Skip to main content
Log in

Visualizing activation of opioid circuits by internalization of G protein-coupled receptors

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Mu-opioid receptor (MOR) and opioid receptor-like receptor (ORL-1) circuits in the limbic hypothalamic system are important for the regulation of sexual receptivity in the female rat. Sexual receptivity is tightly regulated by the sequential release of estrogen and progesterone from the ovary suggesting ovarian steroids regulate the activity of these neuropeptide systems. Both MOR and ORL-1 distributions overlap with the distribution of estrogen and progesterone receptors in the hypothalamus and limbic system providing a morphological substrate for interaction between steroids and the opioid circuits in the brain. Both MOR and ORL-1 are receptors that respond to activation by endogenous ligands with internalization into early endosomes. This internalization is part of the mechanism of receptor desensitization or down regulation. Although receptor activation and internalization are separate events, internalization can be used as a temporal measure of circuit activation by endogenous ligands. This review focuses on the estrogen and progesterone regulation of MOR and ORL-1 circuits in the medial preoptic nucleus and ventromedial nucleus of the hypothalamus that are central to modulating sexual receptivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dhawan B. N., F. Cesselin, R. Raghubir, T. Reisine, P. B. Bradley, P. S. Portoghese, and M. Hamon. (1996) International union of pharmacology.12. Classification of opioid receptors. Pharmacological Reviews 48, 567–592.

    PubMed  CAS  Google Scholar 

  2. Reisine T. and G. I. Bell. (1993) Molecular biology of opioid receptors. Trends in Neurosciences 16, 506–510.

    PubMed  CAS  Google Scholar 

  3. Chen Y., A. Mestek, J. Liu, J. A. Hurley, and L. Yu. (1993) Molecular cloning and functional expression of a mu-opioid receptor from rat brain. Molecular Pharmacology 44, 8–12.

    PubMed  CAS  Google Scholar 

  4. Thompson R. C., A. Mansour, H. Akil, and S. J. Watson. (1993) Cloning and pharmacological characterization of a rat mu-opioid receptor. Neuron 11, 903–913.

    PubMed  CAS  Google Scholar 

  5. Wang J. B., P. S. Johnson, A. M. Persico, A. L. Hawkins, C. A. Griffin, and G. R. Uhl. (1994) Human mu opiate receptor. cDNA and genomic clones, pharmacologic characterization and chromosomal assignment. FEBS Lett. 338, 217–222.

    PubMed  CAS  Google Scholar 

  6. Mollereau C., M. Parmentier, P. Mailleux, J. L. Butour, C. Moisand, P. Chalon, D. Caput, G. Vassart, and J. C. Meunier. (1994) ORL1, a novel member of the opioid receptor family. Cloning, functional expression and localization. FEBS Lett. 341, 33–38.

    PubMed  CAS  Google Scholar 

  7. Lachowicz J. E., Y. Shen, F. J. Monsma, Jr., and D. R. Sibley. (1995) Molecular cloning of a novel G protein-coupled receptor related to the opiate receptor family. J. Neurochem. 64, 34–40.

    PubMed  CAS  Google Scholar 

  8. Wang J. B., P. S. Johnson, Y. Imai, A. M. Persico, B. A. Ozenberger, C. M. Eppler, and G. R. Uhl. (1994) cDNA cloning of an orphan opiate receptor gene family member and its splice variant. FEBS Lett. 348, 75–79.

    PubMed  CAS  Google Scholar 

  9. Zaki P. A., D. E. Keith, J. B. Thomas, F. I. Carroll, and C. J. Evans. (2001) Agonist-, antagonist-, and inverse agonist-regulated trafficking of the delta-opioid receptor correlates with, but does not require, G protein activation. Journal of Pharmacology and Experimental Therapeutics 298, 1015–1020.

    PubMed  CAS  Google Scholar 

  10. Zaki P. A., D. E. Keith, G. A. Brine, F. I. Carroll, and C. J. Evans. (2000) Ligand-induced changes in surface mu-opioid receptor number: Relationship to G protein activation? Journal of Pharmacology and Experimental Therapeutics 292, 1127–1134.

    PubMed  CAS  Google Scholar 

  11. Daaka Y., L. M. Luttrell, S. Ahn, G. J. DellaRocca, S. S. G. Ferguson, M. G. Caron, and R. J. Lefkowitz. (1998) Essential role for G protein-coupled receptor endocytosis in the activation of mitogen-activated protein kinase. Journal of Biological Chemistry 273, 685–688.

    PubMed  CAS  Google Scholar 

  12. Luttrell L. M., Y. Daaka, G. J. DellaRocca, and R. J. Lefkowitz. (1997) G protein-coupled receptors mediate two functionally distinct pathways of tyrosine phosphorylation in rat 1a fibroblasts—Shc phosphorylation and receptor endocytosis correlate with activation of Erk kinases. Journal of Biological Chemistry 272, 31,648–31,656.

    CAS  Google Scholar 

  13. Vieira A. V., C. Lamaze, and S. L. Schmid. (1996) Control of Egf Receptor Signaling by Clathrin-Mediated Endocytosis. Science 274, 2086–2089.

    PubMed  CAS  Google Scholar 

  14. Ignatova E. G., M. M. Belcheva, L. M. Bohn, M. C. Neuman, and C. J. Coscia. (1999) Requirement of receptor internalization for opioid stimulation of mitogen-activated protein kinase: Biochemical and immunofluorescence confocal microscopic evidence. Journal of Neuroscience 19, 56–63.

    PubMed  CAS  Google Scholar 

  15. Sternini C., N. C. Brecha, J. Minnis, G. D’Agostino, B. Balestra, E. Fiori, and M. Tonini. (2000) Role of agonist-dependent receptor internalization in the regulation of mu opioid receptors. Neuroscience 98, 233–241.

    PubMed  CAS  Google Scholar 

  16. Eckersell C. B., P. Popper, and P. E. Micevych. (1998) Estrogen-induced alteration of mu-opioid receptor immunoreactivity in the medial preoptic nucleus and medial amygdala. J. Neurosci. 18, 3967–3976.

    PubMed  CAS  Google Scholar 

  17. Sinchak K. and P. E. Micevych. (2001) Progesterone blockade of estrogen activation of μ-opioid receptors regulates reproductive behavior. J Neurosci. 21, 5723–5729.

    PubMed  CAS  Google Scholar 

  18. Lefkowitz R. J., S. Cotecchia, M. A. Kjelsberg, J. Pitcher, W. J. Koch, J. Inglese, and M. G. Caron. (1993) Adrenergic receptors: recent insights into their mechanism of activation and desensitization. Adv. Second Messenger Phosphoprotein Res. 28, 1–9.

    PubMed  CAS  Google Scholar 

  19. Birnbaumer L. and A. M. Brown. (1990) G proteins and the mechanism of action of hormones, neurotransmitters, and autocrine and paracrine regulatory factors. Am. Rev. Respir. Dis. 141, S106–114.

    PubMed  CAS  Google Scholar 

  20. Birnbaumer L., A. Yatani, A. M. VanDongen, R. Graf, J. Codina, K. Okabe, R. Mattera, and A. M. Brown. (1990) G protein coupling of receptors to ionic channels and other effector systems. Br. J. Clin. Pharmacol. 30 Suppl 1, 13S-22S.

    PubMed  CAS  Google Scholar 

  21. Rories C. and T. C. Spelsberg. (1989) Ovarian steroid action on gene expression: mechanisms and models. Annu. Rev. Physiol. 51, 653–681.

    PubMed  CAS  Google Scholar 

  22. McEwen B. S. (2001) Genome and hormones: Gender differences in physiology — Invited review: Estrogens effects on the brain: multiple sites and molecular mechanisms. Journal of Applied Physiology 91, 2785–2801.

