Advertisement

Molecular Neurobiology

, Volume 30, Issue 2, pp 117–125 | Cite as

Serotonin in pain and analgesia

Actions in the periphery
  • Claudia Sommer
Article

Abstract

The purpose of this article is to summarize recent findings on the role of serotonin in pain processing in the peripheral nervous system. Serotonin (5-hydroxtryptamine [5-HT]) is present in central and peripheral serotonergic neurons, it is released from platelets and mast cells after tissue injury, and it exerts algesic and analgesic effects depending on the site of action and the receptor subtype. After nerve injury, the 5-HT content in the lesioned nerve increases. 5-HT receptors of the 5-HT3 and 5-HT2A subtype are present on C-fibers. 5-HT, acting in combination with other inflammatory mediators, may ectopically excite and sensitize afferent nerve fibers, thus contributing to peripheral sensitization and hyperalgesia in inflammation and nerve injury.

Index Entries

Serotonin pain hyperalgesia peripheral nerve inflammation neuropathy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Eide P. K., Hole K. (1993). The role of 5-hydroxytryptamine (5-HT) receptor subtypes and plasticity in the 5-HT systems in the regulation of nociceptive sensitivity. Cephalalgia 13, 75–85.PubMedCrossRefGoogle Scholar
  2. 2.
    Yaksh T., Tyce G. (1979). Mkcroinjections of morphine into the periaqueductal gray evokes the release of serotonin from spinal cord. Brain Res. 171, 176–181.PubMedCrossRefGoogle Scholar
  3. 3.
    Yaksh T. L., Wilson P. R. (1979). Spinal serotonin terminal system mediates antinociception. J. Pharmacol. Exp. Ther. 208, 446–453.PubMedGoogle Scholar
  4. 4.
    Peng Y. B., Lin Q., Willis W. D. (1996). The role of 5-HT3 receptors in periaqueductal gray-induced inhibition of nociceptive dorsal horn neurons in rats. J. Pharmacol. Exp. Ther. 276, 116–124.PubMedGoogle Scholar
  5. 5.
    Liu M. Y., Su C. F., Lin M. T. (1988). The antinociceptive role of a bulbospinal serotonergic pathway in the rat brain. Pain 33, 123–129.PubMedCrossRefGoogle Scholar
  6. 6.
    Kiefel J. M., Cooper M. L., Bodnar R. J. (1992). Serotonin receptor subtype antagonists in the medial ventral medulla inhibit mesencephalic opiate analgesia. Brain Res. 597, 331–338.PubMedCrossRefGoogle Scholar
  7. 7.
    Lin Q., Peng Y. B., Willis W. D. (1996). Antinociception and inhibition from the periaqueductal gray are mediated in part by spinal 5-hydroxytryptamine(1A) receptors. J. Pharmacol. Exp. Ther. 276, 958–967.PubMedGoogle Scholar
  8. 8.
    Stamford J. A. (1995). Descending control of pain. Br. J. Anaesth. 75, 217–227.PubMedGoogle Scholar
  9. 9.
    Sorkin L., McAdoo D., Willis W. (1993). Raphe magnus stimulation-induced antinociception in the cat is associated with the release of amino acids as well as serotonin in the lumbar dorsal horn. Brain Res. 618, 95–108.PubMedCrossRefGoogle Scholar
  10. 10.
    McQuay H. J., Tramer M., Nye B. A., Carroll D., Wiffen P. J., Moore R. A. (1996). A systematic review of antidepressants in neuropathic pain. Pain 68, 217–227.PubMedCrossRefGoogle Scholar
  11. 11.
    Ansari A. (2000). The efficacy of newer antidepressants in the treatment of chronic pain: a review of current literature. Harv. Rev. Psychiatry 7, 257–277.PubMedCrossRefGoogle Scholar
  12. 12.
