Skip to main content
Log in

Transcriptional regulation by cAMP and Ca2+ links the Na+/Ca2+ exchanger 3 to memory and sensory pathways

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

The signaling cascades triggered by neurotrophins such as BDNF and by several neurotransmitters and hormones lead to the rapid induction of gene transcription by increasing the intracellular concentration of cAMP and Ca2+. This review examines the mechanisms by which these second messengers control transcriptional initiation at CRE promoters via transcription factor CREB, as well as at DRE sites via transcriptional repressor DREAM. The regulation of the SLC8A3 gene encoding the Na+/Ca2+ exchanger 3 (NCX3) is taken as an example to illustrate both mechanisms since it includes a CRE site in the promoter and several DRE sites in the exon 1 sequence. The upregulation of the NCX3 by Ca2+ signals may be specifically required to establish the Ca2+ balance that regulates several physiological and pathological processes in neurons. The regulatory features and the expression pattern of SLC8A3 gene suggest that NCX3 activity could be crucial in neuronal functions such as memory formation and sensory processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Katz B., Miledi R. (1970) Further study of the role of calcium in synaptic transmission. J. Physiol. 207, 789–801.

    PubMed  CAS  Google Scholar 

  2. Nachshen D.A., Blaustein M.P. (1982) Influx of calcium, strontium, and barium in presynaptic nerve endings. J. Gen. Physiol. 79, 1065–1087.

    PubMed  CAS  Google Scholar 

  3. Lessmann V., Gottmann K., Malcangio M. (2003) Neurotrophin secretion: current facts and future prospects. Prog. Neurobiol. 69, 341–374.

    PubMed  CAS  Google Scholar 

  4. Lessmann V. (1998) Neurotrophin-dependent modulation of glutamatergic synaptic transmission in the mammalian CNS. Gen. Pharmacol. 31, 667–674.

    PubMed  CAS  Google Scholar 

  5. Sheng M., McFadden G., Greenberg M.E. (1990) Membrane depolarization and calcium induce c-fos transcription via phosphorylation of transcription factor CREB. Neuron 4, 571–582.

    PubMed  CAS  Google Scholar 

  6. Thompson M.A., Ginty D.D., Bonni A., Greenberg M.E. (1995) L-type voltage-sensitive Ca2+ channel activation regulates c-fos transcription at multiple levels. J. Biol. Chem. 270, 4224–4235.

    PubMed  CAS  Google Scholar 

  7. Riccio A., Ahn S., Davenport C.M., Blendy J.A., Ginty D.D. (1999) Mediation by a CREB family transcription factor of NGF-dependent survival of sympathetic neurons. Science 286, 2358–2361.

    PubMed  CAS  Google Scholar 

  8. Bonni A., Greenberg M.E. (1997) Neurotrophin regulation of gene expression. Can. J. Neurol. Sci. 24, 272–283.

    PubMed  CAS  Google Scholar 

  9. Ernfors P., Bramham C.R. (2003) The coupling of a trkB tyrosine residue to LTP. Trends Neurosci. 26, 171–173.

    PubMed  CAS  Google Scholar 

  10. Morgan J.I., Curran T. (1991) Proto-oncogene transcription factors and epilepsy. Trends Pharmacol. Sci. 12, 343–349.

    PubMed  CAS  Google Scholar 

  11. Lanahan A., Worley P. (1998) Immediate-early genes and synaptic function. Neurobiol. Learn Mem. 70, 37–43.

    PubMed  CAS  Google Scholar 

  12. Finkbeiner S., Tavazoie S.F., Maloratsky A, Jacobs KM, Harris KM, Greenberg ME. (1997) CREB: a major mediator of neuronal neurotrophin responses. Neuron 19, 1031–1047.

    PubMed  CAS  Google Scholar 

  13. Carlezon W.A. Jr., Thome J., Olson V.G., et al. (1998) Regulation of cocaine reward by CREB. Science 282, 2272–2275.

    PubMed  CAS  Google Scholar 

  14. Milner B., Squire L.R., Kandel E.R. (1998) Cognitive neuroscience and the study of memory. Neuron 20, 445–468.

    PubMed  CAS  Google Scholar 

  15. Silva A.J., Kogan J.H., Frankland P.W., Kida S. (1998) CREB and memory. Annu. Rev. Neurosci. 21, 127–148.

    PubMed  CAS  Google Scholar 

  16. Bilecki W, Przewlocki R. (2000) Effect of opioids on Ca2+/cAMP responsive element binding protein. Acta. Neurobiol. Exp. 60, 557–567.

    CAS  Google Scholar 

  17. De Cesare D., Sassone-Corsi P. (2000) Transcriptional regulation by cyclic AMP-responsive factors. Prog. Nucleic Acid. Res. Mol. Biol. 64, 343–369.

    PubMed  Google Scholar 

  18. Sassone-Corsi P. (1998) Coupling gene expression to cAMP signaling: role of CREB and CREM. Int. J. Biochem. Cell. Biol. 30, 27–38.

    PubMed  CAS  Google Scholar 

  19. Ginty D.D., Bading H., Greenberg M.E. (1992) Trans-synaptic regulation of gene expression. Curr. Opin. Neurobiol. 2, 312–316.

    PubMed  CAS  Google Scholar 

  20. West A.E., Chen W.G., Dalva M.B., et al. (2001) Calcium regulation of neuronal gene expression. Proc. Natl. Acad. Sci. USA 98, 11024–11031.

    PubMed  CAS  Google Scholar 

  21. Van Haasteren G., Li S., Muda M., Susini S., Schlegel W. (1999) Calcium signaling and gene expression. J. Recept. Signal Transduct. Res. 19, 481–492.

    PubMed  Google Scholar 

  22. Ghosh A., Ginty D.D., Bading H., Greenberg M.E. (1994) Calcium regulation of gene expression in neuronal cells. J. Neurobiol. 25, 294–303.

    PubMed  CAS  Google Scholar 

  23. Kornhauser J.M., Cowan C.W., Shaywitz A.J., et al. (2002) CREB transcriptional activity in neurons is regulated by multiple, calcium-specific phosphorylation events. Neuron 34, 221–233.

