Skip to main content
Log in

Neural stem cells redefined

A FACS perspective

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Using the generally accepted ontogenetic definition, neural stem cells (NSCs) are characterized as undifferentiated cells originating from the neuroectoderm that have the capacity both to perpetually self-renew without differentiating and to generate multiple types of lineage-restricted progenitors (LRP). LRPs can themselves undergo limited self-renewal, then ultimately differentiate into highly specialized cells that compose the nervous system. However, this physiologically delimited definition of NSCs has been increasingly blurred in the current state of the field, as the great majority of studies have retrospectively inferred the existence of NSCs based on their deferred functional capability rather than prospectively identifying the actual cells that created the outcome. Further complicating the matter is the use of a wide variety of neuroepithelial or neurosphere preparations as a source of putative NSCs, without due consideration that these preparations are themselves composed of heterogeneous populations of both NSCs and LRPs. This article focuses on recent attempts using FACS strategies to prospectively isolate NSCs from different types of LRPs as they appear in vivo and reveals the contrasting differences among these populations at molecular, phenotypic, and functional levels. Thus, the strategies presented here provide a framework for more precise studies of NSC and LRP cell biology in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gage F.H. (2000) Mammalian neural stem cells. Science 287, 1433–1438.

    Article  PubMed  CAS  Google Scholar 

  2. Anderson D.J. (2001) Stem cells and pattern formation in the nervous system: the possible versus the actual. Neuron 30, 19–35.

    Article  PubMed  CAS  Google Scholar 

  3. Temple S. (2001) Stem cell plasticity—building the brain of our dreams. Nat. Rev. Neurosci. 2, 513–520.

    Article  PubMed  CAS  Google Scholar 

  4. Temple S. (2001) The development of neural stem cells. Nature 414, 112–117.

    Article  PubMed  CAS  Google Scholar 

  5. Vaccarino F.M., Ganat Y., Zhang Y., and Zheng W. (2001) Stem cells in neurodevelopment and plasticity. Neuropsychopharmacology 25, 805–815.

    Article  PubMed  CAS  Google Scholar 

  6. Vescovi A.L., Galli R., and Gritti A. (2001) The neural stem cells and their transdifferentiation capacity. Biomed. Pharmacother. 55, 201–205.

    Article  PubMed  CAS  Google Scholar 

  7. Weissman I.L., Anderson D.J., and Gage F. (2001) Stem and progenitor cells: origins, phenotypes, lineage commitments, and transdifferentiations. Annu. Rev. Cell. Dev. Biol. 17, 387–403.

    Article  PubMed  CAS  Google Scholar 

  8. Gottlieb D.I. (2002) Large-scale sources of neural stem cells. Annu. Rev. Neurosci. 25, 381–407.

    Article  PubMed  CAS  Google Scholar 

  9. Gritti A., Vescovi A.L., and Galli R. (2002) Adult neural stem cells: plasticity and developmental potential. J. Physiol. 96, 81–90.

    CAS  Google Scholar 

  10. Kennea N.L. and Mehmet H. (2002) Neural stem cells. J. Pathol. 197, 536–550.

    Article  PubMed  Google Scholar 

  11. Kruger G.M. and Morrison S.J. (2002) Brain repair by endogenous progenitors. Cell 110, 399–402.

    Article  PubMed  CAS  Google Scholar 

  12. Panchision D.M. and McKay R.D. (2002) The control of neural stem cells by morphogenic signals. Curr. Opin. Genet. Dev. 12, 478–487.