    Sindrup S. H., Gram L. F., Brosen K., Eshoj O., Mogensen E. F. (1990). The selective serotonin reuptake inhibitor paroxetine is effective in the treatment of diabetic neuropathy symptoms. Pain 42, 135–144.PubMedCrossRefGoogle Scholar
  13. 13.
    Sindrup S. H., Bjerre U., Dejgaard A., Brosen K., Aaes-Jorgensen T., Gram L. F. (1992). The selective serotonin reuptake inhibitor citalopram relieves the symptoms of diabetic neuropathy. Clin. Pharmacol. Ther. 52, 547–552.PubMedCrossRefGoogle Scholar
  14. 14.
    Ferrari M. D., Odink J., Tapparelli C., Van Kempen G. M., Pennings E. J., Bruyn G. W. (1989). Serotonin metabolism in migraine. Neurology 39, 1239–1242.PubMedGoogle Scholar
  15. 15.
    Johnson K. W., Phebus L. A., Cohen M. L. (1998). Serotonin in migraine: theories, animal models and emerging therapies. Prog. Drug Res. 51, 219–244.PubMedGoogle Scholar
  16. 16.
    Goadsby P. J., Hargreaves R. J. (2000). Mechanisms of action of serotonin 5-HT1B/D agonists: insights into migraine pathophysiology using rizatriptan. Neurology 55, S8–14.PubMedGoogle Scholar
  17. 17.
    Marziniak M., Mössner R., Schmitt A., Lesch K.-P., Sommer C. (2001). A functional serotonin transporter gene polymorphism is associated with migraine with aura. Neurology, in press.Google Scholar
  18. 18.
    Dray A. (1995). Inflammatory mediators of pain. Br. J. Anaesth. 75, 125–131.PubMedGoogle Scholar
  19. 19.
    Lehtosalo J. I., Uusitalo H., Laakso J., Palkama A., Harkonen M. (1984). Biochemical and immunohistochemical determination of 5-hydroxytryptamine located in mast cells in the trigeminal ganglion of the rat and guinea pig. Histochemistry 80, 219–223.PubMedCrossRefGoogle Scholar
  20. 20.
    Anden N. E., Olsson Y. (1967). 5-hydroxytryptamine in normal and sectioned rat sciatic nerve. Acta. Pathol. Microbiol. Scand. 70, 537–540.PubMedCrossRefGoogle Scholar
  21. 21.
    Maeno Y., Takabe F., Mori Y., Iwasa M., Inoue H. (1991). Simultaneous observation of catecholamine, serotonin and their metabolites in incised skin wounds of guinea pig. Forensic Sci. Int. 51, 51–63.PubMedCrossRefGoogle Scholar
  22. 22.
    Anden N. E., Olsson Y. (1967). 5-hydroxytryptamine in normal and sectioned rat sciatic nerve. Acta. Pathol. Microbiol. Scand. 70, 537–540.PubMedCrossRefGoogle Scholar
  23. 23.
    Vogel C., Mossner R., Gerlach M., et al. (2003). Absence of thermal hyperalgesia in serotonin transporter-deficient mice. J. Neurosci. 23, 708–715.PubMedGoogle Scholar
  24. 24.
    Satoh O., Omote K. (1996). Roles of monoaminergic, glycinergic and GABAergic inhibitory systems in the spinal cord in rats with peripheral mononeuropathy. Brain Res. 728, 27–36.PubMedCrossRefGoogle Scholar
  25. 25.
    Lovell J. A., Novak J. C., Stuesse S. L., Cruce W. L., Crisp T. (2000). Changes in spinal serotonin turnover mediate age-related differences in the behavioral manifestations of peripheral nerve injury. Pharmacol. Biochem. Behav. 66, 873–878.PubMedCrossRefGoogle Scholar
  26. 26.
    Sorkin L. S., McAdoo D. J. (1993). Amino acids and serotonin are released into the lumbar spinal cord of the anesthetized cat following intradermal capsaicin injections. Brain Res. 607, 89–98.PubMedCrossRefGoogle Scholar
  27. 27.
    Liu D. X., Valadez V., Sorkin L. S., McAdoo D. J. (1990). Norepinephrine and serotonin release upon impact injury to rat spinal cord. J. Neurotrauma 7, 219–227.PubMedGoogle Scholar