    PubMed  CAS  Google Scholar 

  24. Herdegen T., Leah J.D. (1998) Inducible and constitutive transcription factors in the mammalian nervous system: control of gene expression by Jun, Fos and Krox, and CREB/ATF proteins. Brain Res. Brain Res. Rev. 28, 370–490.

    PubMed  CAS  Google Scholar 

  25. Karin M., Liu Z., Zandi E. (1997) AP-1 function and regulation. Curr. Opin. Cell. Biol. 9, 240–246.

    PubMed  CAS  Google Scholar 

  26. Carrion A.M., Link W.A., Ledo F., Mellstrom B., Naranjo J.R. (1999) DREAM is a Ca2+-regulated transcriptional repressor. Nature 398, 80–84.

    PubMed  CAS  Google Scholar 

  27. Appleman M.M., Thompson W.J., Russell T.R. (1973) Cyclic nucleotide phosphodiesterases. Adv. Cyclic Nucleotide Res. 3, 65–98.

    PubMed  CAS  Google Scholar 

  28. Beavo J.A., Conti M., Heaslip R.J. (1994) Multiple cyclic nucleotide phosphodiesterases. Mol. Pharmacol. 46, 399–405.

    PubMed  CAS  Google Scholar 

  29. Kakkar R., Raju R.V., Sharma R.K. (1999) Calmodulin-dependent cyclic nucleotide phosphodiesterase (PDE1). Cell. Mol. Life Sci. 55, 1164–1186.

    PubMed  CAS  Google Scholar 

  30. Blaustein M.P., Lederer W.J. (1999) Sodium/calcium exchange: its physiological implications. Physiol. Rev. 79, 763–854.

    PubMed  CAS  Google Scholar 

  31. Luther P.W., Yip R.K., Bloch R.J., Ambesi A., Lindenmayer G.E., Blaustein M.P. (1992) Presynaptic localization of sodium/calcium exchangers in neuromuscular preparations. J. Neurosci. 12, 4898–4904.

    PubMed  CAS  Google Scholar 

  32. Reuter H., Porzig H. (1995) Localization and functional significance of the Na+/Ca2+ exchanger in presynaptic boutons of hippocampal. Neuron 15, 1077–1084.

    PubMed  CAS  Google Scholar 

  33. Nicoll D.A., Longoni S., Philipson K.D. (1990) Molecular cloning and functional expression of the cardiac sarcolemmal Na+-Ca2+ exchanger. Science 250, 562–565.

    PubMed  CAS  Google Scholar 

  34. Li Z., Matsuoka S., Hryshko L.V., et al. (1994) Cloning of the NCX2 isoform of the plasma membrane Na+-Ca2+ exchanger. J. Biol. Chem. 269, 17434–17439.

    PubMed  CAS  Google Scholar 

  35. Nicoll D.A., Quednau B.D., Qui Z., Xia Y.R., Lusis A.J., Philipson KD. (1996) Cloning of a third mammalian Na+-Ca2+ exchanger, NCX3. J. Biol. Chem. 271, 24914–24921.

    PubMed  CAS  Google Scholar 

  36. Kraev A., Chumakov I., Carafoli E. (1996) The organization of the human gene NCX1 encoding the sodium-calcium exchanger. Genomics 37, 105–112.

    PubMed  CAS  Google Scholar 

  37. Kikuno R., Nagase T., Ishikawa K., et al. (1999) Prediction of the coding sequences of unidentified human genes. XIV. The complete sequences of 100 new cDNA clones from brain which code for large proteins in vitro. DNA Res. 6, 197–205.

    PubMed  CAS  Google Scholar 

  38. Gabellini N., Bortoluzzi S., Danieli G.A., Carafoli E. (2002) The human SLC8A3 gene and the tissue-specific Na+/Ca2+ exchanger 3 isoforms. Gene 298, 1–7.

    PubMed  CAS  Google Scholar 

  39. Nicholas S.B., Yang W., Lee S.L., Zhu H., Philipson K.D., Lytton J. (1998) Alternative promoters and cardiac muscle cell-specific expression of the Na+/Ca2+ exchanger gene. Am. J. Physiol. 274, 217–232.

    Google Scholar 

  40. Gabellini N., Bortoluzzi S., Danieli G.A., Carafoli E. (2003) Control of the Na+/Ca2+ exchanger 3 promoter by cyclic adenosine monophosphate and Ca2+ in differentiating neurons. J. Neurochem. 84, 282–293.

    PubMed  CAS  Google Scholar 

  41. Canitano A., Papa M., Boscia F., et al. (2002) Brain distribution of the Na+/Ca2+ exchanger-encoding genes NCX1, NCX2, and NCX3 and their related proteins in the central nervous system. Ann. N. Y. Acad. Sci. 976, 394–404.

    PubMed  CAS  Google Scholar 

  42. Lee S.L., Yu A.S., Lytton J. (1994) Tissue-specific expression of Na+-Ca2+ exchanger isoforms. J. Biol. Chem. 269, 14849–14852.

    PubMed  CAS  Google Scholar 

  43. Scheller T., Kraev A., Skinner S., Carafoli E. (1998) Cloning of the multipartite promoter of the sodium-calcium exchanger gene NCX1 and characterization of its activity in vascular smooth muscle cells. J. Biol. Chem. 273, 7643–7649.

    PubMed  CAS  Google Scholar 

  44. Nicholas S.B., Philipson K.D. (1999) Cardiac expression of the Na+/Ca2+ exchanger NCX1 is GATA factor dependent. Am. J. Physiol. 277, 324–330.

    Google Scholar 

  45. Cheng G., Hagen T.P., Dawson M.L., Barnes K.V., Menick DR. (1999) The role of GATA, CArG, E-box, and a novel element in the regulation of cardiac expression of the Na+-Ca2+ exchanger gene. J. Biol. Chem. 274, 12819–12826.

    PubMed  CAS  Google Scholar 

  46. Koller E., Trueb B. (1992) Characterization of the chicken alpha 1(VI) collagen promoter. Eur. J. Biochem. 208, 769–774.

    PubMed  CAS  Google Scholar 

  47. Cross S.H., Bird A.P. (1995) CpG islands and genes. Curr. Opin. Genet. Dev. 5, 309–314.

    PubMed  CAS  Google Scholar 

  48. Jones P.A., Wolkowicz M.J., Rideout W.M., 3rd, et al. (1990) De novo methylation of the MyoD1 CpG island during the establishment of immortal cell lines. Proc. Natl. Acad. Sci. USA 87, 6117–6121.

