Skip to main content
Log in

Molecular mechanisms that regulate auditory hair-cell differentiation in the mammalian cochlea

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Mechanosensory hair cells of the vertebrate cochlea offer an excellent developmental system to study cell-fate specification, and to gain insight into the many human neurological deficits which result in a hearing loss, by affecting primarily the hair cells. Therefore, there is great interest in studying the molecular mechanisms that regulate their specification and differentiation.

Recent studies, based mostly on loss-of-function experiments that target the role of Notch signaling and basic helix-loop-helix genes in inner-ear development have indicated that they can regulate mechanosensory hair cell-fate specification and their initial differentiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Van De Water T. R. (1983) Embryogenesis of the inner ear: in vitro studies, in Development of Auditory and Vestibular Systems. (Romand, R., ed.), Academic Press, NY, pp. 337–374.

    Google Scholar 

  2. Fritzsch B., Barald K. F., Lomax M. I. (1998) Early development of the vertebrate ear, in Development of the Auditory System. (Rubel E. W., Popper A. N., and Fay R. P., eds.), Springer-Verlag, NY, pp. 80–145.

    Google Scholar 

  3. Fekete D. M. (1996) Cell fate specification in the inner ear. Curr. Opin. Neurobiol. 6, 533–541.

    Article  PubMed  CAS  Google Scholar 

  4. Torres M. and Giraldez F. (1998) The development of the vertebrate inner ear. Mech. Dev. 71, 5–21.

    Article  PubMed  CAS  Google Scholar 

  5. Rinkwitz S., Bober E., and Baker R. (2001) Development of the vertebrate inner ear. Ann. NY Acad. Sci. 942, 1–14.

    Article  PubMed  CAS  Google Scholar 

  6. Fekete D. M. (1999) Development of the vertebrate ear: insights from knockouts and mutants. Trends Neurosci. 22, 263–269.

    Article  PubMed  CAS  Google Scholar 

  7. Cantos R., Cole L. K., Acampora D., Simeone A., and Wu D. K. (2000) Patterning of the mammalian cochlea. Proc. Natl. Acad. Sci. USA 97, 11,707–11,713.

    Article  CAS  Google Scholar 

  8. Represa J., Frenz D. A., and Van De Water T. R. (2001) Genetic patterning of embryonic inner ear development. Acta. Otolaryngol. 120, 5–10.

    Article  Google Scholar 

  9. Fekete D. M. and Wu, D. K. (2002) Revisiting cell fate specification in the inner ear. Curr. Opin. Neurobiol. 12, 35–42.

    Article  PubMed  CAS  Google Scholar 

  10. Ohnuma S., Philpott A., and Harris W. A. (2001) Cell cycle and cell fate in the nervous system. Curr. Opin. Neurobiol. 11, 66–73.

    Article  PubMed  CAS  Google Scholar 

  11. Dyer M. A. and Cepko C. L. (2001) Regulating proliferation during retinal development. Nat. Rev. Neurosci. 2, 333–342.

    Article  PubMed  CAS  Google Scholar 

  12. Pirvola U., Ylikoski J., Trokovic R., Hebert J. M., McConnell S., and Partanen J. (2002) FGFR1 is required for the development of the auditory sensory epithelium. Neuron 35, 671–680.

    Article  PubMed  CAS  Google Scholar 

  13. Ruben R. J. (1967) Development of the inner ear of the mouse: a radioautographic study of terminal mitosis. Acta. Otolaryngol. Suppl. 220, 1–44.

    Google Scholar 

  14. Chen P. and Segil N. (1999) p27(Kip1) links cell proliferation to morphogenesis in the developing organ of Corti. Development 126, 1581–1590.

    PubMed  CAS  Google Scholar 

  15. Lowenheim H., Furness D. N., Kil J, Zinn C., Gultig K., Fero M. L., Frost D., Gummer A. W., Roberts J. M., Rubel E. W., Hackney C. M., and Zenner H. P. (1999) Gene disruption of p27(Kip1) allows cell proliferation in the postnatal and adult organ of Corti. Proc. Natl. Acad. Sci. USA 96, 4084–4088.

    Article  PubMed  CAS  Google Scholar 

  16. Chen P., Johnson J. E., Zoghbi H. Y., and Segil N. (2002) The role of Math1 in inner ear development: Uncoupling the establishment of the sensory primordium from hair cell fate determination. Development 129, 2495–2505.

    Article  PubMed  CAS  Google Scholar 

  17. Fritzsch B., Beisel K. W., and Bermingham N. A. (2000) Developmental evolutionary biology of the vertebrate ear: conserving mechanoelectric transduction and developmental pathways in diverging morphologies. NeuroReport 11, R35–44.

    Article  PubMed  CAS  Google Scholar 

  18. Eddison M., Le Roux I., and Lewis J. (2000) Notch signaling in the development of the inner ear: lessons from Drosophila. Proc. Natl. Acad. Sci. USA 97, 11,692–11,699.