  28. 28.
    Busto R., Dietrich W. D., Globus M. Y., Alonso O., Ginsberg M. D. (1997). Extracellular release of serotonin following fluid-percussion brain injury in rats. J. Neurotrauma 14, 35–42.PubMedCrossRefGoogle Scholar
  29. 29.
    Lundberg C., Gerdin B. (1984). The role of histamine and serotonin in the inflammatory reaction in an experimental model of open wounds in the rat. Scand. J. Plast. Reconstr. Surg. 18, 175–180.PubMedGoogle Scholar
  30. 30.
    Di Rosa M., Giroud J. P., Willoughby D. A. (1971). Studies on the mediators of the acute inflammatory response induced in rats in different sites by carrageenan and turpentine. J. Pathol. 104, 15–29.PubMedCrossRefGoogle Scholar
  31. 31.
    Zhang Y. Q., Gao X., Zhang L. M., Wu G. C. (2000). The release of serotonin in rat spinal dorsal horn and periaqueductal gray following carrageenan inflammation. Neuroreport 11, 3539–3543.PubMedCrossRefGoogle Scholar
  32. 32.
    Ernberg M., Hedenberg-Magnusson B., Alstergren P., Kopp S. (1999). The level of serotonin in the superficial masseter muscle in relation to local pain and allodynia. Life Sci. 65, 313–325.PubMedCrossRefGoogle Scholar
  33. 33.
    Kopp S. (1998). The influence of neuropeptides, serotonin, and interleukin 1beta on temporomandibular joint pain and inflammation. J. Oral Maxillofac. Surg. 56, 189–191.PubMedCrossRefGoogle Scholar
  34. 34.
    Pierce P. A., Xie G. X., Levine J. D., Peroutka S. J. (1996). 5-Hydroxytryptamine receptor subtype messenger RNAs in rat peripheral sensory and sympathetic ganglia: a polymerase chain reaction study. Neuroscience 70, 553–559.PubMedCrossRefGoogle Scholar
  35. 35.
    Fozard J. R. (1984). Neuronal 5-HT receptors in the periphery. Neuropharmacology 23, 1473–1486.PubMedCrossRefGoogle Scholar
  36. 36.
    Carlton S. M., Coggeshall R. E. (1997). Immunohistochemical localization of 5-HT2A receptors in peripheral sensory axons in rat glabrous skin. Brain Res. 763, 271–275.PubMedCrossRefGoogle Scholar
  37. 37.
    Yoder E. J., Tamir H., Ellisman M. H. (1997). Serotonin receptors expressed by myelinating Schwann cells in rat sciatic nerve. Brain Res. 753, 299–308.PubMedCrossRefGoogle Scholar
  38. 38.
    Fjallbrant N., Iggo A. (1961). The effect of histamine, 5-hydroxytryptamine and acetylcholine on cutaneous afferent fibres. J. Physiol. 156, 578–590.PubMedGoogle Scholar
  39. 39.
    Beck P. W., Handwerker H. O. (1974). Bradykinin and serotonin effects on various types of cutaneous nerve fibers. Pflugers Arch. 347, 209–222.PubMedCrossRefGoogle Scholar
  40. 40.
    Fock S., Mense S. (1976). Excitatory effects of 5-hydroxytryptamine, histamine and potassium ions on muscular group IV afferent units: a comparison with bradykinin. Brain Res. 105, 459–469.PubMedCrossRefGoogle Scholar
  41. 41.
    Kessler W., Kirchhoff C., Reeh P. W., Handwerker H. O. (1992). Excitation of cutaneous afferent nerve endings in vitro by a combination of inflammatory mediators and conditioning effect of substance P. Exp. Brain. Res. 91, 467–476.PubMedCrossRefGoogle Scholar
  42. 42.
    Davis K. D., Meyer R. A., Campbell J. N. (1993). Chemosensitivity and sensitization of nociceptive afferents that innervate the hairy skin of monkey. J. Neurophysiol. 69, 1071–1081.PubMedGoogle Scholar
  43. 43.
