Skip to main content
Log in

Age-related macular degeneration and retinal pigment epithelium wound healing

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Choroidal new vessel (CNV) excision may improve vision in patients with age-related macular degeneration (AMD) by eliminating the source of subretinal bleeding and scarring. Visual recovery after CNV excision is usually poor in AMD patients, probably because of removal of the associated retinal pigment epithelium (RPE), coupled with the inability of native RPE at the edge of the dissection bed to resurface the iatrogenic RPE defect. Experiments using in vitro and in vivo RPE wound-healing models have provided insight into the factors that regulate RPE wound healing in situ. Wound-healing studies using aged submacular human Bruch’s membrane in organ culture show that resurfacing of localized RPE defects is influenced by the depth of damage to Bruch’s membrane as well as factors that are intrinsic to the aged RPE at the wound edge. The Bruch’s membrane organ-culture paradigm provides a surface for RPE wound healing that closely resembles the surface on which RPE must grow after CNV excision in AMD patients. An understanding of the factors that influence RPE wound healing might lead to treatments that stimulate RPE resurfacing and improve visual outcome after CNV excision.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Klein R., Klein B.E., and Linton K.L. (1992) Prevalence of age-related maculopathy. The Beaver Dam Eye Study. Ophthalmology 99, 933–943.

    PubMed  CAS  Google Scholar 

  2. Ferris F.L., 3rd, Fine S.L., and Hyman L. (1984) Age-related macular degeneration and blindness due to neovascular maculopathy. Arch. Ophthalmol. 102, 1640–1642.

    PubMed  Google Scholar 

  3. Vingerling J.R., Dielemans I., Hofman A., Grobbee D.E., Hijmering M., Kramer C.F., et al. (1995) The prevalence of age-related maculopathy in the Rotterdam Study. Ophthalmology 102, 205–210.

    PubMed  CAS  Google Scholar 

  4. Mitchell P., Smith W., Attebo K., and Wang J.J. (1995) Prevalence of age-related maculopathy in Australia. The Blue Mountains Eye Study. Ophthalmology 102, 1450–1460.

    PubMed  CAS  Google Scholar 

  5. Klein R., Klein B.E., Jensen S.C., and Meuer S.M. (1997) The five-year incidence and progression of age-related maculopathy: the Beaver Dam Eye Study. Ophthalmology 104, 7–21.

    PubMed  CAS  Google Scholar 

  6. Freund K.B., Yannuzz i. L.A., and Sorenson J.A. (1993) Age-related macular degeneration and choroidal neovascularization. Am. J. Ophthalmol. 115, 786–791.

    PubMed  CAS  Google Scholar 

  7. Bressler N.M. (2001) Treatment of Age-Related Macular Degeneration with Photodynamic Therapy (TAP) Study Group. Photodynamic therapy of subfoveal choroidal neovascularization in age-related macular degeneration with verteporfin: two-year results of 2 randomized clinical trialstap report 2. Arch. Ophthalmol. 119, 198–207.

    PubMed  CAS  Google Scholar 

  8. Olsen T.W., Feng X., Kasper T., Rath P.P., and Steuer E.R. (2001) Exudative age-related macular degeneration: fluorescein angiographic subtype prevalence. Investig. Ophthalmol. Vis. Sci. 42, S311.

    Google Scholar 

  9. (2001) Verteporfin therapy of subfoveal choroidal neovascularization in age-related macular degeneration: two-year results of a randomized clinical trial including lesions with occult with no classic choroidal neovascularization—verteporfin in photodynamic therapy report 2. Am. J. Ophthalmol. 131, 541–560.

  10. (2000) Submacular surgery trials randomized pilot trial of laser photocoagulation versus surgery for recurrent choroidal neovascularization secondary to age-related macular degeneration: I. Ophthalmic outcomes submacular surgery trials pilot study report number 1. Am. J. Ophthalmol. 130, 387–407.

