosis. A possible mechanism for Alzheimer’s disease. J. Clin. Invest. 100, 2333–2340.

    Article  PubMed  CAS  Google Scholar 

  16. Kuner P. and Hertel C. (1998) NGF induces apoptosis in a human neuroblastoma cell line expressing the neurotrophin receptor p75NTR. J. Neurosci. Res. 54, 465–474.

    Article  PubMed  CAS  Google Scholar 

  17. Tsukamoto E., Hashimoto Y., Kanekura K., Niikura T., Aiso S., and Nishimoto I. (2003) Characterization of the toxic mechanism triggered by Alzheimer’s amyloid-β peptides via p75 neurotrophin receptor in neuronal hybrid cells. J. Neurosci. Res. 73, 627–636.

    Article  PubMed  CAS  Google Scholar 

  18. Dore S., Kar S., and Quirion R. (1997) Insulin-like growth factor I protects and rescues hippocampal neurons against β-amyloid- and human amylin-induced toxicity. Proc. Natl. Acad. Sci. USA 94, 4772–4777.

    Article  PubMed  CAS  Google Scholar 

  19. Mark R. J., Keller J. N., Kruman I., and Mattson M. P. (1997) Basic FGF attenuates amyloid betapeptide-induced oxidative stress, mitochondrial dysfunction, and impairment of Na+/K+-ATPase activity in hippocampal neurons. Brain Res. 756, 205–214.

    Article  PubMed  CAS  Google Scholar 

  20. Vinters H. V. (1987) Cerebral amyloid angiopathy. A critical review. Stroke 18, 311–324.

    PubMed  CAS  Google Scholar 

  21. Jung S. S. and Van Nostrand W. E. (2003) Humanin rescues human cerebrovascular smooth muscle cells from Aβ-induced toxicity. J. Neurochem. 84, 266–272.

    Article  PubMed  CAS  Google Scholar 

  22. Rosen D. R., Siddique T., Patterson D., et al. (1993) Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 362, 59–62. Erratum in: Nature (1993) 364, 362.

    Article  PubMed  CAS  Google Scholar 

  23. Kariya S., Takahashi N., Ooba N., Kawahara M., Nakayama H., and Ueno S. (2002) Humanin inhibits cell death of serum-deprived PC12h cells. Neuroreport 13, 903–907.

    Article  PubMed  CAS  Google Scholar 

  24. Niikura T., Hashimoto Y., Okamoto T., et al. (2001) Insulin-like growth factor I (IGF-I) protects cells from apoptosis by Alzheimer’s V642I mutant APP through IGF-I receptor in an IGF-binding protein-sensitive manner. J. Neurosci. 21, 1902–1910.

    PubMed  CAS  Google Scholar 

  25. Hashimoto Y., Tsuji O., Niikura T., et al. (2003) Involvement of c-Jun N-terminal kinase in amyloid precursor protein-mediated neuronal cell death. J. Neurochem. 84, 864–877.

    Article  PubMed  CAS  Google Scholar 

  26. Wei W., Wang X., and Kusiak J. W. (2002) Signaling events in amyloid β-peptide-induced neuronal death and insulin-like growth factor I protection. J. Biol. Chem. 277, 17,649–17,656.

    CAS  Google Scholar 

  27. Sudo H., Jiang H., Yasukawa T., et al. (2000) Antibody regulated neurotoxic function of cell surface β-amyloid precursor protein. Mol. Cell. Neurosci. 16, 708–723.

    Article  PubMed  CAS  Google Scholar 

  28. Rohn T. T., Ivins K. J., Bahr B. A., Cotman C. W., and Cribbs D. H. (2000) A monoclonal antibody to amyloid precursor protein induces neuronal apoptosis. J. Neurochem. 74, 2331–2342.

    Article  PubMed  CAS  Google Scholar 

  29. Yamatsuji T., Matsui T., Okamoto T., et al. (1996) G protein-mediated neuronal DNA fragmentation induced by familial Alzheimer’s diseaseassociated mutants of APP. Science 272, 1349–1352.