    Article  PubMed  CAS  Google Scholar 

  13. Tsai R.Y., Kittappa R., and McKay R.D. (2002) Plasticity, niches, and the use of stem cells. Dev. Cell. 2, 707–712.

    Article  PubMed  CAS  Google Scholar 

  14. Cai J. and Rao M.S. (2002) Stem cell and precursor cell therapy. Neuromolecular Med. 2, 233–249.

    Article  PubMed  CAS  Google Scholar 

  15. Galli R., Gritti A., Bonfanti L., and Vescovi A.L. (2003) Neural stem cells: an overview. Circ. Res. 92, 598–608.

    Article  PubMed  CAS  Google Scholar 

  16. Limke T.L. and Rao M.S. (2002) Neural stem cells in aging and disease. J. Cell. Mol. Med. 6, 475–496.

    Article  PubMed  CAS  Google Scholar 

  17. Pevny L. and Rao M.S. (2003) The stem-cell menagerie. Trends Neurosci. 351–359.

  18. Arsenijevic Y. (2003) Mammalian neural stem-cell renewal: nature versus nurture. Mol. Neurobiol. 27, 73–98.

    Article  PubMed  CAS  Google Scholar 

  19. Seaberg R.M. and van der Kooy D. (2003) Stem and progenitor cells: the premature desertion of rigorous definitions. Trends Neurosci. 26, 125–131.

    Article  PubMed  CAS  Google Scholar 

  20. Johansson C.B. (2003) Mechanisms of stem cells in the central nervous system. J. Cell. Physiol. 196, 409–418.

    Article  PubMed  CAS  Google Scholar 

  21. Bjornson C.R., Rietze R.L., Reynolds B.A., Magli M.C., and Vescovi A.L. (1999) Turning brain into blood: a hematopoietic fate adopted by adult neural stem cells in vivo. Science 283, 534–537.

    Article  PubMed  CAS  Google Scholar 

  22. Galli R., Borello U., Gritti A., Minasi M.G., Bjornson C., Coletta M., et al. (2000) Skeletal myogenic potential of human and mouse neural stem cells. Nat. Neurosci. 3, 986–991.

    Article  PubMed  CAS  Google Scholar 

  23. Anderson D.J., Gage F.H., and Weissman I.L. (2001) Can stem cells cross lineage boundaries? Nat. Med. 7, 393–395.

    Article  PubMed  CAS  Google Scholar 

  24. Liu Y. and Rao M.S. (2003) Transdifferentiation—fact or artifact. J. Cell. Biochem. 88, 29–40.

    Article  PubMed  CAS  Google Scholar 

  25. Tropepe V., Sibilia M., Ciruna B.G., Rossant J., Wagner E.F., and van der Kooy D. (1999) Distinct neural stem cells proliferate in response to EGF and FGF in the developing mouse telencephalon. Dev. Biol. 208, 166–188.

    Article  PubMed  CAS  Google Scholar 

  26. Martens D.J., Tropepe V., and van Der Kooy D. (2000) Separate proliferation kinetics of fibroblast growth factor-responsive and epidermal growth factor-responsive neural stem cells within the embryonic forebrain germinal zone. J. Neurosci. 20, 1085–1095.

    PubMed  CAS  Google Scholar 

  27. Kallos M.S., Sen A., and Behie L.A. (2003) Large-scale expansion of mammalian neural stem cells: a review. Med. Biol. Eng. Comput. 41, 271–282.

    Article  PubMed  CAS  Google Scholar 

  28. Davis A.A. and Temple S. (1994) A self-renewing multipotential stem cell in embryonic rat cerebral cortex. Nature 372, 263–266.

    Article  PubMed  CAS  Google Scholar 

  29. Reynolds B.A. and Weiss S. (1996) Clonal and population analyses demonstrate that an EGF-responsive mammalian embryonic CNS precursor is a stem cell. Dev. Biol. 175, 1–13.

    Article  PubMed  CAS  Google Scholar 

  30. Suslov O.N., Kukekov V.G., Ignatova T.N., and Steindler D.A. (2002) Neural stem cell heterogeneity demonstrated by molecular phenotyping of clonal neurospheres. Proc. Natl. Acad. Sci. USA 99, 14,506–14,511.

    Article  CAS  Google Scholar 

  31. Kalyani A.J., Mujtaba T., and Rao M.S. (1999) Expression of EGF receptor and FGF receptor isoforms during neuroepithelial stem cell differentiation. J. Neurobiol. 38, 207–224.