    Taiwo Y. O., Levine J. D. (1992). Serotonin is a directly-acting hyperalgesic agent in the rat. Neuroscience 48, 485–490.PubMedCrossRefGoogle Scholar
  44. 44.
    Sufka K. J., Schomburg F. M., Giordano J. (1992). Receptor mediation of 5-HT-induced inflammation and nociception in rats. Pharmacol. Biochem. Behav. 41, 53–56.PubMedCrossRefGoogle Scholar
  45. 45.
    Parada C. A., Tambeli C. H., Cunha F. Q., Ferreira S. H. (2001). The major role of peripheral release of histamine and 5-hydroxytryptamine in formalin-induced nociception. Neuroscience 102, 937–944.PubMedCrossRefGoogle Scholar
  46. 46.
    Babenko V., Svensson P., Graven-Nielsen T., Drewes A. M., Jensen T. S., Arendt-Nielsen L. (2000). Duration and distribution of experimental muscle hyperalgesia in humans following combined infusions of serotonin and bradykinin. Brain Res. 853, 275–281.PubMedCrossRefGoogle Scholar
  47. 47.
    Lischetzki G., Rukwied R., Handwerker H. O., Schmelz M. (2001). Nociceptor activation and protein extravasation induced by inflammatory mediators in human skin. Eur. J. Pain 5, 49–57.PubMedCrossRefGoogle Scholar
  48. 48.
    Schmelz M., Schmidt R., Weidner C., Hilliges M., Torebjork H. E., Handwerker H. O. (2003). Chemical response pattern of different classes of C-nociceptors to pruritogens and algogens. J. Neurophysiol. 89, 2441–2448.PubMedCrossRefGoogle Scholar
  49. 49.
    Ernberg M., Lundeberg T., Kopp S. (2000). Effect of propranolol and granisetron on experimentally induced pain and allodynia/hyperalgesia by intramuscular injection of serotonin into the human masseter muscle. Pain 84, 339–346.PubMedCrossRefGoogle Scholar
  50. 50.
    Ernberg M., Lundeberg T., Kopp S. (2000). Pain and allodynia/hyperalgesia induced by intramuscular injection of serotonin in patients with fibromyalgia and healthy individuals. Pain 85, 31–39.PubMedCrossRefGoogle Scholar
  51. 51.
    Herbert M. K., Schmidt R. F. (1992). Activation of normal and inflamed fine articular afferent units by serotonin. Pain 50, 79–88.PubMedCrossRefGoogle Scholar
  52. 52.
    Grubb B. D., McQueen D. S., Iggo A., Birrell G. J., Dutia M. B. (1988). A study of 5-HT-receptors associated with afferent nerves located in normal and inflamed rat ankle joints. Agents Actions 25, 216–218.PubMedCrossRefGoogle Scholar
  53. 53.
    Song X. J., Zhang J. M., Hu S. J., LaMotte R. H. (2003). Somata of nerve-injured sensory neurons exhibit enhanced responses to inflammatory mediators. Pain 104, 701–709.PubMedCrossRefGoogle Scholar
  54. 54.
    Aley K. O., Messing R. O., Mochly-Rosen D., Levine J. D. (2000). Chronic hypersensitivity for inflammatory nociceptor sensitization mediated by the epsilon isozyme of protein kinase C. J. Neurosci. 20, 4680–4685.PubMedGoogle Scholar
  55. 55.
    Abbott F. V., Hong Y., Blier P. (1996). Activation of 5-HT2A receptors potentiates pain produced by inflammatory mediators. Neuropharmacology 35, 99–110.PubMedCrossRefGoogle Scholar
  56. 56.
    Lang E., Novak A., Reeh P. W., Handwerker H. O. (1990). Chemosensitivity of fine afferents from rat skin in vitro. J. Neurophysiol. 63, 887–901.PubMedGoogle Scholar
  57. 57.
    Michaelis M., Vogel C., Blenk K. H., Janig W. (1997). Algesics excite axotomised afferent nerve fibres within the first hours following nerve transection in rats. Pain 72, 347–354.PubMedCrossRefGoogle Scholar
  58. 58.