    Article  PubMed  CAS  Google Scholar 

  30. Giambarella U., Yamatsuji T., Okamoto T., et al. (1997) G protein βγ complex-mediated apoptosis by familial Alzheimer’s disease mutant of APP. EMBO J. 16, 4897–4907.

    Article  PubMed  CAS  Google Scholar 

  31. Niikura T., Yamada M., Chiba T., Aiso S., Matsuoka M., and Nishimoto I. (2004) Characterization of V642I-AβPP-induced cytotoxicity in primary neurons. J. Neurosci. Res. 77, 54–62.

    Article  PubMed  CAS  Google Scholar 

  32. Hashimoto Y., Niikura T., Chiba T., et al. (2003) The cytoplasmic domain of Alzheimer’s amyloid-β protein precursor causes sustained ASK1/JNK-mediated neurotoxic signal via dimerization. J. Pharmacol. Exp. Ther. 306, 889–902.

    Article  PubMed  CAS  Google Scholar 

  33. Guo B., Zhai D., Cabezas E., et al. (2003) Humanin peptide suppresses apoptosis by interfering with Bax activation. Nature 423, 456–461.

    Article  PubMed  CAS  Google Scholar 

  34. Zhang Y., McLaughlin R., Goodyer C., and LeBlanc A. (2002) Selective cytotoxicity of intracellular amyloid β peptide1–42 through p53 and Bax in cultured primary neurons. J. Cell Biol. 156, 519–529.

    Article  PubMed  CAS  Google Scholar 

  35. Selznick L. A., Zheng T. S., Flavell R. A., Rakic P., and Roth K. A. (2000) Amyloid β-induced neuronal death is Bax-dependent but caspase-independent. J. Neuropath. Exp. Neurol. 59, 271–279.

    PubMed  CAS  Google Scholar 

  36. Tajima H., Niikura T., Hashimoto Y., et al. (2002) Evidence for in vivo production of Humanin peptide, a neuroprotective factor against Alzheimer’s disease-related insults. Neurosci. Lett. 324, 227–231.

    Article  PubMed  CAS  Google Scholar 

  37. Niikura T., Hashimoto Y., Tajima H., et al. (2003) A tripartite motif protein TRIM11 binds and destabilizes Humanin, a neuroprotective peptide against Alzheimer’s disease-relevant insults. Eur. J. Neurosci. 17, 1150–1158.

    Article  PubMed  Google Scholar 

  38. Keller J. N., Hanni K. B., and Markesbery W. R. (2000) Impaired proteasome function in Alzheimer’s disease. J. Neurochem. 75, 436–439.

    Article  PubMed  CAS  Google Scholar 

  39. Lopez-Salon M., Morelli L., Castano E. M., Soto E. F., and Pasquini J. M. (2000) Defective ubiquitination of cerebral proteins in Alzheimer’s disease. J. Neurosci. Res. 62, 302–310.

    Article  PubMed  CAS  Google Scholar 

  40. Ikonen M., Liu B., Hashimoto Y., et al. (2003) Interaction between the Alzheimer’s survival peptide humanin and insulin-like growth factor-binding protein 3 regulates cell curvival and apoptosis. Proc. Natl. Acad. Sci. USA 100, 13,042–13,047.

    Article  CAS  Google Scholar 

  41. Mamiya T. and Ukai M. (2001) [Gly(14)]-Humanin improved the learning and memory impairment induced by scopolamine in vivo. Br. J. Pharmacol. 134, 1597–1599.

    Article  PubMed  CAS  Google Scholar 

  42. Tajima H., Kawasumi M., Chiba T., et al. A humanin derivative, S14G-HN, prevents amyloid-β-induced memory impairment in mice. J. Neurosci. Res. in press.

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Takako Niikura or Masaaki Matsuoka.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Niikura, T., Chiba, T., Aiso, S. et al. Humanin. Mol Neurobiol 30, 327–340 (2004). https://doi.org/10.1385/MN:30:3:327

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/MN:30:3:327

Index Entries

Navigation