  11. Merrill P.T., LoRusso F.J., Lomeo M.D., Saxe S.J., Khan M.M., and Lambert H.M. (1999) Surgical removal of subfoveal choroidal neovascularization in age- related macular degeneration. Ophthalmology 106, 782–789.

    Article  PubMed  CAS  Google Scholar 

  12. Thomas M.A., Dickinson J.D., Melberg N.S., Ibanez H.E., and Dhaliwal R.S. (1994) Visual results after surgical removal of subfoveal choroidal neovascular membranes. Ophthalmology 101, 1384–1396.

    PubMed  CAS  Google Scholar 

  13. Nasir M.A., Sugino I., and Zarbin M.A. (1997) Decreased choriocapillaris perfusion following surgical excision of choroidal neovascular membranes in age-related macular degeneration. Br. J. Ophthalmol. 81, 481–489.

    PubMed  CAS  Google Scholar 

  14. Grossniklaus H.E., Hutchinson A.K., Capone A., Jr., Woolfson J., and Lambert H.M. (1994) Clinicopathologic features of surgically excised choroidal neovascular membranes. Ophthalmology 101, 1099–1111.

    PubMed  CAS  Google Scholar 

  15. Rosa R.H., Thomas M.A., and Green W.R. (1996) Clinicopathologic correlation of submacular membranectomy with retention of good vision in a patient with age-related macular degeneration. Arch. Ophthalmol. 114, 480–487.

    PubMed  CAS  Google Scholar 

  16. Hsu J.K., Thomas M.A., Ibanez H., and Green W.R. (1995) Clinicopathologic studies of an eye after submacular membranectomy for choroidal neovascularization. Retina 15, 43–52.

    Article  PubMed  CAS  Google Scholar 

  17. Castellarin A.A., Nasir M.A., Sugino I.K., and Zarbin M.A. (1998) Clinicopathological correlation of primary and recurrent choroidal neovascularisation larisation following surgical excision in age related macular degeneration. Br. J. Ophthalmol. 82, 480–487.

    Article  PubMed  CAS  Google Scholar 

  18. Korte G.E., Burns M.S., and Bellhorn R.W. (1989) Epithelium-capillary interactions in the eye: the retinal pigment epithelium and the choriocapillaris. Int. Rev. Cytol. 114, 221–248.

    Article  PubMed  CAS  Google Scholar 

  19. Algvere P.V., Berglin L., Gouras P., Sheng Y., and Kopp E.D. (1997) Transplantation of RPE in age-related macular degeneration: observations in disciform lesions and dry RPE atrophy. Graefe’s Arch. Clin. Exp. Ophthalmol. 235, 149–158.

    Article  CAS  Google Scholar 

  20. Del Priore L., Kaplan H.J., Tezel T.H., and Berger A.S. (1998) Retinal pigment epithelium trnasplantation for subfoveal neovascularization in exudative age-related macular degeneration: A clinical trial. In: The Macula Society, Boca Raton, FL.

    Google Scholar 

  21. Gouras P. and Algvere P. (1996) Retinal cell transplantation in the macula: new techniques. Vision Res. 36, 4121–4125.

    Article  PubMed  CAS  Google Scholar 

  22. Algvere P.V., Berglin L., Gouras P., and Sheng Y. (1994) Transplantation of fetal retinal pigment epithelium in age-related macular degeneration with subfoveal neovascularization. Graefe’s Arch. Clin. Exp. Ophthalmol. 232, 707–716.

    Article  CAS  Google Scholar 

  23. Algvere P.V., Gouras P., and Dafgard Kopp E. (1999) Long-term outcome of RPE allografts in non-immunosuppressed patients with AMD. Eur. J. Ophthalmol. 9, 217–230.

    PubMed  CAS  Google Scholar 

  24. Del Priore L.V., Kaplan H.J., Tezel T.H., Hayashi N., Berger A.S., and Green W.R. (2001) Retinal pigment epithelial cell transplantation after subfoveal membranectomy in age-related macular degeneration: clinicopathologic correlation. Am. J. Ophthalmol. 131, 472–480.