    PubMed  CAS  Google Scholar 

  23. Brown E. R., R. E. Harlan, and J. E. Krause. (1990) Gonadal steroid regulation of substance P (SP) and SP-encoding messenger ribonucleic acids in the rat anterior pituitary and hypothalamus. Endocrinology 126, 330–340.

    PubMed  CAS  Google Scholar 

  24. Priest C. A., D. Borsook, S. E. Hyman, and D. W. Pfaff. (1995) Estrogen and stress interact to regulate the transcriptional activity of a proenkephalin promoter-beta-GAL fusion gene in the hypothalamus of transgenic mice. Soc. Neurosci. Abs. 21, 1364.

    Google Scholar 

  25. Priest C. A., C. B. Eckersell, and P. E. Micevych. (1995) Estrogen regulates preproenkephalin-A mRNA levels in the rat ventromedial nucleus: temporal and cellular aspects. Brain Res. Mol. Brain Res. 28, 251–262.

    PubMed  CAS  Google Scholar 

  26. Uht R. M., C. M. Anderson, P. Webb, and P. J. Kushner. (1997) Transcriptional activities of estrogen and glucocorticoid receptors are functionally integrated at the AP-1 response element. Endocrinology 138, 2900–2908.

    PubMed  CAS  Google Scholar 

  27. Akesson T. R. and P. E. Micevych. (1988) Evidence for an absence of estrogen concentration by CCK-immunoreactive neurons in the hypothalamus of the female rat. J. Neurobiol. 19, 3–16.

    PubMed  CAS  Google Scholar 

  28. Shivers B. D., R. E. Harlan, J. I. Morrell, and D. W. Pfaff. (1983) Absence of oestradiol concentration in cell nuclei of LHRH-immunoreactive neurones. Nature 304, 345–347.

    PubMed  CAS  Google Scholar 

  29. Watson R. E. (1992) Further evidence that most luteinizing hormone-releasing hormone neurons are not directly estrogen responsive. J. Neurosci. 4, 311–317.

    CAS  Google Scholar 

  30. Skynner M. J., J. A. Sim, and A. E. Herbison. (2001) Detection of estrogen receptor alpha and beta messenger ribonucleic acids in adult gonadotropin-releasing hormone neurons (vol 140, pg 5195, 1999). Endocrinology 142, 492.

    CAS  Google Scholar 

  31. Roy D., N. L. Angelini, and D. D. Belsham. (1999) Estrogen directly represses gonadotropin-releasing hormone (GnRH) gene expression in estrogen receptor-alpha (ERalpha)-and ERbeta-expressing GT1–7 GnRH neurons. Endocrinology 140, 5045–5053.

    PubMed  CAS  Google Scholar 

  32. Nielsen D. A. and Shapiro D. J. (1990) Insights into hormonal control of messenger RNA stability. Molecular Endocrinology 4, 953–957.

    PubMed  CAS  Google Scholar 

  33. Singh M., G. Setalo, Jr., X. Guan, D. E. Frail, and C. D. Toran-Allerand. (2000) Estrogen-induced activation of the mitogen-activated protein kinase cascade in the cerebral cortex of estrogen receptor-alpha knock-out mice. J. Neurosci. 20, 1694–1700.

    PubMed  CAS  Google Scholar 

  34. Razandi M., A. Pedram, G. Greene, and E. Levin. (1999) Cell membrane and nuclear estrogen receptors (ERs) originate from a single transcript: studies of ERalpha and ERbeta expressed in Chinese hamster ovary cells. Mol. Endocrinol. 13, 307–319.

    PubMed  CAS  Google Scholar 

  35. Razandi M., P. Oh, A. Pedram, J. Schnitzer, and E. R. Levin. (2002) ERs associate with and regulate the production of caveolin: Implications for signaling and cellular actions. Mol. Endocrinol. 16, 100–115.

    PubMed  CAS  Google Scholar 

  36. Wade S. B., P. Oommen, W. C. Conner, D. J. Earnest, and R. C. Miranda. (1999) Overlapping and divergent actions of estrogen and the neurotrophins on cell fate and p53-dependent signal transduction in conditionally immortalized cerebral cortical neuroblasts. J. Neurosci. 19, 6994–7006.

    PubMed  CAS  Google Scholar 

  37. Toran-Allerand C. D. (1995) Developmental interactions of estrogens with the neurotrophins and their receptors, in Neurobiological Effects of Sex Steroid Hormones (Micevych P. E. and Hammer R. P., Jr., eds.), Cambridge University Press, pp. 391–411.

  38. Revelli A., M. Massobrio, and J. Tesarik. (1998) Nongenomic actions of steroid hormones in reproductive tissues. Endocrine Reviews 19, 3–17.

    PubMed  CAS  Google Scholar 

  39. Chaban V., E. A. Mayer, H. S. Ennes, and P. E. Micevych. Estradiol inhibits ATP-induced [Ca2+]i increase in DRG. Neuroscience (In Press).

  40. Moss R. L., Q. Gu, and M. Wong. (1997) Estrogen: nontranscriptional signaling pathway. Recent Prog. Horm. Res. 52, 33–68.

    PubMed  CAS  Google Scholar 

  41. Kelly M. and E. Wagner. (1999) Estrogen modulation of G-protein-coupled receptors. Trends in Endocrinology and Metabolism 10, 369–374.

    PubMed  CAS  Google Scholar 

  42. Nadal A., M. Diaz, and M. A. Valverde. (2001) The estrogen trinity: Membrane, cytosolic, and nuclear effects. News in Physiological Sciences 16, 251–255.

    PubMed  CAS  Google Scholar 

  43. Clemens L. G. and D. R. Weaver. (1985) The role of gonadal hormone in the activation of feminine sexual behavior, in Handbook of Behavioral Neurobiology (Adler N., Pfaff D. and Goy R. W., eds.), Plenum Press, New York, pp. 183–227.

    Google Scholar 

  44. Bloch G. J., A. M. Babcock, R. A. Gorski, and P. E. Micevych. (1987) Cholecystokinin stimulates and inhibits lordosis behavior in female rats. Physiol. Behav. 39, 217–224.

    PubMed  CAS  Google Scholar 

  45. Mani S. K., J. D. Blaustein, and B. W. Omalley. (1997) Progesterone receptor function from a behavioral perspective. Hormones and Behavior 31, 244–255.

    PubMed  CAS  Google Scholar 

  46. Blaustein J. D., R. Finkbohner, and Y. Delville. (1987) Estrogen-induced and estrogen-facilitated female rat sexual behavior is not mediated by progestin receptors. Neuroendocrinology 45, 152–159.

    PubMed  CAS  Google Scholar 

  47. Quadagno D. M., J. McCullough, and R. Langan. (1972) The effect of varying amounts of exogenous estradiol benzoate on estrous behavior in the rat. Horm. Behav. 3, 175–179.

    PubMed  CAS  Google Scholar 

  48. Boling J. L. and R. J. Blandau. (1939) The estrogen-progesterone induction of mating responses in the spayed female rat. Endocrinology 25, 359–364.

    CAS  Google Scholar 

  49. Sirinathsinghji D. J. S. (1986) Regulation of lordosis behavior in the female rat by corticotropin-releasing factor, beta-endorphin/corticotropin and luteinizing hormone-releasing hormone neuronal systems in the medial preoptic area. Brain Res. 375, 149–156.

    Google Scholar 

  50. Pfaus J. G. and D. W. Pfaff. (1992) Mu-, delta-, and kappa-opioid receptor agonists selectively modulate sexual behaviors in the female rat: differential dependence on progesterone. Horm. Behav. 26, 457–473.