    Article  CAS  Google Scholar 

  19. Modolell J. (1997) Patterning of the adult peripheral nervous system of Drosophila. Perspect. Dev. Neurobiol. 44, 285–296.

    Google Scholar 

  20. Artavanis-Tsakonas S., Rand M. D., and Lake R. J. (1999) Notch signaling: Cell fate control and signal integration in development. Science 284, 770–776.

    Article  PubMed  CAS  Google Scholar 

  21. Bermingham N. A., Hassan B. A., Price S. D., Vollrath M. A., Ben-Arie N., Eatock R. A., Bellen H. J., Lysakowski A., and Zoghbi H. Y. (1999) Math1: an essential gene for the generation of inner ear hair cells. Science 284, 1837–1841.

    Article  PubMed  CAS  Google Scholar 

  22. Shailam R., Lanford P. J., Dolinsky C. M., Norton C. R., Gridley T., and Kelley M. W. (1999) Expression of proneural and neurogenic genes in the embryonic mammalian vestibular system. J. Neurocytol. 28, 809–819.

    Article  PubMed  CAS  Google Scholar 

  23. Ben-Arie N., Hassan B. A., Bermingham N. A., Malicki D. M., Armstrong D., Matzuk M., Bellen H. J., and Zoghbi H. Y. (2000) Functional conservation of atonal and Math1 in the CNS and PNS. Development 127, 1039–1048.

    PubMed  CAS  Google Scholar 

  24. Lanford P. J., Shailam R., Norton C. R., Gridley T., and Kelley M. W. (2000) Expression of Math1 and Hes5 in the cochleae of wildtype and Jag2 mutant mice. JARO 1, 161–171.

    Article  PubMed  CAS  Google Scholar 

  25. Adam J., Myat A., Le Roux I., Eddison M., Henrique D., Ish-Horowicz D., Lewis J. (1998) Cell fate choices and the expression of Notch, Delta and Serrate homologues in the chick inner ear: parallels with Drosophila sense organ development. Development 125, 4645–4654.

    PubMed  CAS  Google Scholar 

  26. Lewis A. K., Frantz G. D., Carpenter D. A., de Sauvage F. J., and Gao W. Q. (1998) Distinct expression patterns of notch family receptors and ligands during development of the mammalian inner ear. Mech. Dev. 78, 159–163.

    Article  PubMed  CAS  Google Scholar 

  27. Lanford P. J., Lan Y., Jiang R., Lindsell C., Weinmaster G., Gridley T., and Kelley M. W. (1999) Notch signalling pathway mediates hair cell development in mammalian cochlea. Nat. Genet. 21, 289–292.

    Article  PubMed  CAS  Google Scholar 

  28. Morrison A., Hodgetts C., Gossler A., Hrabe de Angelis M., and Lewis J. (1999) Expression of Delta1 and Serrate1 (Jagged1) in the mouse inner ear. Mech Dev. 84, 169–172.

    Article  PubMed  CAS  Google Scholar 

  29. Zine A., Van De Water T. R., and de Ribaupierre F. (2000) Notch signaling regulates the pattern of auditory hair cell differentiation in mammals. Development 127, 3373–3383.

    PubMed  CAS  Google Scholar 

  30. Zhang N., Martin G. V., Kelley M. W., and Gridley T. (2000) A mutation in the Lunatic fringe gene suppresses the effects of a Jagged2 mutation on inner hair cell development in the cochlea. Curr. Biol. 10, 659–662.

    Article  PubMed  CAS  Google Scholar 

  31. Edlund T. and Jessell T. M. (1999) Progression from extrinsic to intrinsic signaling in cell fate specification: a view from the nervous system. Cell 96, 211–224.

    Article  PubMed  CAS  Google Scholar 

  32. Zheng J. L. and Gao W. Q. (2000) Overexpression of Math1 induces robust production of extra hair cells in postnatal rat inner ears. Nat. Neurosci. 3, 580–586.

    Article  PubMed  CAS  Google Scholar 

  33. Jarman A. P., Grau Y., Jan L. Y., and Jan Y. N. (1993) Atonal is a proneural gene that directs chordotonal organ formation in Drosophila peripheral nervous system. Cell 73, 1307–1321.

    Article  PubMed  CAS  Google Scholar 

  34. Jarman A. P. and Ahmed I. (1998) The specificity of proneural genes in determining Drosophila sense organ identity. Mech. Dev. 76, 117–25.

    Article  PubMed  CAS  Google Scholar 

  35. Hassan B. A. and Bellen H. J. (2000) Doing the MATH: is the mouse a good model for fly development? Genes Dev. 14, 1852–1865.