    Article  PubMed  Google Scholar 

  25. Tsukahara I., Ninomiya S., Castellarin A., Yagi F., Sugino I.K., and Zarbin M.A. (2002) Early attachment of uncultured retinal pigment epithelium from aged donors onto Bruch’s membrane explants. Exp. Eye Res. 74, 255–266.

    Article  PubMed  CAS  Google Scholar 

  26. Castellarin A.A., Sugino I.K., Vargas J.A., Parolini B., Lui G.M., and Zarbin M.A. (1998) In vitro transplantation of fetal human retinal pigment epithelial cells onto human cadaver Bruch’s membrane. Exp. Eye Res. 66, 49–67.

    Article  PubMed  CAS  Google Scholar 

  27. Tezel T.H., Del Priore L.V., and Kaplan H.J. (1997) Reattachment of harvested retinal pigment epithelium to a substrate prevents apoptosis. Graefe’s Arch. Clin. Exp. Ophthalmol. 235, 41–47.

    Article  CAS  Google Scholar 

  28. Sheng Y., Gouras P., Cao H., Berglin L., Kjeldbye H., Lopez R., et al. (1995) Patch transplants of human fetal retinal pigment epithelium in rabbit and monkey retina. Investig. Ophthalmol. Vis. Sci. 36, 381–390.

    CAS  Google Scholar 

  29. Lai C.C., Gouras P., Doi K., Tsang S.H., Goff S.P., and Ashton P. (2000) Local immunosuppression prolongs survival of RPE xenografts labeled by retroviral gene transfer. Investig. Ophthalmol. Vis. Sci. 41, 3134–3141.

    CAS  Google Scholar 

  30. Wongpichedchai S., Weiter J.J., Weber P., and Dorey C.K. (1992) Comparison of external and internal approaches for transplantation of autologous retinal pigment epithelium. Investig. Ophthalmol. Vis. Sci. 33, 3341–3352.

    CAS  Google Scholar 

  31. el Dirini A.A., Wang H.M., Ogden T.E., and Ryan S.J. (1992) Retinal pigment epithelium implantation in the rabbit: technique and morphology. Graefe’s Arch. Clin. Exp. Ophthalmol. 230, 292–300.

    Article  Google Scholar 

  32. Gouras P., Flood M.T., Kjedbye H., Bilek M.K., and Eggers H. (1985) Transplantation of cultured human retinal epithelium to Bruch’s membrane of the owl monkey’s eye. Curr. Eye Res. 4, 253–265.

    PubMed  CAS  Google Scholar 

  33. Gouras P., Lopez R., Brittis M., and Kjeldbye H. (1992) The ultrastructure of transplanted rabbit retinal epithelium. Graefe’s Arch. Clin. Exp. Ophthalmol. 230, 468–475.

    Article  CAS  Google Scholar 

  34. He S., Wang H.M., Ogden T.E., and Ryan S.J. (1993) Transplantation of cultured human retinal pigment epithelium into rabbit subretina. Graefe’s Arch. Clin. Exp. Ophthalmol. 231, 737–742.

    Article  CAS  Google Scholar 

  35. Lane C. and Boulton M. (1987) Retinal pigment epithelial transplantation: technique and possible applications. Adv. Biosci. 63, 125–137.

    Google Scholar 

  36. Li L.X. and Turner J.E. (1988) Transplantation of retinal pigment epithelial cells to immature and adult rat hosts: short- and long-term survival characteristics. Exp. Eye Res. 47, 771–785.

    Article  PubMed  CAS  Google Scholar 

  37. Li L.X. and Turner J.E. (1988) Inherited retinal dystrophy in the RCS rat: prevention of photoreceptor degeneration by pigment epithelial cell transplantation. Exp. Eye Res. 47, 911–917.