    PubMed  CAS  Google Scholar 

  51. Sirinathsinghji D. J. (1984) Modulation of lordosis behavior of female rats by naloxone, beta-endorphin and its antiserum in the mesencephalic central gray: possible mediation via GnRH. Neuroendocrinology 39, 222–230.

    PubMed  CAS  Google Scholar 

  52. Sirinathsinghji D. J. (1985) Modulation of lordosis behaviour in the female rat by corticotropin releasing factor, beta-endorphin and gonadotropin releasing hormone in the mesencephalic central gray. Brain Research 336, 45–55.

    PubMed  CAS  Google Scholar 

  53. Acosta-Martinez M. and A. M. Etgen. (2002) Activation of mu-opioid receptors inhibits lordosis behavior in estrogen and progesterone-primed female rats. Hormones and Behavior 41, 88–100.

    PubMed  CAS  Google Scholar 

  54. Wiesner J. B. and R. L. Moss. (1984) Beta-endorphin suppression of lordosis behavior in female rats; lack of effect of peripherally-administered naloxone. Life Sciences 34, 1455–1462.

    PubMed  CAS  Google Scholar 

  55. Torii M. and K. Kubo. (1994) The effects of intraventricular injection of beta-endorphin on initial estrogen action to induce lordosis behavior. Physiol. Behav. 55, 157–162.

    PubMed  CAS  Google Scholar 

  56. Torii M., K. Kubo, and T. Sasaki. (1995) Naloxone and initial estrogen action to induce lordosis in ovariectomized rats: the effect of a cut between the septum and preoptic area. Neurosci. Lett. 195, 167–170.

    PubMed  CAS  Google Scholar 

  57. Torii M., K. Kubo, and T. Sasaki. (1996) Influence of opioid peptides on the priming action of estrogen on lordosis in ovariectomized rats. Neurosci. Lett. 212, 68–70.

    PubMed  CAS  Google Scholar 

  58. Mansour A., C. A. Fox, R. C. Thompson, H. Akil, and S. J. Watson. (1994) Mu-opioid receptor mRNA expression in the rat CNS: comparison to mu-receptor binding. Brain Res. 643, 245–265.

    PubMed  CAS  Google Scholar 

  59. Mansour A., C. A. Fox, S. Burke, H. Akil, and S. J. Watson. (1995) Immunohistochemical localization of the cloned mu opioid receptor in the rat CNS. J. Chem. Neuroanat. 8, 283–305.

    PubMed  CAS  Google Scholar 

  60. Pfaff D. W., S. Schwartz-Giblin, M. McCarthy, and L. M. Kow. (1994) Cellular and molecular mechanisms of female reproductive behaviors, in The Physiology of Reproduction (Knobil E. and Neill J. D., eds.), Raven Press, Ltd, New York, pp. 107–220.

    Google Scholar 

  61. Bunzow J. R., C. Saez, M. Mortrud, C. Bouvier, J. T. Williams, M. Low, and D. K. Grandy. (1994) Molecular cloning and tissue distribution of a putative member of the rat opioid receptor gene family that is not a mu, delta or kappa opioid receptor type. FEBS Lett. 347, 284–288.

    PubMed  CAS  Google Scholar 

  62. Meunier J. C. (1997) Nociceptin/orphanin FQ and the opioid receptor-like ORL1 receptor. European Journal of Pharmacology 340, 1–15.

    PubMed  CAS  Google Scholar 

  63. Meunier J. C., C. Mollereau, L. Toll, C. Suaudeau, C. Moisand, P. Alvinerie, J. L. Butour, J. C. Guillemot, P. Ferrara, B. Monsarrat, et al. (1995) Isolation and structure of the endogenous agonist of opioid receptor-like ORL1 receptor Nature 377, 532–535.

    PubMed  CAS  Google Scholar 

  64. Reinscheid R. K., H. P. Nothacker, A. Bourson, A. Ardati, R. A. Henningsen, J. R. Bunzow, D. K. Grandy, H. Langen, F. J. Monsma, Jr., and O. Civelli. (1995) Orphanin FQ: A neuropeptide that activates an opioid-like G protein-coupled receptor. Science 270, 792–794.

    PubMed  CAS  Google Scholar 

  65. Sinchak K., D. G. Hendricks, R. Baroudi, and P. E. Micevych. (1997) Orphanin FQ/nociceptin in the ventromedial nucleus facilitates lordosis in female rats. Neuroreport 8, 3857–3860.

    PubMed  CAS  Google Scholar 

  66. Darland T., M. M. Heinricher, and D. K. Grandy. (1998) Orphanin FQ/nociceptin: a role in pain and analgesia, but so much more. Trends in Neuroscience 21, 215–221.

    CAS  Google Scholar 

  67. Sinchak K., H. E. Romeo, and P. E. Micevych. (2001) Estrogen and progestin regulation of OFQ/nociceptin and ORL-1 mRNA expression in the female rat limbic hypothalamic system. Soc. Neurosci. Abstr. 27, 424.4.

    Google Scholar 

  68. Lee N. M. and A. P. Smith. (1980) A protein-lipid model of the opiate receptor. Life Sci. 26, 1459–1464.

    PubMed  CAS  Google Scholar 

  69. Patterson S. J., L. E. Robson, and H. W. Kosterlitz. (1983) Classification of opiate receptors. Br. Med. Bull. 39, 31–36.

    Google Scholar 

  70. Smith A., N. Lee, and H. Loh. (1983) The multiple-site beta-endorphin receptor. Trends Pharmacol. Sci. 4, 163–164.

    CAS  Google Scholar 

  71. Law P. Y. and H. H. Loh. (1999) Regulation of opioid receptor activities. Journal of Pharmacology and Experimental Therapeutics 289, 607–624.

    PubMed  CAS  Google Scholar 

  72. Zadina J. E., L. Hackler, L. J. Ge, and A. J. Kastin. (1997) A potent and selective endogenous agonist for the mu-opiate receptor. Nature 386, 499–502.

    PubMed  CAS  Google Scholar 

  73. Harrison C., S. McNulty, D. Smart, D. J. Rowbotham, D. K. Grandy, L. A. Devi, and D. G. Lambert. (1999) The effects of endomorphin-1 and endomorphin-2 in CHO cells expressing recombinant mu-opioid receptors and SH-SY5Y cells. British Journal of Pharmacology 128, 472–478.

    PubMed  CAS  Google Scholar 

  74. Finley J. C., P. Lindstrom, and P. Petrusz. (1981) Immunocytochemical localization of beta-endorphin-containing neurons in the rat brain. Neuroendocrinology 33, 28–42.

    PubMed  Google Scholar 

  75. Hammer R. P. and S. Cheung. (1995) Sex steroid regulation of hypothalamic opioid function, in Neurobiological Effects of Sex Steroid Hormones (Micevych P. E. and Hammer R. P., eds.), Cambridge University Press, New York, NY, pp. 143–159.

    Google Scholar 

  76. Priest C. A. and J. L. Roberts. (2000) Estrogen and tamoxifen differentially regulate beta-endorphin and cFos expression and neuronal colocalization in the arcuate nucleus of the rat. Neuroendocrinology 72, 293–305.

    PubMed  CAS  Google Scholar 

  77. Wilcox J. N. and J. L. Roberts. (1985) Estrogen decreases rat hypothalamic proopiomelanocortin messenger ribonucleic acid levels. Endocrinology 117, 2392–2396.

    PubMed  CAS  Google Scholar 

  78. Petersen S. L., M. L. Keller, S. A. Carder, and S. McCrone. (1993) Differential Effects of Estrogen and Progesterone on Levels of POMC Messenger RNA Levels in the Arcuate Nucleus—Relationship to the Timing of LH Surge Release. Journal of Neuroendocrinology 5, 643–648.