    Michaelis M., Vogel C., Blenk K. H., Arnarson A., Janig W. (1998). Inflammatory mediators sensitize acutely axotomized nerve fibers to mechanical stimulation in the rat. J. Neurosci. 18, 7581–7587.PubMedGoogle Scholar
  59. 59.
    Kress M., Reeh P. W., Vyklicky L. (1997). An interaction of inflammatory mediators and protons in small diameter dorsal root ganglion neurons of the rat. Neurosci. Lett. 224, 37–40.PubMedCrossRefGoogle Scholar
  60. 60.
    Coelho A. M., Fioramonti J., Bueno L. (1998). Mast cell degranulation induces delayed rectal allodynia in rats: role of histamine and 5-HT. Dig. Dis. Sci. 43, 727–737.PubMedCrossRefGoogle Scholar
  61. 61.
    Bingham S., Davey P. T., Sammons M., Raval P., Overend P., Parsons A. A. (2001). Inhibition of inflammation-induced thermal hypersensitivity by sumatriptan through activation of 5-HT(1B/1D) receptors. Exp. Neurol. 167, 65–73.PubMedCrossRefGoogle Scholar
  62. 62.
    Zochodne D. W., Ho L. T. (1994). Sumatriptan blocks neurogenic inflammation in the peripheral nerve trunk. Neurology 44, 161–163.PubMedGoogle Scholar
  63. 63.
    Tokunaga A., Saika M., Senba E. (1998). 5-HT2A receptor subtype is involved in the thermal hyperalgesic mechanism of serotonin in the periphery. Pain 76, 349–355.PubMedCrossRefGoogle Scholar
  64. 64.
    Abbott F. V., Hong Y., Blier P. (1997). Persisting sensitization of the behavioural response to formalin-induced injury in the rat through activation of serotonin2A receptors. Neuroscience 77, 575–584.PubMedCrossRefGoogle Scholar
  65. 65.
    Obata H., Saito S., Ishizaki K., Goto F. (2000). Antinociception in rat by sarpogrelate, a selective 5-HT(2A) receptor antagonist, is peripheral. Eur. J. Pharmacol. 404, 95–102.PubMedCrossRefGoogle Scholar
  66. 66.
    Okamoto K., Imbe H., Morikawa Y., et al. (2002). 5-HT2A receptor subtype in the peripheral branch of sensory fibers is involved in the potentiation of inflammatory pain in rats. Pain 99, 133–143.PubMedCrossRefGoogle Scholar
  67. 67.
    Doak G. J., Sawynok J. (1997). Formalin-induced nociceptive behavior and edema: involvement of multiple peripheral 5-hydroxytryptamine receptor subtypes. Neuroscience 80, 939–949.PubMedCrossRefGoogle Scholar
  68. 68.
    Giordano J., Dyche J. (1989). Differential analgesic actions of serotonin 5-HT3 receptor antagonists in the mouse. Neuropharmacology 28, 423–427.PubMedCrossRefGoogle Scholar
  69. 69.
    Giordano J., Rogers L. V. (1989). Peripherally administered serotonin 5-HT3 receptor antagonists reduce inflammatory pain in rats. Eur. J. Pharmacol. 170, 83–86.PubMedCrossRefGoogle Scholar
  70. 70.
    Eschalier A., Kayser V., Guilbaud G. (1989). Influence of a specific 5-HT3 antagonist on car-rageenan-induced hyperalgesia in rats. Pain 36, 249–255.PubMedCrossRefGoogle Scholar
  71. 71.
    Espejo E. F., Gil E. (1998). Antagonism of peripheral 5-HT4 receptors reduces visceral and cutaneous pain in mice, and induces visceral analgesia after simultaneous inactivation of 5-HT3 receptors. Brain Res. 788, 20–24.PubMedCrossRefGoogle Scholar
  72. 72.
    Giordano J., Daleo C., Sacks S. M. (1998). Topical ondansetron attenuates nociceptive and inflammatory effects of intradermal capsaicin in humans. Eur. J. Pharmacol. 354, R13–14.PubMedCrossRefGoogle Scholar
  73. 73.
    Ernberg M., Lundeberg T., Kopp S. (2003). Effects on muscle pain by intramuscular injection of granisetron in patients with fibromyalgia. Pain 101, 275–282.PubMedCrossRefGoogle Scholar