    Article  PubMed  CAS  Google Scholar 

  32. Qian X., Davis A.A., Goderie S.K., and Temple S. (1997) FGF2 concentration regulates the generation of neurons and glia from multipotent cortical stem cells. Neuron 18, 81–93.

    Article  PubMed  CAS  Google Scholar 

  33. Morrison S.J., White P.M., Zock C., and Anderson D.J. (1999) Prospective identification, isolation by flow cytometry, and in vivo self-renewal of multipotent mammalian neural crest stem cells. Cell 96, 737–749.

    Article  PubMed  CAS  Google Scholar 

  34. White P.M., Morrison S.J., Orimoto K., Kubu C.J., Verdi J.M., and Anderson D.J. (2001) Neural crest stem cells undergo cell-intrinsic developmental changes in sensitivity to instructive differentiation signals. Neuron 29, 57–71.

    Article  PubMed  CAS  Google Scholar 

  35. Bixby S., Kruger G.M., Mosher J.T., Joseph N. M., and Morrison S.J. (2002) Cell-intrinsic differences between stem cells from different regions of the peripheral nervous systems regulate the generation of neural diversity. Neuron 35, 643–656.

    Article  PubMed  CAS  Google Scholar 

  36. Uchida N., Buck D.W., He D., Reitsma M.J., Masek M., Phan T.V., et al. (2000) Direct isolation of human central nervous system stem cells. Proc. Natl. Acad. Sci. USA 97, 14,720–14,725.

    Article  CAS  Google Scholar 

  37. Rietze R.L., Valcanis H., Brooker G.F., Thomas T., Voss A.K., and Bartlett P.F. (2001) Purification of a pluripotent neural stem cell from the adult mouse brain. Nature 412, 736–739.

    Article  PubMed  CAS  Google Scholar 

  38. Cai J., Wu Y., Mirua T., Pierce J.L., Lucero M.T., Albertine K.H., et al. (2002) Properties of a fetal multipotent neural stem cell (NEP cell). Dev. Biol. 251, 221–240.

    Article  PubMed  CAS  Google Scholar 

  39. Leemhuis T., Yoder M.C., Grigsby S., Aguero B., Eder P., and Srour E.F. (1996) Isolation of primitive human bone marrow hematopoietic progenitor cells using Hoechst 33342 and Rhodamine 123. Exp. Hematol. 24, 1215–1224.

    PubMed  CAS  Google Scholar 

  40. Radley J.M., Ellis S., Palatsides M., Williams B., and Bertoncello I. (1999) Ultrastructure of primitive hematopoietic stem cells isolated using probes of functional status. Exp. Hematol. 27, 365–369.

    Article  PubMed  CAS  Google Scholar 

  41. Kawaguchi A., Miyata T., Sawamoto K., Takashita N., Murayama A., Akamatsu W., et al. (2001) Nestin-EGFP transgenic mice: visualization of the self-renewal and multipotency of CNS stem cells. Mol. Cell. Neurosci. 17, 259–273.

    Article  PubMed  CAS  Google Scholar 

  42. Hilbig R., Rosner H., and Rahmann H. (1981) Phylogenetic recapitulation of brain ganglioside composition during ontogenetic development. Comp. Biochem. Physiol. 68, 301–305.

    Article  Google Scholar 

  43. Hilbig R., Rosner H., Merz G., Segler-Stahl K., and Rahmann H. (1982) Developmental profiles of gangliosides in mouse and rat cerebral cortex. Wilhelm Roux’s Archives 191, 281–284.

    Article  CAS  Google Scholar 

  44. Yu R.K., Macala L.J., Taki T., Weinfield H.M., and Yu F.S. (1988) Developmental changes in ganglioside composition and synthesis in embryonic rat brain. J. Neurochem. 50, 1825–1829.