    PubMed  CAS  Google Scholar 

  79. Wise P. M., K. Scarbrough, N. G. Weiland, and G. H. Larson. (1990) Diurnal pattern of proopiomelanocortin gene expression in the arcuate nucleus of proestrous, ovariectomized, and steroid-treated rats: a possible role in cyclic luteinizing hormone secretion. Mol. Endocrinol. 4, 886–892.

    PubMed  CAS  Google Scholar 

  80. Cheung S. and R. Hammer. (1995) Gonadal steroid hormone regulation of proopiomelanocortin gene expression in the arcuate neurons that innervate the medial preoptic are of the rat. Neuroendocrinology 62, 283–292.

    PubMed  CAS  Google Scholar 

  81. Ge F., R. P. Hammer, Jr., and S. A. Tobet. (1993) Ontogeny of Leu-enkephalin and beta-endorphin innervation of the area in male and female rats. Brain Res. Dev. Brain Res. 73, 273–281.

    PubMed  CAS  Google Scholar 

  82. Micevych P. E., C. B. Eckersell, N. Brecha, and K. Holland. (1997) Estrogenic modulation of opiate and cholecystokinin systems in the limbic-hypothalamic circuit. Brain Res. Bull. 44, 335–343.

    PubMed  CAS  Google Scholar 

  83. Morrell J. I., J. F. McGinty, and D. W. Pfaff. (1985) A subset of beta-endorphin- or dynorphin-containing neurons in the medial basal hypothalamus accumulates estradiol. Neuroendocrinology 41, 417–426.

    PubMed  CAS  Google Scholar 

  84. Jirikowski G. F., I. Merchenthaler, G. E. Rieger, and W. E. Stumpf. (1986) Estradiol target sites immunoreactive for beta-endorphin in the arcuate nucleus of rat and mouse hypothalamus. Neurosci. Lett. 65, 121–126.

    PubMed  CAS  Google Scholar 

  85. Simonian S. X., D. P. Spratt, and A. E. Herbison. (1999) Identification and characterization of estrogen receptor alpha-containing neurons projecting to the vicinity of the gonadotropin-releasing hormone perikarya in the rostral preoptic area of the rat. Journal of Comparative Neurology 411, 346–358.

    PubMed  CAS  Google Scholar 

  86. Fodor M. and H. A. Delemarre-van de Waal. (2001) Are POMC neurons targets for sex steroids in the arcuate nucleus of the rat? Neuroreport 12, 3989–3991.

    PubMed  CAS  Google Scholar 

  87. Shughrue P. J., M. V. Lane, and I. Merchenthaler. (1997) Comparative distribution of estrogen receptor-alpha and -beta mRNA in the rat central nervous system. Journal of Comparative Neurology 388, 507–525.

    PubMed  CAS  Google Scholar 

  88. Priest C. A., D. Borsook, and D. W. Pfaff. (1997) Estrogen and stress interact to regulate the hypothalamic expression of a human proenkephalin promoter-beta-galactosidase fusion gene in a site-specific and sex-specific manner. J. Neuroendocrinol. 9, 317–326.

    PubMed  CAS  Google Scholar 

  89. Sinchak K., C. Eckersell, V. Quezada, A. Norell, and P. Micevych. (2000) Preproenkephalin mRNA levels are regulated by acute stress and estrogen stimulation. Physiol Behav. 69, 425–432.

    PubMed  CAS  Google Scholar 

  90. Lopezcalderon A., C. Ariznavarreta, and C. L. C. Chen. (1991) Influence of Chronic Restraint Stress on Proopiomelanocortin Messenger RNA and Beta-Endorphin in the Rat Hypothalamus. Journal of Molecular Endocrinology 7, 197–204.

    CAS  Google Scholar 

  91. Zhou Y., R. Spangler, C. E. Maggos, X. M. Wang, J. S. Han, A. Ho, and M. J. Kreek. (1999) Hypothalamic-pituitary-adrenal activity and pro-opiomelanocortin mRNA levels in the hypothalamus and pituitary of the rat are differentially modulated by acute intermittent morphine with or without water restriction stress. Journal of Endocrinology 163, 261–267.

    PubMed  CAS  Google Scholar 

  92. Martin-Schild S., A. A. Gerall, A. J. Kastin, and J. E. Zadina. (1999) Differential distribution of endomorphin 1- and endomorphin 2-like immunoreactivities in the CNS of the rodent. Journal of Comparative Neurology 405, 450–471.

    PubMed  CAS  Google Scholar 

  93. Pierce T. L. and M. W. Wessendorf. (2000) Immunocytochemical mapping of endomorphin-2-immunoreactivity in rat brain. J. Chem. Neuroanat. 18, 181–207.

    PubMed  CAS  Google Scholar 

  94. Wang Q. P., J. E. Zadina, J. L. Guan, and S. Shioda. (2002) Morphological studies of the endomorphinergic neurons in the central nervous system. Japanese Journal of Pharmacology 89, 209–215.

    PubMed  CAS  Google Scholar 

  95. Zadina J. E. (2002) Isolation and distribution of endomorphins in the central nervous system. Japanese Journal of Pharmacology 89, 203–208.

    PubMed  CAS  Google Scholar 

  96. Romano G. J., A. Krust, and D. W. Pfaff. (1989) Expression and estrogen regulation of progesterone receptor mRNA in neurons of the mediobasal hypothalamus: an in situ hybridization study [published erratum appears in Mol. Endocrinol 1989 Aug;3(11):1860]. Mol. Endocrinol. 3, 1295–1300.

    PubMed  CAS  Google Scholar 

  97. Romano G. J., R. E. Harlan, B. D. Shiverst, R. D. Howells, and D. W. Pfaff. (1988) Estrogen increases proenkephalin messenger ribonucleic acid levels in the ventromedial hypothalamus of the rat. Mol. Endocrinol. 2, 1320–1328.

    PubMed  CAS  Google Scholar 

  98. Holland K., A. Norell, and P. Micevych. (1998) Interaction of thyroxine and estrogen on the expression of estrogen receptor alpha, cholecystokinin, and preproenkephalin messenger ribonucleic acid in the limbic-hypothalamic circuit. Endocrinology 139, 1221–1228.

    PubMed  CAS  Google Scholar 

  99. Eckersell C. B., C. A. Priest, and P. E. Micevych. (1994) Temporal regulation of preproenkephalin-A mRNA expression by estrogen in the posterior dorsal medial amygdala of the female rat. Society for Neuroscience 20, 1770.

    Google Scholar 

  100. Akesson T. R. and P. E. Micevych. (1991) Endogenous opioid-immunoreactive neurons of the ventromedial hypothalamic nucleus concentrate estrogen in male and female rats. J. Neurosci. Res. 28, 359–366.

    PubMed  CAS  Google Scholar 

  101. Reinscheid R. K., J. Higelin, R. A. Henningsen, F. J. Monsma, and O. Civelli. (1998) Structures that delineate orphanin FQ and dynorphin A pharmacological selectivities. Journal of Biological Chemistry 273, 1490–1495.

    PubMed  CAS  Google Scholar 

  102. Dooley C. T. and R. A. Houghten. (1996) Orphanin FQ: receptor binding and analog structure activity relationships in rat brain. Life Sci. 59, L23–29.

    Google Scholar 

  103. Reinscheid R. K., A. Ardati, F. J. Monsma, and O. Civelli. (1996) Structure-activity relationship studies on the novel neuropeptide orphanin FQ. Journal of Biological Chemistry 271, 14,163–14,168.