    PubMed  CAS  Google Scholar 

  49. Kopp M.U., Winterhalter K.H., Trueb B. (1997) DNA methylation accounts for the inhibition of collagen VI expression in transformed fibroblasts. Eur. J. Biochem. 249, 489–496.

    PubMed  CAS  Google Scholar 

  50. Moser M., Ruschoff J., Buettner R. (1997) Comparative analysis of AP-2 alpha and AP-2 beta gene expression during murine embryogenesis. Dev. Dyn. 208, 115–124.

    PubMed  CAS  Google Scholar 

  51. Mitchell P.J., Timmons P.M., Hebert J.M., Rigby P.W., Tjian R. (1991) Transcription factor AP-2 is expressed in neural crest cell lineages during mouse embryogenesis. Genes Dev. 5, 105–119.

    PubMed  CAS  Google Scholar 

  52. Quirin-Stricker C., Mauvais C., Schmitt M. (1997) Transcriptional activation of human choline acetyltransferase by AP2- and NGF-induced factors. Brain Res. Mol. Brain Res. 49, 165–167.

    PubMed  CAS  Google Scholar 

  53. Imagawa M., Chiu R., Karin M. (1987) Transcription factor AP-2 mediates induction by two different signal-transduction pathways: protein kinase C and cAMP. Cell 51, 251–260.

    PubMed  CAS  Google Scholar 

  54. Mitchell P.J., Wang C., Tjian R. (1987) Positive and negative regulation of transcription in vitro: enhancer-binding protein AP-2 is inhibited by SV40. Cell 50, 847–861.

    PubMed  CAS  Google Scholar 

  55. Shachaf C., Skorecki K.L., Tzukerman M. (2000) Role of AP2 consensus sites in regulation of rat Npt2 (sodium-phosphate cotransporter) promoter. Am. J. Physiol. Renal Physiol. 278, 406–416.

    Google Scholar 

  56. Williams T., Tjian R. (1991) Analysis of the DNA-binding and activation properties of the human transcription factor AP-2. Genes Dev. 5, 670–682.

    PubMed  CAS  Google Scholar 

  57. Karin M. (1995) The regulation of AP-1 activity by mitogen-activated protein kinases. J. Biol. Chem. 270, 16483–16486.

    PubMed  CAS  Google Scholar 

  58. Platenik J., Kuramoto N., Yoneda Y. (2000) Molecular mechanisms associated with long-term consolidation of the NMDA signals. Life Sci. 67, 335–364.

    PubMed  CAS  Google Scholar 

  59. Beckmann A.M., Davidson M.S., Goodenough S., Wilce P.A. (1997) Differential expression of Egr-1-like DNA-binding activities in the naive rat brain and after excitatory stimulation. J. Neurochem. 69, 2227–2237.

    PubMed  CAS  Google Scholar 

  60. Worley P.F., Christy B.A., Nakabeppu Y., Bhat R.V., Cole A.J., Baraban J.M. (1991) Constitutive expression of zif268 in neocortex is regulated by synaptic activity. Proc. Natl. Acad. Sci. USA 88, 5106–5110.

    PubMed  CAS  Google Scholar 

  61. Honkaniemi J., Sharp F.R. (1999) Prolonged expression of zinc finger immediate-early gene mRNAs and decreased protein synthesis following intracerebral administration of 3-nitropropionic acid. Eur. J. Neurosci. 11, 10–17.

    PubMed  CAS  Google Scholar 

  62. Gass P., Herdegen T., Bravo R., Kiessling M. (1994) High induction threshold for transcription factor KROX-20 in the rat brain: partial coexpression with heat shock protein 70 following limbic seizures. Brain Res. Mol. Brain Res. 23, 292–298.

    PubMed  CAS  Google Scholar 

  63. Papa M., Canitano A., Boscia F., et al. (2003) Differential expression of the Na+-Ca2+ exchanger transcripts and proteins in rat brain regions. J. Comp. Neurol. 461, 31–48.

    PubMed  CAS  Google Scholar 

  64. Montminy M.R., Sevarino K.A., Wagner J.A., Mandel G., Goodman R.H. (1986) Identification of a cyclic-AMP-responsive element within the rat somatostatin gene. Proc. Natl. Acad. Sci. USA 83, 6682–6686.

    PubMed  CAS  Google Scholar 

  65. Montminy M. (1997) Transcriptional regulation by cyclic AMP. Annu. Rev. Biochem. 66, 807–822.

    PubMed  CAS  Google Scholar 

  66. Sassone-Corsi P., Visvander J., Ferland L., Mellon P.L., Verma I.M. (1988) Induction of proto-oncogene fos transcription though the adenylate cyclase pathway: characterization of a cAMP-responsive element. Genes & Devel. 2, 1529–1538.

    CAS  Google Scholar 

  67. Fink J.S., Verhave M., Kasper S., Tsukada T., Mandel G., Goodman R.H. (1988) The CGTCA sequence motif is essential for biological activity of the vasoactive intestinal peptide gene cAMP. Proc. Natl. Acad. Sci. USA 85, 6662–6666.

    PubMed  CAS  Google Scholar 

  68. Kobierski L.A., Chu H.M., Tan Y., Comb M.J. (1991) cAMP-dependent regulation of proenkephalin by JunD and JunB: positive and negative effects of AP-1 proteins. Proc. Natl. Acad. Sci. USA 88, 10222–10226.

    PubMed  CAS  Google Scholar 

  69. Carrion A.M., Mellstrom B., Naranjo J.R. (1998) Protein kinase A-dependent derepression of the human prodynorphin gene via differential binding to an intragenic silencer. Mol. Cell. Biol. 18, 6921–6929.

    PubMed  CAS  Google Scholar 

  70. Ledo F., Link W.A., Carrion A.M., Echeverria V., Mellstrom B., Naranjo J.R. (2000) The DREAM-DRE interaction: key nucleotides and dominant negative mutants. Biochim. Biophys. Acta. 1498, 162–168.

    PubMed  CAS  Google Scholar 

  71. Wright D.E., Snider W.D. (1995) Neurotrophin receptor mRNA expression defines distinct populations of neurons in rat dorsal root ganglia. J. Comp. Neurol. 351, 329–338.