    Article  PubMed  CAS  Google Scholar 

  45. Rogers T.B. and Snyder S.H. (1981) High affinity binding of tetanus toxin to mammalian brain membranes. J. Biol. Chem. 256, 2402–2407.

    PubMed  CAS  Google Scholar 

  46. Fishman P.H. (1982) Role of membrane gangliosides in the binding and action of bacterial toxins. J. Membr. Biol. 69, 85–97.

    Article  PubMed  CAS  Google Scholar 

  47. Halpern J.L. and Loftus A. (1993) Characterization of the receptor-binding domain of tetanus toxin. J. Biol. Chem. 268, 11,188–11,192.

    CAS  Google Scholar 

  48. Shapiro R.E., Specht C.D., Collins B.E., Woods A.S., Cotter R.J., and Schnaar R.L. (1997) Identification of a ganglioside recognition domain of tetanus toxin using a novel ganglioside photoaffinity ligand. J. Biol. Chem. 272, 30,380–30,386.

    Article  CAS  Google Scholar 

  49. Kundu S.K., Pleatman M.A., Redwine W.A., Boyd A.E., and Marcus D.M. (1983) Binding of monoclonal antibody A2B5 to gangliosides. Biochem. Biophys. Res. Commun. 116, 836–842.

    Article  PubMed  CAS  Google Scholar 

  50. Kasai N. and Yu R.K. (1983) The monoclonal antibody A2B5 is specific to ganglioside GQ1c. Brain Res. 277, 155–158.

    Article  PubMed  CAS  Google Scholar 

  51. Schwarz A. and Futerman A.H. (1996) The localization of gangliosides in neurons of the central nervous system: the use of anti-ganglioside antibodies. Biochem. Biophys. Acta 1286, 247–267.

    PubMed  CAS  Google Scholar 

  52. Farrer R.G. and Quarles R.H. (1999) GT3 and its O-acetylated derivative are the principal A2B5-reactive gangliosides in cultured O2A lineage cells and are down-regulated among with O-acetyl GD3 during differentiation to oligodendrocytes. J. Neurosci. Res. 57, 371–380.

    Article  PubMed  CAS  Google Scholar 

  53. Raff M.C., Fields K.L., Hakomori S.I., Mirsky R., Pruss R.M., and Winter J. (1979) Cell-type-specific markers for distinguishing and studying neurons and the major classes of glial cells in culture. Brain Res. 174, 283–308.

    Article  PubMed  CAS  Google Scholar 

  54. Koulakoff A., Bizzini B., and Berwald-Netter Y. (1983) Neuronal acquisition of tetanus toxin binding sites: relationship with the last mitotic cycle. Dev. Biol. 100, 350–357.

    Article  PubMed  CAS  Google Scholar 

  55. Raff M.C., Abney E.R., Cohen J., Lindsay R., and Noble M. (1983) Two types of astrocytes in cultures of developing rat white matter: differences in morphology, surface gangliosides, and growth characteristics. J. Neurosci. 3, 1289–1300.

    PubMed  CAS  Google Scholar 

  56. Abney E.R., Williams B.P., and Raff M.C. (1983) Tracing the development of oligodendrocytes from precursor cells using monoclonal antibodies, fluorescence-activated cell sorting, and cell culture. Dev. Biol. 100, 166–171.

    Article  PubMed  CAS  Google Scholar 

  57. Behar T., McMorris F.A., Novotny E.A., Barker J.L., and Dubois-Dalcq M. (1988) Growth and differentiation properties of O-2A progenitors purified from rat cerebral hemispheres. J. Neurosci. Res. 21, 168–180.

    Article  PubMed  CAS  Google Scholar 

  58. Bottenstein J.E., Hunter S.F., and Seidel M. (1998) CNS neuronal cell line-derived factors regulate gliogenesis in neonatal rat brain cultures. J. Neurosci. Res. 20, 291–303.