    CAS  Google Scholar 

  104. Shimohigashi Y., R. Hatano, T. Fujita, R. Nakashima, T. Nose, T. Sujaku, A. Saigo, K. Shinjo, and A. Nagahisa. (1996) Sensitivity of opioid receptor-like receptor ORL1 for chemical modification on nociceptin, a naturally occurring nociceptive peptide. J. Biol. Chem. 271, 23,642–23,645.

    CAS  Google Scholar 

  105. Ardati A., R. A. Henningsen, J. Higelin, R. K. Reinscheid, O. Civelli, and F. J. Monsma. (1997) Interaction of [H-3]orphanin FQ and I-125-Tyr14-orphanin FQ with the orphanin FQ receptor: Kinetics and modulation by cations and guanine nucleotides. Molecular Pharmacology 51, 816–824.

    PubMed  CAS  Google Scholar 

  106. Butour J. L., C. Moisand, H. Mazarguil, C. Mollereau, and J. C. Meunier. (1997) Recognition and activation of the opioid receptor-like ORL 1 receptor by nociceptin, nociceptin analogs and opioids. European Journal of Pharmacology 321, 97–103.

    PubMed  CAS  Google Scholar 

  107. Guerrini R., G. Calo, A. Rizzi, C. Bianchi, L. H. Lazarus, S. Salvadori, P. A. Temussi, and D. Regoli. (1997) Address and message sequences for the nociceptin receptor: A structure-activity study of nociceptin-(1-13)-peptide amide. Journal of Medicinal Chemistry 40, 1789–1793.

    PubMed  CAS  Google Scholar 

  108. Anton B., J. Fein, T. To, X. Li, L. Silberstein, and C. J. Evans. (1996) Immunohistochemical localization of ORL-1 in the central nervous system of the rat. J. Comp. Neurol. 368, 229–251.

    PubMed  CAS  Google Scholar 

  109. Chen Y., Y. Fan, J. Liu, A. Mestek, M. Tian, C. A. Kozak, and L. Yu. (1994) Molecular cloning, tissue distribution and chromosomal localization of a novel member of the opioid receptor gene family. FEBS Lett. 347, 279–283.

    PubMed  CAS  Google Scholar 

  110. Fukuda K., S. Kato, K. Mori, M. Nishi, H. Takeshima, N. Iwabe, T. Miyata, T. Houtani, and T. Sugimoto. (1994) cDNA cloning and regional distribution of a novel member of the opioid receptor family. FEBS Lett. 343, 42–46.

    PubMed  CAS  Google Scholar 

  111. Riedl M., S. Shuster, L. Vulchanova, J. Wang, H. H. Loh, and R. Elde. (1996) Orphanin FQ/nociceptin-immunoreactive nerve fibers parallel those containing endogenous opioids in rat spinal cord. Neuroreport 7, 1369–1372.

    PubMed  CAS  Google Scholar 

  112. Wick M. J., S. R. Minnerath, X. Lin, R. Elde, P. Y. Law, and H. H. Loh. (1994) Isolation of a novel cDNA encoding a putative membrane receptor with high homology to the cloned mu, delta, and kappa opioid receptors. Brain Res. Mol. Brain Res. 27, 37–44.

    PubMed  CAS  Google Scholar 

  113. Lee K., J. R. Nicholson, and A. T. McKnight. (1997) Nociceptin hyperpolarises neurones in the rat ventromedial hypothalamus. Neuroscience Letters 239, 37–40.

    PubMed  CAS  Google Scholar 

  114. Martini L., D. Dondi, P. Limonta, R. Maggi, and F. Piva. (1989) Modulation by sex steroids of brain opioid receptors: implications for the control of gonadotropins and prolactin secretion. J. Steroid Biochem. 33, 673–681.

    PubMed  CAS  Google Scholar 

  115. Mateo A. R., M. Hijazi, and R. P. Hammer, Jr. (1992) Dynamic patterns of medial preoptic mu-opiate receptor regulation by gonadal steroid hormones. Neuroendocrinology 55, 51–58.

    PubMed  CAS  Google Scholar 

  116. Thom B., B. J. Canny, M. Cowley, P. J. Wright, and I. J. Clarke. (1996) changes in the binding characteristics of the μ, δ, and κ subtypes of the opioid receptor in the hypothalamus of the normal cyclic ewe and in the ovariectomized ewe following treatment with ovarian steroids. J. Endocrinol. 149, 509–518.

    PubMed  CAS  Google Scholar 

  117. Weiland N. G. and P. M. Wise. (1990) Estrogen and progesterone regulate opiate receptor densities in multiple brain regions. Endocrinology 126, 804–808.

    PubMed  CAS  Google Scholar 

  118. Wilkinson M., J. R. Brawer, and D. A. Wilkinson. (1985) Gonadal steroid-induced modification of opiate binding sites in anterior hypothalamus of female rats. Biol. Reprod. 32, 501–506.

    PubMed  CAS  Google Scholar 

  119. Zhou L. and R. P. Hammer, Jr. (1995) Gonadal steroid hormones upregulate medial preoptic mu-opioid receptors in the rat. Eur. J. Pharmacol. 278, 271–274.

    PubMed  CAS  Google Scholar 

  120. Piva F., P. Limonta, D. Dondi, F. Pimpinelli, L. Martini, and R. Maggi. (1995) Effects of steroids on the brain opioid system. J. Steroid Biochem. Mol. Biol. 53, 343–348.

    PubMed  CAS  Google Scholar 

  121. Maggi R., D. Dondi, G. E. Rovati, L. Martini, F. Piva, and P. Limonta. (1993) Binding Characteristics of Hypothalamic Mu Opioid Receptors Throughout the Estrous Cycle in the Rat. Neuroendocrinology 58, 366–372.

    PubMed  CAS  Google Scholar 

  122. Micevych P.E., V. Chaban, A. Quesada, and K. Sinchak. (2002) Estrogen modulates CCK—Opioid interactions in the nervous system. Pharmacology and Toxicology 91, 387–397.

    PubMed  CAS  Google Scholar 

  123. Allen B. J., S. D. Rogers, J. R. Ghilardi, P. M. Menning, M. A. Kuskowski, A. I. Basbaum, D. A. Simone, and P. W. Mantyh. (1997) Noxious cutaneous thermal stimuli induce a graded release of endogenous substance P in the spinal cord: Imaging peptide action in vivo. J. Neurosci. 17, 5921–5927.

    PubMed  CAS  Google Scholar 

  124. Grady E. F., A. M. Garland, P. D. Gamp, M. Lovett, D. G. Payan, and N. W. Bunnett. (1995) Delineation of the endocytic pathway of substance P and its seven-transmembrane domain NK1 receptor. Mol. Biol. Cell. 6, 509–524.

    PubMed  CAS  Google Scholar 

  125. Hoxie J. A., M. Ahuja, E. Belmonte, S. Pizarro, R. Parton, and L. F. Brass. (1993) Internalization and recycling of activated thrombin receptors. J. Biol. Chem. 268, 13,756–13,763.

    CAS  Google Scholar 

  126. Parker E. M., P. Swigart, M. H. Nunnally, J. P. Perkins, and E. M. Ross. (1995) Carboxyl-terminal domains in the avian beta 1-adrenergic receptor that regulate agonist-promoted endocytosis [published erratum appears in J. Biol. Chem. 1995 Apr 28;270(17):10358]. J. Biol. Chem. 270, 6482–6487.

    PubMed  CAS  Google Scholar 

  127. von Zastrow M. and B. K. Kobilka. (1992) Lig-and-regulated internalization and recycling of human beta 2-adrenergic receptors between the plasma membrane and endosomes containing transferrin receptors. J. Biol. Chem. 267, 3530–3538.