    Article  PubMed  CAS  Google Scholar 

  38. Li L. and Turner J.E. (1991) Optimal conditions for long-term photoreceptor cell rescue in RCS rats: the necessity for healthy RPE transplants. Exp. Eye Res. 52, 669–679.

    Article  PubMed  CAS  Google Scholar 

  39. Little C.W., Castillo B., DiLoreto D.A., Cox C., Wyatt J., del Cerro C., et al. (1996) Transplantation of human fetal retinal pigment epithelium rescues photoreceptor cells from degeneration in the Royal College of Surgeons rat retina. Investig. Ophthalmol. Vis. Sci. 37, 204–211.

    CAS  Google Scholar 

  40. Lopez R., Gouras P., Brittis M., and Kjeldbye H. (1987) Transplantation of cultured rabbit retinal epithelium to rabbit retina using a closed-eye method. Investig. Ophthalmol. Vis. Sci. 28, 1131–1137.

    CAS  Google Scholar 

  41. Lopez R., Gouras P., Kjeldbye H., Sullivan B., Reppucci V., Brittis M., et al. (1989) Transplanted retinal pigment epithelium modifies the retinal degeneration in the RCS rat. Investig. Ophthalmol. Vis. Sci. 30, 586–588.

    CAS  Google Scholar 

  42. Lai C.C., Gouras P., Doi K., Lu F., Kjeldbye H., Goff S.P., et al. (1999) Tracking RPE transplants labeled by retroviral gene transfer with green fluorescent protein. Investig. Ophthalmol. Vis. Sci. 40, 2141–2146.

    CAS  Google Scholar 

  43. Wang H., Leonard D.S., Castellarin A.A., Tsukahara I., Ninomiya Y., Yagi F., et al. (2001) Short-term study of allogeneic retinal pigment epithelium transplants onto debrided bruch’s membrane. Investig. Ophthalmol. Vis. Sci. 42, 2990–2999.

    CAS  Google Scholar 

  44. Karwatowski W.S., Jeffries T.E., Duance V.C., Albon J., Bailey A.J., and Easty D.L. (1995) Preparation of bruch’s membrane and analysis of the age-related changes in the structural collagens. Br. J. Ophthalmol. 79, 944–952.

    PubMed  CAS  Google Scholar 

  45. Pauleikhoff D., Harper C.A., Marshall J., and Bird A.C. (1990) Aging changes in Bruch’s membrane. A histochemical and morphologic study. Ophthalmology 97, 171–178.

    PubMed  CAS  Google Scholar 

  46. Zarbin M.A. (1998) Age-related macular degeneration: review of pathogenesis. [Review] [65 refs]. Eur. J. Ophthalmol. 8, 199–206.

    PubMed  CAS  Google Scholar 

  47. Abdelsalam A., Del Priore L., and Zarbin M.A. (1999) Drusen in age-related macular degeneration: pathogenesis, natural course, and laser photocoagulation-induced regression. [Review] [148 refs]. Surv. Ophthalmol. 44, 1–29.

    Article  PubMed  CAS  Google Scholar 

  48. Lopez P.F., Grossniklaus H.E., Lambert H.M., Aaberg T.M., Capone A., Jr., Sternberg P., Jr., et al. (1991) Pathologic features of surgically excised subretinal neovascular membranes in age-related macular degeneration. Am. J. Ophthalmol. 112, 647–656.

    PubMed  CAS  Google Scholar 

  49. Ormerod L.D., Puklin J.E., and Frank R.N. (1994) Long-term outcomes after the surgical removal of advanced subfoveal neovascular membranes in age-related macular degeneration. Ophthalmology 101, 1201–1210.

    PubMed  CAS  Google Scholar 

  50. Pollack J.S., Del Priore L.V., Smith M.E., Feiner M.A., and Kaplan H.J. (1996) Postoperative abnormalities of the choriocapillaris in exudative age-related macular degeneration. Br. J. Ophthalmol. 80, 314–318.