    PubMed  CAS  Google Scholar 

  72. Luo X.G., Rush R.A., Zhou X.F. (2001) Ultrastructural localization of brain-derived neurotrophic factor in rat primary sensory neurons. Neurosci. Res. 39, 377–384.

    PubMed  CAS  Google Scholar 

  73. Buchman V.L., Davies A.M. (1993) Different neurotrophins are expressed and act in a developmental sequence to promote the survival of embryonic sensory neurons. Development 118, 989–1001.

    PubMed  CAS  Google Scholar 

  74. McAllister A.K., Katz L.C., Lo D.C. (1996) Neurotrophin regulation of cortical dendritic growth requires activity. Neuron 17, 1057–1064.

    PubMed  CAS  Google Scholar 

  75. Lohof A.M., Ip N.Y., Poo M.M. (1993) Potentiation of developing neuromusular synapses by the neurotrophins NT-3 and BDNF. Nature 363, 350–353.

    PubMed  CAS  Google Scholar 

  76. Levine E.S., Dreyfus C.F., Black I.B., Plummer M.R. (1995) Brain-derived neurotrophic factor rapidly enhances synaptic transmission in hippocampal neurons via postsynaptic tyrosine kinase receptors. Proc. Natl. Acad. Sci. USA 92, 8074–8077.

    PubMed  CAS  Google Scholar 

  77. Suen P.C., Wu K., Levine E.S., et al. (1997) Brain-derived neurotrophic factor rapidly enhances phosphorylation of the postsynaptic N-methyl-d-aspartate receptor subunit 1. Proc. Natl. Acad. Sci. USA 94, 8191–8195.

    PubMed  CAS  Google Scholar 

  78. Schuman E.M. (1999) Neurotrophin regulation of synaptic transmission. Curr. Opin. Neurobiol. 9, 105–109.

    PubMed  CAS  Google Scholar 

  79. Schinder A.F., Poo M. (2000) The neurotrophin hypothesis for synaptic plasticity. Trends Neurosci. 23, 639–645.

    PubMed  CAS  Google Scholar 

  80. Poo M.M. (2001) Neurotrophins as synptic modulators. Nat. Rev. Neurosci. 2001 2, 24–32.

    PubMed  CAS  Google Scholar 

  81. Haubensak W., Narz F., Heumann R., Lessmann V. (1998) BDNF-GFP containing secretory granules are localized in the vicinity of synaptic junctions of cultured cortical neurons. J. Cell. Sci. 111, 1483–1493.

    PubMed  CAS  Google Scholar 

  82. Hartmann M., Heumann R., Lessmann V. (2001) Synaptic secretion of BDNF after highfrequency stimulation of glutamatergic synapses. EMBO J. 20, 5887–5897.

    PubMed  CAS  Google Scholar 

  83. Figurov A., Pozzo-Miller L.D., Olafsson P., Wang T., Lu B. (1996) Regulation of synaptic responses to high-frequency stimulation and LTP by neurotrophins in the hippocampus. Nature 381, 706–709.

    PubMed  CAS  Google Scholar 

  84. Patterson S.L., Abel T., Deuel T.A., Martin K.C., Rose J.C., Kandel E.R. (1996) Recombinant BDNF rescues deficits in basal synaptic transmission and hippocampal LTP in BDNF knockout mice. Neuron 16, 1137–1145.

    PubMed  CAS  Google Scholar 

  85. Yamada K., Nabeshima T. (2003) Brainderived neurotrophic factor/TrkB signaling in memory processes. J. Pharmacol. Sci. 91, 267–270.

    PubMed  CAS  Google Scholar 

  86. Kaplan D.R., Miller F.D. (2000) Neurotrophin signal transduction in the nervous system. Curr. Opin. Neurobiol. 10, 381–391.

    PubMed  CAS  Google Scholar 

  87. Blanquet P.R. (2000) Identification of two persistently activated neurotrophin-regulated pathways in rat hippocampus. Neuroscience 95, 705–719.

    PubMed  CAS  Google Scholar 

  88. Gottschalk W.A., Jiang H., Tartaglia N., Feng L., Figurov A., Lu B. (1999) Signaling mechanisms mediating BDNF modulation of synaptic plasticity in the hippocampus. Learn Mem. 6, 243–256.

    PubMed  CAS  Google Scholar 

  89. Segal R.A., Greenberg M.E. (1996) Intracellular signaling pathways activated by neurotrophic factors. Annu. Rev. Neurosci. 19, 463–489.

    PubMed  CAS  Google Scholar 

  90. Blanquet P.R., Lamour Y. (1997) Brain-derived neurotrophic factor increases Ca2+/calmodulin-dependent protein kinase 2 activity in hippocampus. J. Biol. Chem. 272, 24133–24136.

    PubMed  CAS  Google Scholar 

  91. Blanquet P.R., Mariani J., Derer P. (2003) A calcium/calmodulin kinase pathway connects brain-derived neurotrophic factor to the cyclic AMP-responsive transcription factor in the rat hippocampus. Neuroscience 118, 477–490.

    PubMed  CAS  Google Scholar 

  92. Ying S.W., Futter M, Rosenblum K., et al. (2002) Brain-derived neurotrophic factor induces long-term potentiation in intact adult hippocampus: requirement for ERK activation coupled to CREB and upregulation of Arc synthesis. J. Neurosci. 22, 1532–1540.

    PubMed  CAS  Google Scholar 

  93. Burgering B.M., Coffer P.J. (1995) Protein kinase B (c-Akt) in phosphatidylinositol-3-OH kinase signal transduction. Nature 376, 599–602.

    PubMed  CAS  Google Scholar 

  94. Franke T.F., Yang S.I., Chan T.O., et al. (1995) The protein kinase encoded by the Akt proto-oncogene is a target of the PDGF-activated phosphatidylinositol 3-kinase. Cell 81, 727–736.

    PubMed  CAS  Google Scholar 

  95. Kang H., Schuman E.M. (1996) A requirement for local protein synthesis in neurotrophininduced hippocampal synaptic plasticity. Science 273, 1402–1406.

    PubMed  CAS  Google Scholar 

  96. Takei N., Kawamura M., Hara K., Yonezawa K., Nawa H. (2001) Brain-derived neurotrophic factor enhances neuronal translation by activating multiple initiation processes: comparison with the effects of insulin. J. Biol. Chem. 276, 42818–42825.