    Article  Google Scholar 

  59. Scolding N.J., Rayner P.J., and Compston D.A. (1999) Identification of A2B5-positive putative oligodendrocyte progenitor cells and A2B5-positive astrocytes in adult human white matter. Neuroscience 89, 1–4.

    Article  PubMed  CAS  Google Scholar 

  60. Shindler K.S. and Roth K.A. (1996) Cholera toxin binds to differentiating neurons in the developing murine basal ganglia. Brain Res. Dev. Brain. Res. 92, 199–210.

    Article  PubMed  CAS  Google Scholar 

  61. Blum A.S. and Barnstable C.J. (1987) O-acetylation of a cell-surface carbohydrate creates discrete molecular patterns during neural development. Proc. Natl. Acad. Sci. USA 84, 8716–8720.

    Article  PubMed  CAS  Google Scholar 

  62. Mendez-Otero R., Schlosshauer B., Barnstable C.J., and Constantine-Paton M. (1988) A developmentally regulated antigen associated with neural cell and process migration. J. Neurosci. 8, 564–579.

    PubMed  CAS  Google Scholar 

  63. Santiago M.F., Berredo-Pinho M., Costa M.R., Gandra M., Cavalcante L.A., et al. (2001) Expression and function of ganglioside 9-Oacetyl GD3 in postmitotic granule cell development. Mol. Cell. Neurosci. 17, 488–499.

    Article  PubMed  CAS  Google Scholar 

  64. Miyakoshi L.M., Mendez-Otero R., and Hedin-Pereira C. (2001) The 9-O-acetyl GD3 gangliosides are expressed by migrating chains of subventricular zone neurons in vitro. Braz. J. Med. Biol. Res. 34, 669–673.

    Article  PubMed  CAS  Google Scholar 

  65. Maric D., Maric I., and Barker J.L. (1999) Flow cytometric strategies to study CNS development. In Neuromethods, vol. 33, (Boulton A.A., and Baker G.B., eds.), Harmana Press, Totowa, NJ, pp. 287–318.

    Google Scholar 

  66. Maric D., Maric I., Chang Y.H., and Barker J.L. (2000) Stereotypic physiological properties emerge during early neuronal and glial lineage development in the embryonic rat neocortex. Cerebral Cortex 10, 729–747.

    Article  PubMed  CAS  Google Scholar 

  67. Maric D., Maric I., Chang Y.H., and Barker J.L. (2003) Prospective cell sorting of embryonic rat neural stem cells and neuronal and glial progenitors reveals selective effects of basic fibroblast growth factor and epidermal growth factor on self-renewal and differentiation. J. Neurosci. 23, 240–251.

    PubMed  CAS  Google Scholar 

  68. Koopman G., Reutelingsperger C.P., Kuijten G.A., Keehnen R.M., Pals S.T., and van Oers M.H. (1994) Annexin V for flow cytometric detection of phosphatidylserine expression on B cells undergoing apoptosis. Blood 84, 1415–1420.

    PubMed  CAS  Google Scholar 

  69. Martin S.J., Reutelingsperger C.P., McGahon A.J., Rader J.A., van Schie R.C., LaFace D.M., et al. (1995) Early redistribution of plasma membrane phosphatidylserine is a general feature of apoptosis regardless of the initiating stimulus: inhibition by overexpression of Bcl-2 and Abl. J. Exp. Med. 182, 1545–1556.

    Article  PubMed  CAS  Google Scholar 

  70. Maric D., Maric I., Ma W., Lahojuji F., Somogyi R., Wen X., et al. (1997) Anatomical gradients in proliferation and differentiation of embryoni.c rat CNS accessed by buoyant density fractionation: alpha 3, beta 3 and gamma 2 GABAA receptor subunit co-expression by post-mitotic neocortical neurons correlates directly with cell buoyancy. Eur. J. Neurosci. 9, 507–522.

    Article  PubMed  CAS  Google Scholar 

  71. Maric D., Maric I., and Barker J.L. (1998) Buoyant density gradient fractionation and flow cytometric analysis of embryonic rat cortical neurons and progenitor cells. Methods 16, 247–259.