  74. 74.
    Stratz T., Varga B., Muller W. (2002). Treatment of tendopathies with tropisetron. Rheumatol. Int. 22, 219–221.PubMedCrossRefGoogle Scholar
  75. 75.
    Stratz T., Muller W. (2003). Lokalbehandlung rheumatischer Erkrankungen mit dem 5-HT3-Rezeptor-Antagonisten Tropisetron. Schmerz 17, 200–203.PubMedGoogle Scholar
  76. 76.
    Stratz T., Samborski W., Hrycaj P., et al. (1993). Die Serotoninkonzentration im Serum bei Patienten mit generalisierter Tendomyopathie (Fibromyalgie) und chronischer Polyarthritis. Med. Klin. 88, 458–462.Google Scholar
  77. 77.
    Abdi S., Lee D. H., Chung J. M. (1998). The anti-allodynic effects of amitriptyline, gabapentin, and lidocaine in a rat model of neuropathic pain. Anesth. Analg. 87, 1360–1366.PubMedCrossRefGoogle Scholar
  78. 78.
    Sawynok J., Esser M. J., Reid A. R. (1999). Peripheral antinociceptive actions of desipramine and fluoxetine in an inflammatory and neuropathic pain test in the rat. Pain 82, 149–158.PubMedCrossRefGoogle Scholar
  79. 79.
    Sawynok J. (2003). Topical and peripherally acting analgesics. Pharmacol. Rev. 55, 1–20.PubMedCrossRefGoogle Scholar
  80. 80.
    Sudoh Y., Cahoon E. E., Gerner P., Wang G. K. (2003). Tricyclic antidepressants as long-acting local anesthetics. Pain 103, 49–55.PubMedCrossRefGoogle Scholar
  81. 81.
    Zeitz K. P., Guy N., Malmberg A. B., et al. (2002). The 5-HT3 subtype of serotonin receptor contributes to nociceptive processing via a novel subset of myelinated and unmyelinated nociceptors. J. Neurosci. 22, 1010–1019.PubMedGoogle Scholar
  82. 82.
    Bengel D., Murphy D. L., Andrews A. M., et al. (1998). Altered brain serotonin homeostasis and locomotor insensitivity to 3, 4- methylene-dioxymethamphetamine (“Ecstasy”) in serotonin transporter-deficient mice. Mol. Pharmacol. 53, 649–655.PubMedGoogle Scholar
  83. 83.
    Fabre V., Beaufour C., Evrard A., et al. (2000). Altered expression and functions of serotonin 5-HT1A and 5-HT1B receptors in knock-out mice lacking the 5-HT transporter. Eur. J. Neurosci. 12, 2299–2310.PubMedCrossRefGoogle Scholar
  84. 84.
    Rioux A., Fabre V., Lesch K. P., et al. (1999). Adaptive changes of serotonin 5-HT2A receptors in mice lacking the serotonin transporter. Neurosci. Lett. 262, 113–116.PubMedCrossRefGoogle Scholar
  85. 85.
    Palm F., Zelenka M., Moessner R., Gerlach M., Lesch K.-P., Sommer C. (2003). Serotonin transporter deficient mice have reduced thermal hyperalgesia. J. Neurol. 250, II/91.Google Scholar
  86. 86.
    Gold M. S., Reichling D. B., Shuster M. J., Levine J. D. (1996). Hyperalgesic agents increase a tetrodotoxin-resistant Na+ current in nociceptors. Proc. Natl. Acad. Sci. USA 93, 1108–1112.PubMedCrossRefGoogle Scholar
  87. 87.
    Aley K. O., Levine J. D. (1999). Role of protein kinase A in the maintenance of inflammatory pain. J. Neurosci. 19, 2181–2186.PubMedGoogle Scholar
  88. 88.
    Aley K. O., McCarter G., Levine J. D. (1998). Nitric oxide signaling in pain and nociceptor sensitization in the rat. J. Neurosci. 18, 7008–7014.PubMedGoogle Scholar

Copyright information

© Humana Press Inc 2004

Authors and Affiliations

  • Claudia Sommer
    • 1
  1. 1.Department of NeurologyUniversity of WürzburgGermany

Personalised recommendations