    PubMed  CAS  Google Scholar 

  97. Deisseroth K., Bito H., Tsien R.W. (1996) Signaling from synapse to nucleus: postsynaptic CREB phosphorylation during multiple forms of hippocampal synaptic plasticity. Neuron 16, 89–101.

    PubMed  CAS  Google Scholar 

  98. Bito H., Deisseroth K., Tsien R.W. (1996) CREB phosphorylation and dephosphorylation: a Ca2+−-and stimulus duration-dependent switch for hippocampal gene expression. Cell 87, 1203–1214.

    PubMed  CAS  Google Scholar 

  99. Dash P.K., Karl K.A., Colicos M.A., Prywes R., Kandel E.R. (1991) cAMP response elementbinding protein is activated by Ca2+/calmodulin- as well as cAMP-dependent protein kinase. Proc. Natl. Acad. Sci. USA 88, 5061–5065.

    PubMed  CAS  Google Scholar 

  100. Sheng M., Thompson M.A., Greenberg M.E. (1991) CREB: a Ca2+-regulated transcription factor phosphorylated by calmodulin-dependent kinases. Science 252, 1427–1430.

    PubMed  CAS  Google Scholar 

  101. Nakanishi S., Masu M. (1994) Molecular diversity and functions of glutamate receptors. Annu. Rev. Biophys. Biomol. Struct. 23, 319–348.

    PubMed  CAS  Google Scholar 

  102. Conn P.J., Pin J.P. (1997) Pharmacology and functions of metabotropic glutamate receptors. Annu. Rev. Pharmacol. Toxicol. 37, 205–237.

    PubMed  CAS  Google Scholar 

  103. Mao L., Wang J.Q. (2003) Contribution of ionotropic glutamate receptors to acute amphetamine-stimulated preproenkephalin mRNA expression in the rat striatum in vivo. Neurosci. Lett. 346, 17–20.

    PubMed  CAS  Google Scholar 

  104. Duman R.S. (1998) Novel therapeutic approaches beyond the serotonin receptor. Biol. Psychiatry 44, 324–335.

    PubMed  CAS  Google Scholar 

  105. McKnight G.S. (1991) Cyclic AMP second messenger systems. Curr. Opin. Cell. Biol. 3, 213–217.

    PubMed  CAS  Google Scholar 

  106. McKnight G.S., Cummings D.E., Amieux P.S., et al. (1998) Cyclic AMP, PKA, and the physiological regulation of adiposity. Recent Prog. Horm. Res. 53, 139–159.

    PubMed  CAS  Google Scholar 

  107. Foulkes N.S., Borjigin J., Snyder S.H., Sassone-Corsi P. (1997) Rhythmic transcription: the molecular basis of circadian melatonin synthesis. Trends Neurosci. 20, 487–492.

    PubMed  CAS  Google Scholar 

  108. Lamprecht R. (1999) CREB: a message to remember. Cell. Mol. Life Sci. 55, 554–556.

    PubMed  CAS  Google Scholar 

  109. Rehfuss R.P., Walton K.M., Loriaux M.M., Goodman R.H. (1991) The cAMP-regulated enhancer-binding protein ATF-1 activates transcription in response to cAMP-dependent protein kinase. A. J. Biol. Chem. 266, 18431–18434.

    CAS  Google Scholar 

  110. Foulkes N.S., Borrelli E., Sassone-Corsi P. (1991) CREM gene: use of alternative DNA-binding domains generates multiple antagonists of cAMP-induced transcription. Cell 64, 739–749.

    PubMed  CAS  Google Scholar 

  111. De Cesare D., Fimia G.M., Sassone-Corsi P. (1999) Signaling routes to CREM and CREB: plasticity in transcriptional activation. Trends Biochem. Sci. 24, 281–285.

    PubMed  Google Scholar 

  112. Ledo F., Kremer L., Mellstrom B., Naranjo J.R. (2002) Ca2+-dependent block of CREB-CBP transcription by repressor DREAM. EMBO J. 21, 4583–4592.

    PubMed  CAS  Google Scholar 

  113. Laoide B.M., Foulkes N.S., Schlotter F., Sassone-Corsi P. (1993) The functional versatility of CREM is determined by its modular structure. EMBO J. 12, 1179–1191.

    PubMed  CAS  Google Scholar 

  114. Yin J.C., Wallach J.S., Wilder E.L., et al. (1995) A Drosophila CREB/CREM homolog encodes multiple isoforms, including a cyclic AMP-dependent protein kinase-responsive transcriptional activator and antagonist. Mol. Cell. Biol. 15, 5123–5130.

    PubMed  CAS  Google Scholar 

  115. Molina C.A., Foulkes N.S., Lalli E., Sassone-Corsi P. (1993) Inducibility and negative autoregulation of CREM: an alternative promoter directs the expression of ICER, an early response repressor. Cell 75, 875–886.

    PubMed  CAS  Google Scholar 

  116. Hagiwara M., Alberts A., Brindle P., et al. (1992) Transcriptional attenuation following cAMP induction requires PP-1-mediated dephosphorylation of CREB. Cell 70, 105–113.

    PubMed  CAS  Google Scholar 

  117. Sala C., Rudolph-Correia S., Sheng M. (2000) Developmentally regulated NMDA receptordependent dephosphorylation of cAMP response element-binding protein (CREB) in hippocampal neurons. J. Neurosci. 20, 3529–3536.

    PubMed  CAS  Google Scholar 

  118. Tong G., Shepherd D., Jahr C.E. (1995) Synaptic desensitization of NMDA receptors by calcineurin. Science 267, 1510–1512.

    PubMed  CAS  Google Scholar 

  119. Traynelis S.F., Wahl P. (1997) Control of rat GluR6 glutamate receptor open probability by protein kinase A and calcineurin. J. Physiol. 503, 513–531.

    PubMed  Google Scholar 

  120. Schwaninger M., Blume R., Kruger M., Lux G., Oetjen E., Knepel W. (1995) Involvement of the Ca(2+)-dependent phosphatase calcineurin in gene transcription that is stimulated by cAMP through cAMP response elements. J. Biol. Chem. 270, 8860–8866.