    Article  PubMed  CAS  Google Scholar 

  72. Geschwind D.H., Ou J., Easterday M.C., Dougherty J.D., Jackson R.L., Chen Z., et al. (2001) A genetic analysis of neural progenitor differentiation. Neuron 29, 325–339.

    Article  PubMed  CAS  Google Scholar 

  73. Terskikh A.V., Easterday M.C., Li L., Hood L., Kornblum H.I., Geschwind D.H., et al. (2001) From hematopoiesis to neuropoiesis: evidence of overlapping genetic programs. Proc. Natl. Acad. Sci. USA 98, 7934–7939.

    Article  PubMed  CAS  Google Scholar 

  74. Wright L.S., Li J., Caldwell M.A., Wallace K., Johnson J.A., and Svendsen C.N. (2003) Gene expression in human neural stem cells: effects of leukemia inhibitory factor. J. Neurochem. 86, 179–195.

    Article  PubMed  CAS  Google Scholar 

  75. Malatesta P., Hartfuss E., and Gotz M. (2000) Isolation of radial glial cells by fluorescent-activated cell sorting reveals a neuronal lineage. Development 127, 5253–5263.

    PubMed  CAS  Google Scholar 

  76. Tamamaki N., Nakamura K., Okamoto K., and Kaneko T. (2001) Radial glia is a progenitor of neocortical neurons in the developing cerebral cortex. Neurosci. Res. 41, 51–60.

    Article  PubMed  CAS  Google Scholar 

  77. Noctor S.C., Flint A.C., Weissman T.A., Dammerman R.S., and Kriegstein A.R. (2001) Neurons derived from radial glial cells establish radial units in neocortex. Nature 409, 714–720.

    Article  PubMed  CAS  Google Scholar 

  78. Noctor S.C., Flint A.C., Weissman T.A., Wong W.S., Clinton B.K., and Kriegstein A.R. (2002) Dividing precursor cells of the embryonic cortical ventricular zone have morphological and molecular characteristics of radial glia. J. Neurosci. 22, 3161–3173.

    PubMed  CAS  Google Scholar 

  79. Luo Y., Cai J., Liu Y., Xue H., Chrest F.J., Wersto R.P., et al. (2002) Microarray analysis of selected genes in neural stem and progenitor cells. J. Neurochem. 83, 1481–1497.

    Article  PubMed  CAS  Google Scholar 

  80. LoTurco J.J., Owens D.F., Heath M.J., Davis M.B., and Kriegstein A.R. (1995) GABA and glutamate depolarize cortical progenitor cells and inhibit DNA synthesis. Neuron 15, 1287–1298.

    Article  PubMed  CAS  Google Scholar 

  81. Wang C., Pralong W.F., Schulz M.F., Rougon G., Aubry J.M., Pagliusi S., et al. (1996) Functional N-methyl-D-aspartate receptors in O-2A glial precursor cells: a critical role in regulating polysialic acid-neural cell adhesion molecule expression and cell migration. J. Cell. Biol. 135, 1565–1581.

    Article  PubMed  CAS  Google Scholar 

  82. Antonopoulos J., Pappas I.S., and Parnavelas J.G. (1997) Activation of the GABAA receptor inhibits the proliferative effects of bFGF in cortical progenitor cells. Eur. J. Neurosci. 9, 291–298.

    Article  PubMed  CAS  Google Scholar 

  83. Sah D.W., Ray J., and Gage F.H. (1997) Regulation of voltage- and ligand-gated currents in rat hippocampal progenitor cells in vitro. J. Neurobiol. 32, 95–110.

    Article  PubMed  CAS  Google Scholar 

  84. Cameron H.A., Hazel T.G., and McKay R.D. (1998) Regulation of neurogenesis by growth factors and neurotransmitters. J. Neurobiol. 36, 287–306.