    PubMed  CAS  Google Scholar 

  36. Ma Q., Anderson D. J., and Fritzsch B. (2000) Neurogenin 1 null mutant ears develop fewer, morphologically normal hair cells in smaller sensory epithelia devoid of innervation. JARO 1, 129–143.

    Article  PubMed  CAS  Google Scholar 

  37. Kim W. Y., Fritzsch B., Serls A., Bakel L. A., Huang E. J., Reichardt L. F., Barth D. S., and Lee J. E. (2001) NeuroD-null mice are deaf due to a severe loss of the inner ear sensory neurons during development. Development 128, 417–426.

    PubMed  CAS  Google Scholar 

  38. Liu M., Pereira F. A., Price S. D., Chu M. J., Shope C., Himes D., Eatock R. A., Brownell W. E., Lysakowski A., Tsai M. J. (2000) Essential role of BETA2/NeuroD1 in development of the vestibular and auditory systems. Genes Dev. 14, 2839–2854.

    Article  PubMed  CAS  Google Scholar 

  39. Lee J. E. (1997) Basic helix-loop-helix genes in neural development. Curr. Opin. Neurobiol. 7, 13–20.

    Article  PubMed  Google Scholar 

  40. Anderson D. J. (1999) Lineages and transcription factors in the specification of vertebrate primary sensory neurons. Curr. Opin. Neurobiol. 9, 517–24.

    Article  PubMed  CAS  Google Scholar 

  41. Van De Water T. R. (1976) Effects of removal of the statoacoustic ganglion complex upon the growing otocyst. Ann. Otol. Rhinol. Laryngol. Suppl. 33, 1–32.

    Google Scholar 

  42. Sobkowicz H. M. (1992) The development of innervation of the organ of Corti, in Development of Auditory and Vestibular Systems 2. (Romand, R., ed.), Elsevier, Amsterdam, pp. 59–100.

    Google Scholar 

  43. Fritzsch B., Silos-Santiago I., Bianchi L., and Farinas I. (1997) Neurotrophins, neurotrophin receptors and the maintenance of the afferent inner ear innervation. Sem. Cell Dev. Biol. 8, 277–284.

    Article  CAS  Google Scholar 

  44. Tsai H., Hardisty R. E., Rhodes C., Kiernan A. E., Roby P., Tymowska Lalanne Z., Mburu P., Rastan S., Hunter A. J., Brown SD, et al. (2001) The mouse slalom mutant demonstrates a role for Jagged1 in neuroepithelial patterning in the organ of Corti. Hum. Mol. Genet. 10, 507–512.

    Article  PubMed  CAS  Google Scholar 

  45. Kiernan A. E., Ahituv N., Fuchs H., Balling R., Avraham K. B., Steel K. P., and Hrabe de Angelis M. (2001) The Notch ligand Jagged1 is required for inner ear sensory development. Proc. Natl. Acad. Sci. USA 98, 3873–3878.

    Article  PubMed  CAS  Google Scholar 

  46. Panin V. M., Papayannopoulos V., Wilson R., and Irvine K. D. (1997) Fringe modulates Notch-ligand interactions. Nature 387, 908–912.

    Article  PubMed  CAS  Google Scholar 

  47. Irvine K. D. (1999) Fringe, Notch, and making developmental boundaries. Curr. Opin. Genet. Dev. 9, 434–441.

    Article  PubMed  CAS  Google Scholar 

  48. Morsli H., Choo D., Ryan A., Johnson R., and Wu D. K. (1998) Development of the mouse inner ear and origin of its sensory organs. J. Neurosci. 18, 3327–3335.

    PubMed  CAS  Google Scholar 

  49. Weinmaster G. (1997) The ins and outs of Notch signaling. Mol. Cell. Neurosci. 9, 91–102.

    Article  PubMed  CAS  Google Scholar 

  50. Johnston L. A. and Edgar B. A. (1998) Wingless and Notch regulate cell-cycle arrest in the developing Drosophila wing. Nature 394, 82–84.

    Article  PubMed  CAS  Google Scholar 

  51. Fekete D. M., Muthukumar S., and Karagogeos D. (1998) Hair cells and supporting cells share a common progenitor in the avian inner ear. J. Neurosci. 18, 7811–7821.

    PubMed  CAS  Google Scholar 

  52. Lang H. and Fekete D. M. (2001) Lineage analysis in the chicken inner ear shows differences in clonal dispersion for epithelial, neuronal, and mesenchymal cells. Dev. Biol. 234, 120–137.

    Article  PubMed  CAS  Google Scholar 

  53. Haddon C., Jiang Y. J., Smithers L., and Lewis J. (1998) Delta-Notch signalling and the patterning of sensory cell differentiation in the zebrafish ear: evidence from the mind bomb mutant. Development 125, 4637–4644.