    Google Scholar 

  128. Caron M. G. and R. J. Lefkowitz. (1993) Cate-cholamine receptors: Structure, function, and regulation. Recent Prog. Horm. Res. 48, 277–290.

    PubMed  CAS  Google Scholar 

  129. Mantyh P. W., C. J. Allen, J. R. Ghilardi, S. D. Rogers, C. R. Mantyh, H. Liu, A. I. Basbaum, S. R. Vigna, and J. E. Maggio. (1995) Rapid endocytosis of a G protein-coupled receptor: Substance P evoked internalization of its receptor in the rat striatum in vivo. Proc. Natl. Acad. Sci. USA 92, 2622–2626.

    PubMed  CAS  Google Scholar 

  130. Mantyh P. W., E. DeMaster, A. Malhotra, J. R. Ghilardi, S. D. Rogers, C. R. Mantyh, H. Liu, A. I. Basbaum, S. R. Vigna, J. E. Maggio, et al. (1995) Receptor endocytosis and dendrite reshaping in spinal neurons after somatosensory stimulation. Science 268, 1629–1632.

    PubMed  CAS  Google Scholar 

  131. Sternini C., M. Spann, B. Anton, D. E. Keith, Jr., N. W. Bunnett, M. von Zastrow, C. Evans, and N. C. Brecha. (1996) Agonist-selective endocytosis of mu opioid receptor by neurons in vivo. Proc. Natl. Acad. Sci. USA 93, 9241–9246.

    PubMed  CAS  Google Scholar 

  132. von Zastrow M., D. Keith, P. Zaki, and C. Evans. (1994) Intracellular trafficking of epitope-tagged opioid receptors different effects of morphine and enkephalin. Regul. Pept. 54, 315–316.

    Google Scholar 

  133. Law P. Y., D. S. Hom, and H. H. Loh. (1982) Loss of opiate receptor activity in neuroblastoma X glioma NG108-15 hybrid cells after chronic opiate treatment. A multiple-step process. Molecular Pharmacology 22, 1–4.

    PubMed  CAS  Google Scholar 

  134. Law P. Y., D. S. Hom, and H. H. Loh. (1984) Down-regulation of opiate receptor in neuroblastoma x glioma NG108-15 hybrid cells. Chloroquine promotes accumulation of tritiated enkephalin in the lysosomes. Journal of Biological Chemistry 259, 4096–4104.

    PubMed  CAS  Google Scholar 

  135. Sharma S. K., W. A. Klee, and M. Nirenberg. (1977) Opiate-dependent modulation of adenylate cyclase. Proc. Natl. Acad. Sci. USA 74, 3365–3369.

    PubMed  CAS  Google Scholar 

  136. Mestek A., J. H. Hurley, L. S. Bye, A. D. Campbell, Y. Chen, M. Tian, J. Liu, H. Schulman, and L. Yu. (1995) The human mu opioid receptor. Journal of Neuroscience 15, 2396–2406.

    PubMed  CAS  Google Scholar 

  137. Louie A. K., J. N. Zhan, P. Y. Law, and H. H. Loh. (1988) Modification of opioid receptor activity by acid phosphatase in neuroblastoma x glioma NG108-15 hybrid cells. Biochemical and Biophysical Research Communications 152, 1369–1375.

    PubMed  CAS  Google Scholar 

  138. Arden J. R., V. Segredo, Z. Wang, J. Lameh, and W. Sadaee. (1995) Phosphorylation and agonist-specific intracellular trafficking of an epitope-tagged mu-opioid receptor expressed in HEK 293 cells. Journal of Neurochemistry 65, 1636–1645.

    PubMed  CAS  Google Scholar 

  139. Keith D. E., S. R. Murray, P. A. Zaki, P. C. Chu, D. V. Lissin, L. Kang, C. J. Evans, and M. von Zastrow. (1996) Morphine activates opioid receptors without causing their rapid internalization. J. Bio. Chem. 271, 19,021–19,024.

    CAS  Google Scholar 

  140. von Zastrow M., D. E. Keith, Jr., and C. J. Evans. (1993) Agonist-induced state of the delta-opioid receptor that discriminates between opioid peptides and opiate alkaloids. Mol. Pharmacol. 44, 166–172.

    Google Scholar 

  141. Eckersell C. B. and P. E. Micevych (submitted) Distribution of μ- and δ-opioid receptors with respect to CCK immunoreactivity in the hypothalamus and limbic system.

  142. Sherman M. R. and S. C. Diaz. (1977) Meroreceptor formation from a larger subcomponent of the oviduct progesterone receptor. Ann. NY Acad. Sci. 286, 81–86.

    PubMed  CAS  Google Scholar 

  143. Olive F. M., J. C. Evans, P. E. Micevych, and N. T. Maidment. (1997) Pre- vs Postsynaptic localization of mu and delta opioid receptors in the striatopallidal pathway. J. Neurosci. 17, 7471–7479.

    PubMed  CAS  Google Scholar 

  144. Arvidsson U., M. Riedl, S. Chakrabarti, J. H. Lee, A. H. Nakano, R. J. Dado, H. H. Loh, P. Y. Law, M. W. Wessendorf, and R. Elde. (1995) Distribution and targeting of a mu-opioid receptor (MOR1) in brain and spinal cord. J. Neurosci. 15, 3328–3341.

    PubMed  CAS  Google Scholar 

  145. Elde R., U. Arvidsson, M. Riedl, L. Vulchanova, J. H. Lee, R. Dado, A. Nakano, S. Chakrabarti, X. Zhang, H. H. Loh, et al. (1995) Distribution of neuropeptide receptors. New views of peptidergic neurotransmission made possible by antibodies to opioid receptors. Ann. NY Acad. Sci. 757, 390–404.

    PubMed  CAS  Google Scholar 

  146. Cheng P. Y., L. Y. Liu-Chen, C. Chen, and V. M. Pickel. (1996) Immunolabeling of Mu opioid receptors in the rat nucleus of the solitary tract: extrasynaptic plasmalemmal localization and association with Leu5-enkephalin. J. Comp. Neurol. 371, 522–536.

    PubMed  CAS  Google Scholar 

  147. Svingos A. L., A. Moriwaki, J. B. Wang, G. R. Uhl, and V. M. Pickel. (1996) Ultrastructural immunocytochemical localization of mu-opioid receptors rat nucleus accumbens: extrasynaptic plasmalemmal distribution and association with Leu5-enkephalin. J. Neurosci. 16, 4162–4173.

    PubMed  CAS  Google Scholar 

  148. Wang X. M., K. M. Zhang, and S. S. Mokha. (1996) Nociceptin (orphanin FQ), an endogenous ligand for the ORL1 (opioid-receptor-like1) receptor; modulates responses of trigeminal neurons evoked by excitatory amino acids and somatosensory stimuli. J. Neurophysiol. 76, 3568–3572.

    PubMed  CAS  Google Scholar 

  149. Van Bockstaele E. J., E. E. Colago, A. Moriwaki, and G. R. Uhl. (1996) Mu-opioid receptor is located on the plasma membrane of dendrites that receive asymmetric synapses from axon terminals containing leucine-enkephalin in the rat nucleus locus coeruleus. J. Comp. Neurol. 376, 65–74.

    PubMed  Google Scholar 

  150. Keith D. E., B. Anton, S. R. Murray, P. A. Zaki, P. C. Chu, D. V. Lissin, G. Monteillet-Agius, P. L. Stewart, C. J. Evans, and M. von Zastrow. (1998) mu-Opioid receptor internalization: opiate drugs have differential effects on a conserved endocytic mechanism in vitro and in the mammalian brain. Molecular Pharmacology 53, 377–384.