    PubMed  CAS  Google Scholar 

  51. Hudson H.L., Frambach D.A., and Lopez P.F. (1995) Relation of the functional and structural fundus changes after submacular surgery for neovascular age-related macular degeneration. Br. J. Ophthalmol. 79, 417–423.

    PubMed  CAS  Google Scholar 

  52. Verstraeten T.C., Buzney S.M., Macdonald S.G., and Neufeld A.H. (1990) Retinal pigment epithelium wound closure in vitro. Investig. Ophthalmol. Vis. Sci. 31, 481–488.

    CAS  Google Scholar 

  53. Kamei M., Lewis J.M., Hayashi A., Sakagami K., Ohji M., and Tano Y. (1996) A new wound healing model of retinal pigment epithelial cells in sheet culture. Curr. Eye Res. 15, 714–718.

    PubMed  CAS  Google Scholar 

  54. Kaida M., Cao F., Skumatz C.M., Irving P.E., and Burke J.M. (2000) Time at confluence for human RPE cells: effects on the adherens junction and in vitro wound closure. Investig. Ophthalmol. Vis. Sci. 41, 3215–3224.

    CAS  Google Scholar 

  55. Grisanti S G.C. (1995) Transdifferentiation of retinal pigment epithelial cells from epithelial to mesenchymal phenotype. Investig. Ophthalmol. Vis. Sci. 36, 391–405.

    CAS  Google Scholar 

  56. Kamei M.K.A. and Tano Y. (1998) Analysis of extracellular matrix synthesis during wound healing of retinal pigment epithelial cells. Microscopy Research and Technique 42, 311–316.

    Article  PubMed  CAS  Google Scholar 

  57. Velhagen K.H., Druegg A., and Rieck P. (1999) [Proliferation and wound healing of retinal pigment epithelium cells in vitro. Effect of human thrombocyte concentrate, serum and PDGF]. Ophthalmologe 96, 77–81.

    Article  PubMed  CAS  Google Scholar 

  58. Johnson D.A., Fields C., Fallon A., Fitzgerald M.E., Viar M.J., and Johnson L.R. (2002) Polyamine-dependent migration of retinal pigment epithelial cells. Investig. Ophthalmol. Vis Sci. 43, 1228–1233.

    Google Scholar 

  59. Verstraeten T., Hartzer M., Wilcox D.K., and Cheng M. (1992) Effects of vitamin A on retinal pigment epithelial cells in vitro. Investig. Ophthalmol. Vis. Sci. 33, 2830–2838.

    CAS  Google Scholar 

  60. Han Q.H., Hui Y.N., Du H.J., Zhang W.J., Ma J.X., and Wang S.Y. (2001) Migration of retinal pigment epithelial cells in vitro modulated by monocyte chemotactic protein-1: enhancement and inhibition. Graefe’s Arch. Clin. Exp. Ophthalmol. 239, 531–538.

    CAS  Google Scholar 

  61. Sakamoto T., Hinton D.R., Kimura H., Spee C., Gopalakrishna R., and Ryan S.J. (1996) Vitamin E succinate inhibits proliferation and migration of retinal pigment epithelial cells in vitro: therapeutic implication for proliferative vitreoretinopathy. Graefe’s Arch. Clin. Exp. Ophthalmol. 234, 186–192.

    Article  CAS  Google Scholar 

  62. Murphy T.L., Sakamoto T., Hinton D.R., Spee C., Gundimeda U., Soriano D., et al. (1995) Migration of retinal pigment epithelium cells in vitro is regulated by protein kinase C. Exp. Eye Res. 60, 683–695.

    Article  PubMed  CAS  Google Scholar 

  63. Campochiaro P.A., Hackett S.F., Vinores S.A., Freund J., Csaky C., LaRochelle W., et al. (1994) Platelet-derived growth factor is an autocrine growth stimulator in retinal pigmented epithelial cells. J. Cell Sci. 107 (Pt 9), 2459–2469.