    PubMed  CAS  Google Scholar 

  54. Riley B. B., Chiang M., Farmer L., and Heck R. (1999) The deltaA gene of zebrafish mediates lateral inhibition of hair cells in the inner ear and is regulated by Pax2.1. Development 126, 5669–5678.

    PubMed  CAS  Google Scholar 

  55. Beatus P., Lundkvist J., Oberg C., and Lendahl U. (1999) The Notch3 intracellular domain represses Notch1-mediated activation through Hairy/Enhancer of split (HES) promoters. Development 126, 3925–3935.

    PubMed  CAS  Google Scholar 

  56. Kageyama R. and Nakanishi S. (1997) Helixloop-helix factors in growth and cell differentiation of the vertebrate nervous system. Curr. Opin. Genet. Dev. 7, 659–665.

    Article  PubMed  CAS  Google Scholar 

  57. Ohtsuka T., Ishibashi M., Gradwohl G., Nakanishi S., Guillemot F., and Kageyama R. (1999) Hes1 and Hes5 as Notch effectors in mammalian neuronal differentiation. EMBO J. 18, 2196–2207.

    Article  PubMed  CAS  Google Scholar 

  58. Zheng J. L., Shou J., Guillemot F., Kageyama R., and Gao W. Q. (2000) Hes1 is a negative regulator of inner ear hair cell differentiation. Development 127, 4551–4560.

    PubMed  CAS  Google Scholar 

  59. Zine A., Aubert A., Qiu J., Therianos S., Guillemot F., Kageyama R., and de Ribaupierre F. (2001) Hes1 and Hes5 activities are required for the normal development of the hair cells in the mammalian inner ear. J. Neurosci. 21, 4712–4720.

    PubMed  CAS  Google Scholar 

  60. Colvin J. S., Bohne B. A., Harding G. W., McEwen D. G., and Ornitz D. M. (1996) Skeletal overgrowth and deafness in mice lacking fibroblast growth factor receptor 3. Nat. Genet. 12, 390–397.

    Article  PubMed  CAS  Google Scholar 

  61. Lim D. J. and Anniko M. (1985) Developmental morphology of the mouse inner ear. A scanning electron microscopic observation. Acta. Otolaryngol. Suppl. 422, 1–69.

    PubMed  CAS  Google Scholar 

  62. Lim D. J. and Rueda J. (1992) Structural development of the cochlea, in Development of Auditory and Vestibular Systems 2. (Romand. R., ed.), Elsevier, Amsterdam, pp. 33–58.

    Google Scholar 

  63. Erkman L., McEvilly R. J., Luo L., Ryan A. K., Hooshmand F., O’Connell S. M., Keithley E. M., Rapaport D. H., Ryan A. F., and Rosenfeld M. G. (1996) Role of transcription factors Brn-3.1 and Brn-3.2 in auditory and visual system development. Nature 381, 603–606.

    Article  PubMed  CAS  Google Scholar 

  64. Xiang M., Gan L., Li D., Chen Z. Y., Zhou L., O’Malley B. W., Klein W., and Nathans J. (1997) Essential role of POU-domain factor Brn-3c in auditory and vestibular hair cell development. Proc. Natl. Acad. Sci. USA 94, 9445–9450.

    Article  PubMed  CAS  Google Scholar 

  65. Xiang M., Gao W. Q., Hasson T., and Shin J. J. (1998) Requirement for Brn-3c in maturation and survival, but not in fate determination of inner ear hair cells. Development 125, 3935–3946.

    PubMed  CAS  Google Scholar 

  66. Vahava O., Morell R., Lynch E. D., Weiss S., Kagan M. E., Ahituv N., Morrow J. E., Lee M. K., et al. (1998) Mutation in transcription factor POU4F3 associated with inherited progressive hearing loss in humans. Science 279, 1950–1954.

    Article  PubMed  CAS  Google Scholar 

  67. Li S., Price S. M., Cahill H., Ryugo D. K., Shen M. M., and Xiang M. (2002) Hearing loss caused by progressive degeneration of cochlear hair cells in mice deficient for the Barhl1 homeobox gene. Development 129, 3523–3532.

    PubMed  CAS  Google Scholar 

  68. Steel K. P. and Kros C. J. (2001) A genetic approach to understanding auditory function. Nat. Genet. 27, 143–149.

    Article  PubMed  CAS  Google Scholar 

  69. Zheng L., Sekerkova G., Vranich K., Tilney L. G., Mugnaini E., and Bartles J. R. (2000) The deaf Jerker mouse has a mutation in the gene encoding the espin actin-bundling proteins of hair cell stereocilia and lacks espins. Cell 102, 377–385.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zine, A. Molecular mechanisms that regulate auditory hair-cell differentiation in the mammalian cochlea. Mol Neurobiol 27, 223–237 (2003). https://doi.org/10.1385/MN:27:2:223

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/MN:27:2:223

Index Entries

Navigation