    PubMed  CAS  Google Scholar 

  151. McConalogue, K., E. F. Grady, J. Minnis, B. Balestra, M. Tonini, N. C. Brecha, N. W. Bunnett, and C. Sternini. (1999) Activation and internalization of the mu-opioid receptor by the newly discovered endogenous agonists, endomorphin-1 and endomorphin-2. Neuroscience 90, 1051–1059.

    PubMed  CAS  Google Scholar 

  152. Keith D., S. Murray, P. Zaki, P. Chu, D. Lisson, L. Kang, J. Aimi, C. Evans, and M. von Zastrow. (1995) Rapid endocytosis of opioid receptors: Differential regulation by opioid peptide and morphine. Soc. Neurosci. Abstr. 21, 1353.

    Google Scholar 

  153. Dournaud P., H. Boudin, A. Schonbrunn, G. S. Tannenbaum, and A. Beaudet. (1998) Interrelationships between somatostatin sst2A receptors and somatostatin-containing axons in rat brain: Evidence for regulation of cell surface receptors by endogenous somatostatin. Journal of Neuroscience 18, 1056–1071.

    PubMed  CAS  Google Scholar 

  154. Jacobson W. and S. P. Kalra. (1989) Decreases in mediobasal hypothalamic and preoptic area opioid ([3H]naloxone) binding are associated with the progesterone-induced luteinizing hormone surge. Endocrinology 124, 199–206.

    PubMed  CAS  Google Scholar 

  155. Zhou, Y., Y.-H. Sun, Z.-W. Zhang, and J.-S. Han. (1993) Increased release of immunoreactive cholecystokinin octapeptide by morphine and potentiation of mu-opioid analgesia by CCK-B receptor antagonist L-365,260 in rat spinal cord. Europ. J. Pharmoc. 234, 147–154.

    CAS  Google Scholar 

  156. Collin E., S. Bourgoin, S. Mantelet, M. Hamon, and F. Cesselin. (1992) Feedback inhibition of met-enkephalin release from the rat spinal cord in vivo. Synapse 11, 76–84.

    PubMed  CAS  Google Scholar 

  157. Pierce T. L. and M. W. Wessendorf. (2000) Immunocytochemical mapping of endomorphin-2-immunoreactivity in rat brain. Journal of Chemical Neuroanatomy 18, 181–207.

    PubMed  CAS  Google Scholar 

  158. Shughrue P. J., M. V. Lane, P. J. Scrimo, and I. Merchenthaler. (1998) Comparative distribution of estrogen receptor-alpha (ER-alpha) and beta (ER-beta) mRNA in the rat pituitary, gonad, and reproductive tract. Steroids 63, 498–504.

    PubMed  CAS  Google Scholar 

  159. Clark J. T., P. S. Kalra, and S. P. Kalra. (1985) Neuropeptide Y stimulates feeding but inhibits sexual behavior in rats. Endocrinology 117, 2435–2442.

    PubMed  CAS  Google Scholar 

  160. Mills R. H., R. K. Sohn, and P. E. Micevych. (2001) Effects of neuropeptide Y on steroid activation of m-opioid receptor and neuropeptide Y-Y1 receptor in the hypothalamus in female rats. Society for Behavioral Neuroendocrinology 39, 339–340.

    Google Scholar 

  161. Webb P., G. N. Lopez, R. M. Uht, and P. J. Kushner. (1995) Tamoxifen activation of the estrogen. Molecular Endocrinology 9, 443–456.

    PubMed  CAS  Google Scholar 

  162. Gu Q., K. S. Korach, and R. L. Moss. (1999) Rapid action of 17beta-estradiol on kainate-induced currents in hippocampal neurons lacking intracellular estrogen receptors. Endocrinology 140, 660–666.

    PubMed  CAS  Google Scholar 

  163. Lubahn D. B., J. S. Moyer, T. S. Golding, J. F. Couse, K. S. Korach, and O. Smithies. (1993) Alteration of reproductive function but not prenatal sexual development after insertional disruption of the mouse estrogen receptor gene. Proc. Natl. Acad. Sci. USA 90, 11,162–11,166.

    CAS  Google Scholar 

  164. Korach K. S. (1994) Insights from the study of animals lacking functional estrogen receptor. Science 266, 1524–1527.

    PubMed  CAS  Google Scholar 

  165. Kuiper G., E. Enmark, M. Pelto-Huikko, S. Nilsson, and J.-A. Gustafsson. (1996) Cloning of a novel estrogen receptor expressed in rat prostate and ovary. Proc. Natl. Acad. Sci. 93, 5925–5930.

    PubMed  CAS  Google Scholar 

  166. Kuiper G. G., P. J. Shughrue, I. Merchenthaler, and J. A. Gustafsson. (1998) The estrogen receptor beta subtype: a novel mediator of estrogen action in neuroendocrine systems. Frontiers in Neuroendocrinology 19, 253–286.

    PubMed  CAS  Google Scholar 

  167. Kuiper G. G., B. Carlsson, K. Grandien, E. Enmark, J. Heaggblad, S. Nilsson, and J. A. Gustafsson. (1997) Comparison of the ligand binding specificity and transcript tissue distribution of estrogen receptors alpha and beta. Endocrinology 138, 863–870.

    PubMed  CAS  Google Scholar 

  168. Rissman E. F., S. R. Wersinger, J. A. Taylor, and D. B. Lubahn. (1997) Estrogen receptor function as revealed by knockout studies: neuroendocrine and behavioral aspects. Hormones and Behavior 31, 232–243.

    PubMed  CAS  Google Scholar 

  169. Tremblay G. B., A. Tremblay, N. G. Copeland, D. J. Gilbert, N. A. Jenkins, F. Labrie, and V. Giguere. (1997) Cloning, chromosomal localization, and functional analysis of the murine estrogen receptor beta. Mol. Endocrinol. 11, 353–365.

    PubMed  CAS  Google Scholar 

  170. Mosselman S., J. Polman, and R. Dijkema. (1996) ER beta: identification and characterization of a novel human estrogen receptor. FEBS Lett. 392, 49–53.

    PubMed  CAS  Google Scholar 

  171. Micevych P. E., E. F. Rissman, and K. Sinchak. (2003) Estrogen receptor-α is required for estrogen-induced μ-opioid receptor internalization. J. Neurosci. Res. 71, 802–810.

    PubMed  CAS  Google Scholar 

  172. Fedynyshyn J. P. and N. M. Lee. (1989) Mutype opioid receptors in rat periaqueductal gray-enriched P2 membrane are coupled to guanine nucleotide binding proteins. Brain Res. 476, 102–109.

    PubMed  CAS  Google Scholar 

  173. Selley D. E. and J. M. Bidlack. (1992) Effects of Beta-Endorphin on Mu and Delta Opioid Receptor-Coupled G-Protein Activity—Low-Km GTPase Studies. Journal of Pharmacology and Experimental Therapeutics 263, 99–104.

    PubMed  CAS  Google Scholar 

  174. Chakrabarti S., P. L. Prather, L. Yu, P. Y. Law, and H. H. Loh. (1995) Expression of the mu-opioid receptor in CHO cells—Ability of mu-opioid ligands to promote alpha-azidoanilido [P-32]GTP labeling of multiple G protein alpha subunits. J. Neurochem. 64, 2534–2543.

    PubMed  CAS  Google Scholar 

  175. Frey E. A. and J. W. Kebabian. (1984) A mu-opiate receptor in 7315c tumor tissue mediates inhibition of immunoreactive prolactin release and adenylate cyclase activity. Endocrinology 115, 1797–1804.