    PubMed  CAS  Google Scholar 

  64. Matsumoto M Y.N. and Honda Y (1994) Increased production of transforming growth factor B2 from cultured human retinal pigment epithelial cells by photocoagulation. Investig. Ophthalmol. Vis. Sci. 35, 4245–4252.

    CAS  Google Scholar 

  65. Singh S., Zheng J.J., Peiper S.C., and McLaughlin B.J. (2001) Gene expression profile of ARPE-19 during repair of the monolayer. Graefe’s Arch. Clin. Exp. Ophthalmol. 239, 946–951.

    CAS  Google Scholar 

  66. Hergott G.J. and Kalnins V.I. (1991) Expression of proliferating cell nuclear antigen in migrating retinal pigment epithelial cells during wound healing in organ culture. Exp. Cell Res. 195, 307–314.

    Article  PubMed  CAS  Google Scholar 

  67. Hergott G.J., Nagai H., and Kalnins V.I. (1993) Inhibition of retinal pigment epithelial cell migration and proliferation with monoclonal antibodies against the beta I integrin subunit during wound healing in organ culture. Investig. Ophthalmol. Vis. Sci. 34, 2761–2768.

    CAS  Google Scholar 

  68. Hergott G.J., Sandig M., and Kalnins V.I. (1989) Cytoskeletal organization of migrating retinal pigment epithelial cells during wound healing in organ culture. Cell Motil. Cytoskeleton 13, 83–93.

    Article  PubMed  CAS  Google Scholar 

  69. Kalnins V.I., Sandig M., Hergott G.J., and Nagai H. (1995) Microfilament organization and wound repair in retinal pigment epithelium. Biochem. Cell Biol. 73, 709–722.

    CAS  Google Scholar 

  70. Oganesian A., Bueno E., Yan Q., Spee C., Black J., Rao N.A., et al. (1997) Scanning and transmission electron microscopic findings during RPE wound healing in vivo. Int. Ophthalmol. 21, 165–175.

    Article  PubMed  CAS  Google Scholar 

  71. Lopez P.F., Yan Q., Kohen L., Rao N.A., Spee C., Black J., and Oganesian A. (1995) Retinal pigment epithelial wound healing in vivo. Arch. Ophthalmol. 113, 1437–1446.

    PubMed  CAS  Google Scholar 

  72. Leonard D.S., Zhang X.G., Panozzo G., Sugino I.K., and Zarbin M.A. (1997) Clinicopathologic correlation of localized retinal pigment epithelium debridement. Investig. Ophthalmol. Vis. Sci. 38, 1094–1109.

    CAS  Google Scholar 

  73. Leonard D.S., Sugino I.K., Zhang X.-G., and Zarbin M.A. (in press) Ultrastructural analysis of localized hydraulic and abrasive retinal pigment epithelial cell debridements. Exp. Eye Res.

  74. Valentino T L K.H.J., Del Priore L.V., Fang S.R., Berger A., and Silverman M.S. (1995) Retinal pigment epithelial repopulation in monkeys after submacular surgery. Arch. Ophthalmol. 113, 932–938.

    PubMed  CAS  Google Scholar 

  75. Hayashi A., Majji A.B., Fujioka S., Kim H.C., Fukushima I., and de Juan E., Jr. (1999) Surgically induced degeneration and regeneration of the choriocapillaris in rabbit. Graefe’s Arch. Clin. Exp. Ophthalmol. 237, 668–677.

    Article  CAS  Google Scholar 

  76. Ozaki S., Kita M., Yamana T., Negi A., and Honda Y. (1997) Influence of the sensory retina on healing of the rabbit retinal pigment epithelium. Curr. Eye Res. 16, 349–358.

    Article  PubMed  CAS  Google Scholar 

  77. Del Priore L.V., Hornbeck R., Kaplan H.J., Jones Z., Valentino T.L., Mosinger-Ogilvie J., et al. (1995) Débridement of the pig retinal pigment epithelium in vivo. Arch. Ophthalmol. 113, 939–944.