    PubMed  CAS  Google Scholar 

  121. Kuno T., Mukai H., Ito A., et al. (1992) Distinct cellular expression of calcineurin A alpha and A beta in rat brain. J. Neurochem. 58, 1643–1651.

    PubMed  CAS  Google Scholar 

  122. Micheau J., Riedel G. (1999) Protein kinases: which one is the memory molecule? Cell. Mol. Life Sci. 55, 534–548.

    PubMed  CAS  Google Scholar 

  123. Riedel G. (1999) If phosphatases go up, memory goes down. Cell. Mol. Life Sci. 55, 549–553.

    PubMed  CAS  Google Scholar 

  124. Tan S.E., Wenthold R.J., Soderling T.R. (1994) Phosphorylation of AMPA-type glutamate receptors by calcium/calmodulin-dependent protein kinase II and protein kinase C in cultured hippocampal neurons. J. Neurosci. 14, 1123–1129.

    PubMed  CAS  Google Scholar 

  125. Roche K.W., Tingley W.G., Huganir R.L. (1994) Glutamate receptor phosphorylation and synaptic plasticity. Curr. Opin. Neurobiol. 4, 383–388.

    PubMed  CAS  Google Scholar 

  126. Mulkey R.M., Herron C.E., Malenka R.C. (1993) An essential role for protein phosphatases in hippocampal long-term depression. Science 261, 1051–1055.

    PubMed  CAS  Google Scholar 

  127. Mulkey R.M., Endo S., Shenolikar S., Malenka R.C. Involvement of a calcineurin/inhibitor-1 phosphatase cascade in hippocampal long-term depression. Nature 369, 486–488.

  128. Gaiddon C., Loeffler J.P., Larmet Y. (1996) Brainderived neurotrophic factor stimulates AP-1 and cyclic AMP-responsive element dependent transcriptional activity in central nervous system neurons. J. Neurochem. 66, 2279–2286.

    PubMed  CAS  Google Scholar 

  129. Kaplan D.R., Matsumoto K., Lucarelli E., Thiele C.J. (1993) Induction of TrkB by retinoic acid mediates biologic responsiveness to BDNF and differentiation of human neuroblastoma cells. Eukaryotic Signal Transduction Group. Neuron 11, 321–331.

    PubMed  CAS  Google Scholar 

  130. Encinas M., Iglesias M., Liu Y., et al. (2000) Sequential treatment of SH-SY5Y cells with retinoic acid and brain-derived neurotrophic factor gives rise to fully differentiated, neurotrophic factor-dependent, human neuronlike cells. J. Neurochem. 75, 991–1003.

    PubMed  CAS  Google Scholar 

  131. Feng Z., Porter A.G. (1999) NF-kappaB/Rel proteins are required for neuronal differentiation of SH-SY5Y neuroblastoma cells. J. Biol. Chem. 274, 30341–30344.

    PubMed  CAS  Google Scholar 

  132. Gabellini N., Minozzi M.C., Leon A., Dal Toso R. (1992) Nerve growth factor transcriptional control of c-fos promoter transfected in cultured spinal sensory neurons. J. Cell. Biol. 118, 131–138.

    PubMed  CAS  Google Scholar 

  133. Pizzorusso T., Ratto G.M., Putignano E., Maffei L. (2000) Brain-derived neurotrophic factor causes cAMP response element-binding protein phosphorylation in absence of calcium increases in slices and cultured neurons from rat visual cortex. J. Neurosci. 20, 2809–2816.

    PubMed  CAS  Google Scholar 

  134. Monaco L., Sassone-Corsi P. (1997) Cross-talk in signal transduction: Ras-dependent induction of cAMP-responsive transcriptional repressor ICER by nerve growth factor. Oncogene. 15, 2493–2500.

    PubMed  CAS  Google Scholar 

  135. Smart D., Smith G., Lambert D.G. (1995) Muopioids activate phospholipase C in SH-SY5Y human neuroblastoma cells via calcium-channel opening. Biochem. J. 305, 577–578.

    PubMed  CAS  Google Scholar 

  136. Lüsher, B., Mitchell, P.J., Williams, T., Tjian, R., (1989) Regulation of transcription factor AP-2 by the morphogen retinoic acid and by second messengers. Genes Dev. 3, 1507–1517.

    Google Scholar 

  137. Anderson M.E., Braun A.P., Wu Y., et al. (1998) KN-93, an inhibitor of multifunctional Ca++/calmodulin-dependent protein kinase, decreases early afterdepolarizations in rabbit heart. J. Pharmacol. Exp. Ther. 287, 996–1006.

    PubMed  CAS  Google Scholar 

  138. Bhatt H.S., Conner B.P., Prasanna G., Yorio T., Easom R.A. (2000) Dependence of insulin secretion from permeabilized pancreatic betacells on the activation of Ca2+/calmodulin-dependent protein kinase II. A re-evaluation of inhibitor studies. Biochem. Pharmacol. 60, 1655–1663.

    PubMed  CAS  Google Scholar 

  139. Shimomura A., Ogawa Y., Kitani T., Fujisawa H., Hagiwara M. (1996) Calmodulin-dependent protein kinase II potentiates transcriptional activation through activating transcription factor 1 but not cAMP response element-binding protein. J. Biol. Chem. 271, 17957–17960.

    PubMed  CAS  Google Scholar 

  140. Wagner J.J., Terman G.W., Chavkin C. (1993) Endogenous dynorphins inhibit excitatory neurotransmission and block LTP induction in the hippocampus. Nature 363, 451–454.

    PubMed  CAS  Google Scholar 

  141. Weisskopf M.G., Zalutsky R.A., Nicoll R.A. (1993) The opioid peptide dynorphin mediates heterosynaptic depression of hippocampal mossy fibre synapses and modulates long-term potentiation. Nature 365, 188.

    PubMed  CAS  Google Scholar 

  142. Osawa M., Tong K.I., Lilliehook C., et al. (2001) Calcium-regulated DNA binding and oligomerization of the neuronal calcium-sensing protein, calsenilin/DREAM/KChIP3. J. Biol. Chem. 276, 41005–41013.

    PubMed  CAS  Google Scholar 

  143. Corneliussen B., Holm M., Waltersson Y., et al. (1994) Calcium/calmodulin inhibition of basichelix-loop-helix transcription factor domains. Nature 368, 760–764.