    PubMed  CAS  Google Scholar 

  176. Yu V. C. and W. Sadee. (1988) Efficacy and tolerance of narcotic analgesics at the mu opioid receptor in differentiated human neuroblastoma cells. J. Pharmacol. Exp. Ther. 245, 350–355.

    PubMed  CAS  Google Scholar 

  177. Childers S. R. (1991) Opioid receptor-coupled second messenger systems. Life Sci. 48, 1991–2003.

    PubMed  CAS  Google Scholar 

  178. Aghajanian G. K. and Y. Y. Wang. (1986) Pertussis toxin blocks the outward currents evoked by opiate and alpha 2-agonists in locus coeruleus neurons. Brain Res. 371, 390–394.

    PubMed  CAS  Google Scholar 

  179. North R. A., J. T. Williams, A. Surprenant, and M. J. Christie. (1987) Mu and delta receptors belong to a family of receptors that are coupled to potassium channels. Proc. Natl. Acad. Sci. USA 84, 5487–5491.

    PubMed  CAS  Google Scholar 

  180. Moises H. C., K. I. Rusin, and R. L. Macdonald. (1994) Mu-and kappa-opioid receptors selectively reduce the same transient components of high-threshold calcium current in rat dorsal root ganglion sensory neurons. J. Neurosci. 14, 5903–5916.

    PubMed  CAS  Google Scholar 

  181. Moises H. C., K. I. Rusin, and R. L. Macdonald. (1994) mu-Opioid receptor-mediated reduction of neuronal calcium current occurs via a G(o)-type GTP-binding protein. J. Neurosci. 14, 3842–3851.

    PubMed  CAS  Google Scholar 

  182. Rhim H. and R. J. Miller. (1994) Opioid receptors modulate diverse types of calcium channels in the nucleus tractus solitarius of the rat. J. Neurosci. 14, 7608–7615.

    PubMed  CAS  Google Scholar 

  183. Kelly M. J. and E. R. Levin. (2001) Rapid actions of plasma membrane estrogen receptors. Trends Endocrinol. Metab. 12, 152–156.

    PubMed  CAS  Google Scholar 

  184. Kelly M. J., A. H. Lagrange, E. J. Wagner, and O. K. Ronnekleiv. (1999) Rapid effects of estrogen to modulate G protein-coupled receptors via activation of protein kinase A and protein kinase C pathways. Steroids 64, 64–75.

    PubMed  CAS  Google Scholar 

  185. Russell K. S., M. P. Haynes, D. Sinha, E. Clerisme, and J. R. Bender. (2000) Human vascular endothelial cells contain membrane binding sites for estradiol, which mediate rapid intracellular signaling. Proc. Nat. Acad. Sci. USA 97, 5930–5935.

    PubMed  CAS  Google Scholar 

  186. Pietras R. J., I. Nemere, and C. M. Szego. (2001) Steroid hormone receptors in target cell membranes. Endocrine 14, 417–427.

    PubMed  CAS  Google Scholar 

  187. Pietras P. J. and C. M. Szego. (1999) Cell membrane estrogen receptors resurface. Nat. Med. 5, 1330.

    PubMed  CAS  Google Scholar 

  188. Pietras R. J. and C. M. Szego. (1977) Specific binding sites for oestrogen at the outer surfaces of isolated endometrial cells. Nature 265, 69–72.

    PubMed  CAS  Google Scholar 

  189. Sim L. J. and S. R. Childers. (1997) Anatomical distribution of mu, delta, and kappa opioid- and nociceptin/orphanin FQ stimulated [35S]Guanylyl-5′-O-(γ-thio)-triphosphate binding in guinea pig brain. J. Comp. Neurol. 386, 562–572.

    PubMed  CAS  Google Scholar 

  190. Sim L. J., Q. Liu, S. R. Childers, and D. E. Selley. (1998) Endomorphin-stimulated [35S]GTPgammaS binding in rat brain: evidence for partial agonist activity at mu-opioid receptors. Journal of Neurochemistry 70, 1567–1576.

    PubMed  CAS  Google Scholar 

  191. Sim L. J., D. E. Selley, and S. R. Childers. (1995) In vitro autoradiography of receptor-activated G proteins in rat brain by agonist-stimulated guanylyl 5′-[gamma-[35S]thio]-triphosphate binding. Proc. Nat. Acad. Sci. USA 92, 7242–7246.

    PubMed  CAS  Google Scholar 

  192. Sim L. J., D. E. Selley, S. I. Dworkin, and S. R. Childers. (1996) Effects of chronic morphine administration on μ-opioid receptor-stimulated [35S]GTPγS autoradiography in rat brain. J. Neurosci. 16, 2684–2692.

    PubMed  CAS  Google Scholar 

  193. Sim L. J., D. E. Selley, R. Xiao, and S. R. Childers. (1996) Differences in G-protein activation by μ- and δ-opioid, and cannabinoid, receptors in rat striatum. Europ. J. Pharmacol. 307, 97–105.

    CAS  Google Scholar 

  194. Selley D. E., L. J. Sim, R. Y. Xiao, Q. X. Liu, and S. R. Childers. (1997) mu-Opioid receptor-stimulated guanosine-5′-O-(γ-thio)-triphosphate binding in rat thalamus and cultured cell lines: Signal transduction mechanisms underlying agonist efficacy. Mol. Pharmacol. 51, 87–96.

    PubMed  CAS  Google Scholar 

  195. Cunningham M. J., Y. Fang, D. E. Selley, and M. J. Kelly. (1998) mu-Opioid agonist-stimulated [35S]GTPγS binding in guinea pig hypothalamus: effects of estrogen. Brain Res. 791, 341–346.

    PubMed  CAS  Google Scholar 

  196. Bueno J. and D. W. Pfaff. (1976) Single unit recording in hypothalamus and preoptic area of estrogen-treated and untreated ovariectomized female rats. Brain Res. 101, 67–78.

    PubMed  CAS  Google Scholar 

  197. Lincoln D. W. (1967) Unit activity in the hypothalamus, septum and preoptic area of the rat: characteristics of spontaneous activity and the effect of oestrogen. J. Endocrinol. 37, 177–189.

    PubMed  CAS  Google Scholar 

  198. Sinchak K., V. Yu, and P. E. Micevych. (1998) Progesterone induces internalization of ORl-1 in the ventromedial nucleus of the hypothalamus in estrogen primed female rats but does not increase the area of immunoreactivity. Soc. Neurosci. Abstr. 24, 1011.

    Google Scholar 

  199. Neal C. R., A. Mansour, R. Reinscheid, H. P. Nothacker, O. Civelli, H. Akil, and S. J. Watson. (1999) Opioid receptor-like (ORL1) receptor distribution in the rat central nervous system: Comparison of ORL1 receptor mRNA expression with I-125-[(14)Tyr]-orphanin FQ binding. J. Comp. Neurol. 412, 563–605.

    PubMed  CAS  Google Scholar 

  200. Sinchak K., R. Khavari, D. Katzman, and P. E. Micevych. (1999) Sexual receptivity is associated with a reduction in internalization of mu-opioid receptors in the medial preoptic nucleus in cycling and steroid primed ovariectomized rats. Soc. Neurosci. Abst. 25, 1705.

    Google Scholar 

  201. Popper P., C. A. Priest, and P. E. Micevych. (1996) Regulation of cholecystokinin receptors in the ventromedial nucleus of the hypothalamus: Sex steroid hormone regulation. Brain Res. 715, 335–339.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin Sinchak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sinchak, K., Micevych, P. Visualizing activation of opioid circuits by internalization of G protein-coupled receptors. Mol Neurobiol 27, 197–222 (2003). https://doi.org/10.1385/MN:27:2:197

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/MN:27:2:197

Index Entries

Navigation