    Article  PubMed  CAS  Google Scholar 

  85. Lauder J.M., Liu J., Devaud L., and Morrow A.L. (1998) GABA as a trophic factor for developing monoamine neurons. Perspect. Dev. Neurobiol. 5, 247–259.

    PubMed  CAS  Google Scholar 

  86. Weiss E.R., Maness P., and Lauder J.M. (1998) Why do neurotransmitters act like growth factors? Perspect. Dev. Neurobiol. 5, 323–335.

    PubMed  CAS  Google Scholar 

  87. Ma W., Liu Q.Y., Maric D., Sathanoori R., Chang Y.H., and Barker J.L. (1998) Basic FGF-responsive telencephalic precursor cells express functional GABA(A) receptor/Cl channels in vitro. J. Neurobiol. 35, 277–286.

    Article  PubMed  CAS  Google Scholar 

  88. Nguyen L., Rigo J.M., Rocher V., Belachew S., Malgrange B., Rogister B., et al. (2001) Neurotransmitters as early signals for central nervous system development. Cell Tissue Res. 305, 187–202.

    Article  PubMed  CAS  Google Scholar 

  89. Kalyani A.J., Piper D., Mujtaba T., Lucero M.T., and Rao M.S. (1998) Spinal cord neuronal precursors generate multiple neuronal phenotypes in culture. J. Neurosci. 18, 7856–7868.

    PubMed  CAS  Google Scholar 

  90. Mujtaba T., Piper D.R., Kalyani A., Groves A.K., Lucero M.T., and Rao M.S. (1999) Lineage-restricted neural precursors can be isolated from both the mouse neural tube and cultured ES cells. Dev. Biol. 214, 113–127.

    Article  PubMed  CAS  Google Scholar 

  91. Piper D.R., Mujtaba T., Keyoung H., Roy N.S., Goldman S.A., Rao M.S., et al. (2001) Identification and characterization of neuronal precursors and their progeny from human fetal tissue. J. Neurosci. Res. 66, 356–368.

    Article  PubMed  CAS  Google Scholar 

  92. Piper D.R., Mujtaba T., Rao M.S., and Lucero M.T. (2000) Immunocytochemical and physiological characterization of a population of cultured human neural precursors. J. Neurophysiol. 84, 534–548.

    PubMed  CAS  Google Scholar 

  93. Ma W., Maric D., Li B.S., Hu Q., Andreadis J.D., Grant G.M., et al. (2000) Acetylcholine stimulates cortical precursor cell proliferation in vitro via muscarinic receptor activation and map kinase phosphorylation. Eur. J. Neurosci. 12, 1–4.

    Article  Google Scholar 

  94. Schambra U.B., Sulik K.K., Petrusz P., and Lauder J.M. (1989) Ontogeny of cholinergic neurons in the mouse forebrain. J. Comp. Neurol. 288, 101–122.

    Article  PubMed  CAS  Google Scholar 

  95. Maric D., Maric I., and Barker J.L. (2000) Developmental changes in cell calcium homeostasis during neurogenesis of the embryonic rat cerebral cortex. Cerebral Cortex 10, 561–573.

    Article  PubMed  CAS  Google Scholar 

  96. Maric D., Maric I., and Barker J.L. (2000) Dual videomicroscopic imaging of membrane potential and cytosolic calcium of immunoidentified embryonic rat cortical cells. Methods 21, 335–347.

    Article  PubMed  CAS  Google Scholar 

  97. Maric D., Liu Q.Y., Maric I., Chaudry S., Chang Y.H., Smith S.V., et al. (2001) GABA expression dominates neuronal lineage progression in the embryonic rat neocortex and facilitates neurite outgrowth via GABAA autoreceptor/Cl channels. J. Neurosci. 21, 2343–2360.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dragan Maric.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maric, D., Barker, J.L. Neural stem cells redefined. Mol Neurobiol 30, 49–76 (2004). https://doi.org/10.1385/MN:30:1:049

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/MN:30:1:049

Index Entries

Navigation