    PubMed  Google Scholar 

  78. Heriot W.J. and Machemer R. (1992) Pigment epithelial repair. Graefe’s Arch. Clin. Exp. Ophthalmol. 230, 91–100.

    Article  CAS  Google Scholar 

  79. Kimizuka Y Y.T. and Tamai M. (1997) Quantitative study on regenerated retinal pigment epithelium and the effects of growth factor. Curr. Eye Res. 16, 1081–1087.

    Article  PubMed  CAS  Google Scholar 

  80. Rosa R.H., Jr., Glaser B.M., de la Cruz Z., and Green W.R. (1996) Clinicopathologic correlation of an untreated macular hole and a macular hole treated by vitrectomy, transforming growth factor-beta 2, and gas tamponade. Am. J. Ophthalmol. 122, 853–863.

    PubMed  Google Scholar 

  81. Castellarin A.A., Nasir M.A., Sugino I.K., and Zarbin M.A. (1998) Progressive presumed choriocapillaris atrophy after surgery for age-related macular degeneration. Retina 18, 143–149.

    PubMed  CAS  Google Scholar 

  82. Grossniklaus H.E. and Green W.R. (1998) Histopathologic and ultrastructural findings of surgically excised choroidal neovascularization. Submacular Surgery Trials Research Group. Arch. Ophthalmol. 116, 745–749.

    PubMed  CAS  Google Scholar 

  83. Berger A.S., Beaty C.A., and Bassnett S. (1998) Retinal pigment epithelial cell regeneration in organ culture. Investig. Ophthalmol. Vis. Sci. 39, S190.

    Google Scholar 

  84. Wang H., Ninomiya Y., Sugino I.K., and Zarbin M.A. (in press) Retinal pigment epithelium wound healing on human Bruch’s membrane explants. Investig. Ophthalmol. Vis. Sci.

  85. Belkin A.M. and Stepp M.A. (2000) Integrins as receptors for laminins. Microsc. Res. Tech. 51, 280–301.

    Article  PubMed  CAS  Google Scholar 

  86. Pytela R., Pierschbacher M.D., and Ruoslahti E. (1985) Identification and isolation of a 140 kd cell surface glycoprotein with properties expected of a fibronectin receptor. Cell 40, 191–198.

    Article  PubMed  CAS  Google Scholar 

  87. Busk M., Pytela R., and Sheppard D. (1992) Characterization of the integrin alpha v beta 6 as a fibronectin- binding protein. J. Biol. Chem. 267, 5790–5796.

    PubMed  CAS  Google Scholar 

  88. Das A., Frank R.N., Zhang N.L., and Turczyn T.J. (1990) Ultrastructural localization of extracellular matrix components in human retinal vessels and Bruch’s membrane. Arch. Ophthalmol. 108, 421–429.

    PubMed  CAS  Google Scholar 

  89. Crabb J.W., Miyagi M., Gu X., Shadrach K., West K.A., Sakaguchi H., et al. (2002) Drusen proteome analysis: an approach to the etiology of age-related macular degeneration. Proc. Natl. Acad. Sci. USA 99, 14,682–14,687.

    Article  CAS  Google Scholar 

  90. Ishida M., Lui G.M., Yamani A., Sugino I.K., and Zarbin M.A. (1998) Culture of human retinal pigment epithelial cells from peripheral scleral flap biopsies. Curr. Eye Res. 17, 392–402.

    PubMed  CAS  Google Scholar 

  91. McKay B.S. and Burke J.M. (1994) Separation of phenotypically distinct subpopulations of cultured human retinal pigment epithelial cells. Exp. Cell Res. 213, 85–92.

    Article  PubMed  CAS  Google Scholar 

  92. Del Priore L.V., Glaser B.M., Quigley H.A., and Green W.R. (1989) Response of pig retinal pigment epithelium to laser photocoagulation in organ culture. Arch. Ophthalmol. 107, 119–122.