    PubMed  CAS  Google Scholar 

  144. Baudier J., Bergeret E., Bertacchi N., Weintraub H., Gagnon J., Garin J. (1995) Interactions of myogenic bHLH transcription factors with calcium-binding calmodulin and S100α proteins. Biochemistry 34, 7834–7846.

    PubMed  CAS  Google Scholar 

  145. Onions J., Hermann S., Grundstrom T. (1997) Basic helix-loop-helix protein sequences determining differential inhibition by calmodulin and S-100 proteins. J. Biol. Chem. 272, 23930–23937.

    PubMed  CAS  Google Scholar 

  146. Pasternak S.H., Bagshaw R.D., Guiral M., et al. (2003) Presenilin, Nicastrin and Beta-Amyloid Production in the Endosomal/Lysosomal System: Toward a Unifying Model of Alzheimer’s Disease. J. Biol. Chem. 278, 26687–26694.

    PubMed  CAS  Google Scholar 

  147. Buxbaum J.D., Liu K.N., Luo Y., et al. (1998) Evidence that tumor necrosis factor alpha converting enzyme is involved in regulated alpha-secretase cleavage of the Alzheimer amyloid protein precursor. J. Biol. Chem. 273, 27765–27767.

    PubMed  CAS  Google Scholar 

  148. Choi E.K., Zaidi N.F., Miller J.S., et al. (2001) Calsenilin is a substrate for caspase-3 that preferentially interacts with the familial Alzheimer’s disease-associated C-terminal fragment of presenilin 2. J. Biol. Chem. 2001 276, 19197–19204.

    PubMed  CAS  Google Scholar 

  149. Jo D.G., Kim M.J., Choi Y.H., et al. (2001) Proapoptotic function of calsenilin/DREAM/KChIP3. FASEB J. 15, 589–591.

    PubMed  CAS  Google Scholar 

  150. Li Y.M., Xu M., Lai M.T., et al. Photoactivated gamma-secretase inhibitors directed to the active site covalently label presenilin 1. Nature 405, 689–694.

  151. Song W.J., Tkatch T., Baranauskas G., Ichinohe N., Kitai S.T., Surmeier D.J. (1998) Somatodendritic depolarization-activated potassium currents in rat neostriatal cholinergic interneurons are predominantly of the A type and attributable to coexpression of Kv4.2 and Kv4.1 subunits. J. Neurosci. 18, 3124–3137.

    PubMed  CAS  Google Scholar 

  152. Buxbaum J.D., Lilliehook C., Chan J.Y., et al. (2000) Genomic structure, expression pattern, and chromosomal localization of the human calsenilin gene: no association between an exonic polymorphism and Alzheimer’s disease. Neurosci. Lett. 294, 135–138.

    PubMed  CAS  Google Scholar 

  153. Spreafico F., Barski J.J., Farina C., Meyer M. (2001) Mouse DREAM/calsenilin/KChIP3: gene structure, coding potential, and expression. Mol. Cell. Neurosci. 17, 1–16.

    PubMed  CAS  Google Scholar 

  154. Zaidi N.F., Berezovska O., Choi E.K., et al. (2002) Biochemical and immunocytochemical characterization of calsenilin in mouse brain. Neuroscience 114, 247–263.

    PubMed  CAS  Google Scholar 

  155. Hammond P.I., Craig T.A., Kumar R., Brimijoin S. (2003) Regional and cellular distribution of DREAM in adult rat brain consistent with multiple sensory processing roles. Brain Res. Mol. Brain Res. 111, 104–110.

    PubMed  CAS  Google Scholar 

  156. Costigan M., Woolf C.J. (2002) No DREAM, No pain. Closing the spinal gate. Cell 108, 297–300.

    PubMed  CAS  Google Scholar 

  157. Campos D., Jimenez-Diaz L., Naranjo J.R., Carrion A.M. (2003) Ca2+-dependent prodynorphin transcriptional deprepression in neuroblastoma cells is exerted through DREAM protein activity in a kinase-independent manner. Mol. Cell. Neurosci. 22, 135–145.

    PubMed  CAS  Google Scholar 

  158. Sanz C., Mellstrom B., Link W.A., Naranjo J.R., Fernandez-Luna J.L. (2001) Interleukin 3-dependent activation of DREAM is involved in transcriptional silencing of the apoptotic Hrk gene in hematopoietic progenitor cells. EMBO J. 20, 2286–2292.

    PubMed  CAS  Google Scholar 

  159. Matsu-ura T., Konishi Y., Aoki T., Naranjo J.R., Mikoshiba K., Tamura T.A. (2002) Seizuremediated neuronal activation induces DREAM gene expression in the mouse brain. Brain Res. Mol. Brain Res. 109, 198–206.

    PubMed  CAS  Google Scholar 

  160. Hong Y.M., Jo D.G., Lee M.C., Kim S.Y., Jung Y.K. (2003) Reduced expression of calsenilin/DREAM/KChIP3 in the brains of kainic acid-induced seizure and epilepsy patients. Neurosci. Lett. 340, 33–36.

    PubMed  CAS  Google Scholar 

  161. Nicoll D.A., Ottolia M., Lu L., Lu Y., Philipson K.D. (1999) A new topological model of the cardiac sarcolemmal Na+-Ca2+ exchanger. J. Biol. Chem. 274, 910–917.

    PubMed  CAS  Google Scholar 

  162. Hilgemann D.W. (1990) Regulation and deregulation of cardiac Na+-Ca2+ exchange in giant excised sarcolemmal membrane patches. Nature 344, 242–245.

    PubMed  CAS  Google Scholar 

  163. Li Z., Nicoll D.A., Collins A., et al. (1991) Identification of a peptide inhibitor of the cardiac sarcolemmal Na+-Ca2+ exchanger. J. Biol. Chem. 266, 1014–1020.

    PubMed  CAS  Google Scholar 

  164. Matsuoka S., Nicoll D.A., He Z., Philipson K.D. (1997) Regulation of cardiac Na+-Ca2+ exchanger by the endogenous XIP region. J. Gen. Physiol. 109, 273–286.

    PubMed  CAS  Google Scholar 

  165. Nakasaki Y., Iwamoto T., Hanada H., Imagawa T., Shigekawa M. (1993) Cloning of the rat aortic smooth muscle Na+/Ca2+ exchanger and tissue-specific expression of isoforms. J. Biochem. (Tokyo) 114, 528–534.