    PubMed  Google Scholar 

  93. MacDonald I.M., Peters C., and Chen M.H. (1996) Effects of retinoic acid on wound healing of laser burns to porcine retinal pigment epithelium. Can. J. Ophthalmol. 31, 175–178.

    PubMed  CAS  Google Scholar 

  94. Nicolaissen B. (1988) Argon laser lesions in the human RPE in vitro. Acta Ophthalmologica 66, 277–285.

    PubMed  Google Scholar 

  95. Burton T.C. (1982) Recovery of visual acuity after retinal detachment involving the macula. Trans. Am. Ophthalmol. Soc. 80, 475–497.

    PubMed  CAS  Google Scholar 

  96. Machemer R. (1968) Experimental retinal detachment in the owl monkey. IV. The reattached retina. Am. J. Ophthalmol. 66, 1075–1091.

    PubMed  CAS  Google Scholar 

  97. Anderson D.H., Guerin C.J., Erickson P.A., Stern W.H., and Fisher S.K. (1986) Morphological recovery in the reattached retina. Investig. Ophthalmol. Vis. Sci. 27, 168–183.

    CAS  Google Scholar 

  98. Mervin K., Valter K., Maslim J., Lewis G., Fisher S., and Stone J. (1999) Limiting photoreceptor death and deconstruction during experimental retinal detachment: the value of oxygen supplementation. Am. J. Ophthalmol. 128, 155–164.

    Article  PubMed  CAS  Google Scholar 

  99. Erickson P.A., Fisher S.K., Anderson D.H., Sterm W.H., and Borgula G.A. (1983) Retinal detachment in the cat: the outer nuclear and outer plexiform layers. Investig. Ophthalmol. Vis. Sci. 24, 927–942.

    CAS  Google Scholar 

  100. Fisher S.K., Stone J., Rex T.S., Linberg K.A., and Lewis G.P. (2001) Experimental retinal detachment: a paradigm for understanding the effects of induced photoreceptor degeneration. Prog. Br. Res. 131, 679–698.

    CAS  Google Scholar 

  101. Geller A.M. and Sieving P.A. (1993) Assessment of foveal cone photoreceptors in Stargardt’s macular dystrophy using a small dot detection task. Vision Res. 33, 1509–1524.

    Article  PubMed  CAS  Google Scholar 

  102. Del Priore L.V., Kaplan H.J., Hornbeck R., Jones Z., and Swinn M. (1996) Retinal pigment epithelial debridement as a model for the pathogenesis and treatment of macular degeneration. Am. J. Ophthalmol. 122, 629–643.

    PubMed  Google Scholar 

  103. Grierson I., Hiscott P., Hogg P., Robey H., Mazure A., and Larkin G. (1994) Development, repair and regeneration of the retinal pigment epithelium. Eye 8, 255–262.

    PubMed  Google Scholar 

  104. Del Priore L., Glasser B., Quigley H., Dorman M., and Green W. (1988) Morphology of pig retinal pigment epithelium maintained in organ culture. Arch. Ophthalmol. 106, 1286–1290.

    PubMed  Google Scholar 

  105. Opas M., Dziak E. (1994) bFGF-induced transdifferentiation of RPE to neuronal progenitors is regulated by the mechanical properties of the substratum. Dev. Biol. 161, 440–454.

    Article  PubMed  CAS  Google Scholar 

  106. Ninomiya Y., Sugino I., and Zarbin M.A. (2001) Effect of human retinal pigment epithelium basement menbrane on the ability of human retinal pigment epitheliun to repopulate a wound area. Investig. Ophthalmol. Vis. Sci. 42, S812.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sugino, I.K., Wang, H. & Zarbin, M.A. Age-related macular degeneration and retinal pigment epithelium wound healing. Mol Neurobiol 28, 177–194 (2003). https://doi.org/10.1385/MN:28:2:177

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/MN:28:2:177

Index Entries

Navigation