    CAS  Google Scholar 

  166. Kofuji P., Lederer W.J., Schulze D.H. (1993) Na/Ca exchanger isoforms expressed in kidney. Am. J. Physiol. 265, 598–603.

    Google Scholar 

  167. Kofuji P., Lederer W.J., Schulze D.H. (1994) Mutually exclusive and cassette exons underlie alternatively spliced isoforms of the Na/Ca exchanger. J. Biol. Chem. 269, 5145–5149.

    PubMed  CAS  Google Scholar 

  168. Furman I., Cook O., Kasir J., Rahamimoff H. (1993) Cloning of two isoforms of the rat brain Na+-Ca2+ exchanger gene and their functional expression in HeLa cells. FEBS Lett. 319, 105–109.

    PubMed  CAS  Google Scholar 

  169. Quednau B.D., Nicoll D.A., Philipson K.D. (1997) Tissue specificity and alternative splicing of the Na+/Ca2+ exchanger isoforms NCX1, NCX2, and NCX3 in rat. Am. J. Physiol. 272, 250–261.

    Google Scholar 

  170. Hryshko L.V. (2002) Tissue-specific modes of Na/Ca exchanger regulation. Ann. N. Y. Acad. Sci. 976, 166–175.

    PubMed  CAS  Google Scholar 

  171. Dipolo R. (1974) Effect of ATP on the calcium efflux in dialyzed squid giant axons. J. Gen. Physiol. 64, 503–517.

    PubMed  CAS  Google Scholar 

  172. DiPolo R., Beauge L. (1994) Effects of vanadate on MgATP stimulation of Na-Ca exchange support kinase-phosphatase modulation in squid axons. Am. J. Physiol. 266, 1382–1391.

    Google Scholar 

  173. Iwamoto T., Pan Y., Wakabayashi S., Imagawa T., Yamanaka H.I., Shigekawa M. (1996) Phosphorylation-dependent regulation of cardiac Na+/Ca2+ exchanger via protein kinase C J. Biol. Chem. 271, 13609–13615.

    PubMed  CAS  Google Scholar 

  174. Schulze D.H., Muqhal M., Lederer W.J., Ruknudin A.M. (2003) Sodium/calcium exchanger (NCX1) macromolecular complex. J. Biol. Chem. 278, 28849–28855.

    PubMed  CAS  Google Scholar 

  175. Ruknudin A., Schulze D.H. (2002) Phosphorylation of the Na+/Ca2+ exchangers by PKA. Ann. N. Y. Acad. Sci. 976, 209–213.

    PubMed  CAS  Google Scholar 

  176. Linck B., Qiu Z., He Z., Tong Q., Hilgemann D.W., Philipson K.D. (1998) Functional comparison of the three isoforms of the Na+/Ca2+ exchanger (NCX1, NCX2, NCX3). Am. J. Physiol. 274, 415–423.

    Google Scholar 

  177. Thurneysen T., Nicoll D.A., Philipson K.D., Porzig H. (2002) Sodium/calcium exchanger subtypes NCX1, NCX2 and NCX3 show cell-specific expression in rat hippocampus cultures. Brain Res. Mol. Brain Res. 107, 145–156.

    PubMed  CAS  Google Scholar 

  178. Li L., Guerini D., Carafoli E. (2000) Calcineurin controls the transcription of Na+/Ca2+ exchanger isoforms in developing cerebellar neurons. J. Biol. Chem. 275, 20903–20910.

    PubMed  CAS  Google Scholar 

  179. Madison D..V, Malenka R.C., Nicoll R.A. (1991) Mechanisms underlying long-term potentiation of synaptic transmission. Annu. Rev. Neurosci. 14, 379–397.

    PubMed  CAS  Google Scholar 

  180. Jeon D., Yang Y.M., Jeong M.J., Philipson K.D., Rhim H., Shin H.S. (2003) Enhanced learning and memory in mice lacking Na+/Ca2+ exchanger 2 Neuron 38, 965–976.

    PubMed  CAS  Google Scholar 

  181. Eriksson K.S., Stevens D.R., Haas H.L. (2001) Serotonin excites tuberomammillary neurons by activation of Na+/Ca2+-exchange. Neuropharmacology 40, 345–351.

    PubMed  CAS  Google Scholar 

  182. Burdakov D., Liss B., Ashcroft F.M. (2003) Orexin excites GABAergic neurons of the arcuate nucleus by activating the sodium-calcium exchanger. J. Neurosci. 23, 4951–4957.

    PubMed  CAS  Google Scholar 

  183. Lee K., Boden P.R. (1997) Characterization of the inward current induced by metabotropic glutamate receptor stimulation in rat ventromedial hypothalamic neurons. J. Physiol. 504, 649–663.

    PubMed  Google Scholar 

  184. Blaustein M.P., Juhaszova M., Golovina V.A., Church P.J., Stanley E.F. (2002) Na/Ca exchanger and PMCA localization in neurons and astrocytes: functional implications. Ann. N. Y. Acad. Sci. 976, 356–366.

    PubMed  CAS  Google Scholar 

  185. Tabuchi A., Sakaya H., Kisukeda T., Fushiki H., Tsuda M. (2002) Involvement of an upstream stimulatory factor as well as cAMP-responsive element-binding protein in the activation of brain-derived neurotrophic factor gene promoter I. J. Biol. Chem. 277, 35920–35931.

    PubMed  CAS  Google Scholar 

  186. Chawla S., Bading H. (2001) CREB/CBP and SRE-interacting transcriptional regulators are fast on-off switches: duration of calcium transients specifies the magnitude of transcriptional responses. J. Neurochem. 79, 849–858.

    PubMed  CAS  Google Scholar 

  187. Malcangio M., Lessmann V. (2003) A common thread for pain and memory synapses? Brainderived neurotrophic factor and trkB receptors. Trends Pharmacol. Sci. 24, 116–121.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gabellini, N. Transcriptional regulation by cAMP and Ca2+ links the Na+/Ca2+ exchanger 3 to memory and sensory pathways. Mol Neurobiol 30, 91–116 (2004). https://doi.org/10.1385/MN:30:1:091

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/MN:30:1:091

Index Entries

Navigation