Skip to main content
Log in

Functional peptide sequences derived from extracellular matrix glycoproteins and their receptors

Strategies to improve neuronal regeneration

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Peptides derived from extracellular matrix proteins have the potential to function as potent therapeutic reagents to increase neuronal regeneration following central nervous system (CNS) injury, yet their efficacy as pharmaceutical reagents is dependent upon the expression of cognate receptors in the target tissue. This type of codependency is clearly observed in successful models of axonal regeneration in the peripheral nervous system, but not in the normally nonregenerating adult CNS. Successful regeneration is most closely correlated with the induction of integrins on the surface of peripheral neurons. This suggests that in order to achieve optimal neurite regrowth in the injured adult CNS, therapeutic strategies must include approaches that increase the number of integrins and other key receptors in damaged central neurons, as well as provide the appropriate growth-promoting peptides in a “regeneration cocktail.” In this review, we describe the ability of peptides derived from tenascin-C, fibronectin, and laminin-1 to influence neuronal growth. In addition, we also discuss the implications of peptide/receptor interactions for strategies to improve neuronal regeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gotz, B., Scholze, A., Clement, A., Joester, A., Schutte, K., Wigger, F., Frank, R., Spiess, E., Ekblom, P., and Faissner, A. (1996) Tenascin-C contains distinct adhesive, anti-adhesive, and neurite outgrowth promoting sites for neurons. J. Cell Biol. 132, 681–699.

    PubMed  CAS  Google Scholar 

  2. Meiners, S. and Geller, H. M. (1997) Long and short splice variants of human tenascin differentially regulate neurite outgrowth. Mol. Cell. Neurosci. 10, 100–116.

    PubMed  CAS  Google Scholar 

  3. Sephel, G. C., Tashiro, K. I., Sasaki, M., Greatorex, D., Martin, G. R., Yamada, Y., and Kleinman, H. K. (1989) Laminin A chain synthetic peptide which supports neurite outgrowth. Biochem. Biophys. Res. Commun. 162, 821–829.

    PubMed  CAS  Google Scholar 

  4. Matsuzawa, M., Weight, F. F., Potember, R. S., and Liesi, P. (1996) Directional neurite outgrowth and axonal differentiation of embryonic hippocampal neurons are promoted by a neurite outgrowth domain of the B2-chain of laminin. Int. J. Dev. Neurosci. 14, 283–295.

    PubMed  CAS  Google Scholar 

  5. Phillips, G. R., Edelman, G. M., and Crossin, K. L. (1995) Separate cell binding sites within cytotactin/tenascin differentially promote neurite outgrowth. Cell Adh. Commun. 3, 257–271.

    CAS  Google Scholar 

  6. Dorries, U., Taylor, J., Xioa, Z., Lochter, A., Montag, D., and Schachner, M. (1996) Distinct effects of recombinant tenascin domains on neuronal cell adhesion, growth cone guidance, and neuronal polarity. J. Neurosci. Res. 43, 420–438.

    PubMed  CAS  Google Scholar 

  7. Varnum-Finney, B., Venstrom, K., Muller, U., Kypta, R., Backus, C., Chiquet, M., and Reichardt, L. F. (1995) The integrin receptor alpha 8 beta 1 mediates interactions of embryonic chick motor and sensory neurons with tenascin-C. Neuron 14, 1213–1222.

    PubMed  CAS  Google Scholar 

  8. Gotz, M., Bolz, J., Joester, A., and Faissner, A. (1997) Tenascin-C synthesis and influence on axon growth during rat cortical development. Eur. J. Neurosci. 9, 496–506.

    PubMed  CAS  Google Scholar 

  9. Meiners, S., Powell, E. M., and Geller, H. M. (1999) Neurite outgrowth promotion by the alternatively spliced region of tenascin-C is influenced by cell type specific binding. Matrix. Biol. 18, 75–87.

    PubMed  CAS  Google Scholar 

  10. Meiners, S., Mercado, M. L., Kamal, M. S., and Geller, H. M. (1999) Tenascin-C contains domains that independently regulate neurite outgrowth and neurite guidance. J. Neurosci. 19, 8443–8453.

    PubMed  CAS  Google Scholar 

  11. Meiners, S., Nur-e-Kamal, M. S. A., and Mercado, M. L. T. (2001) Identification of a neurite outgrowth promoting motif within the alternatively spliced region of tenascin-C. J. Neurosci. 21, 7215–7225.

    PubMed  CAS  Google Scholar 

  12. Crossin, K. L., Hoffman, S., Tan, S. S., and Edelman, G. M. (1989) Cytotactin and its proteoglycan ligand mark structural and functional boundaries in somatosensory cortex of the early postnatal mouse. Dev. Biol. 136, 381–392.

    PubMed  CAS  Google Scholar 

  13. Tucker, R. P. (1993) The in situ localization of tenascin splice variants and thrombospondin 2 mRNA in the avian embryo. Development 117, 347–358.

    PubMed  CAS  Google Scholar 

  14. McKeon, R. J., Schreiber, R. C., Rudge, J. S., and Silver, J. (1991) Reduction of neurite outgrowth in a model of glial scarring following CNS injury is correlated with the expression of inhibitory molecules on reactive astrocytes. J. Neurosci. 11, 3398–3411.

    PubMed  CAS  Google Scholar 

  15. Gates, M. A., Fillmore, H., and Steindler, D. A. (1996) Chondroitin sulfate proteoglycan and tenascin in the wounded adult mouse neostriatum in vitro: dopamine neuron attachment and process outgrowth. J. Neurosci. 16, 8005–8018.

    PubMed  CAS  Google Scholar 

  16. Zuo, J., Neubauer, D., Dyess, K., Ferguson, T. A., and Muir, D. (1998) Degradation of chondroitin sulfate proteoglycan enhances the neurite-promoting potential of spinal cord tissue. Exp. Neurol. 154, 654–662.

    PubMed  CAS  Google Scholar 

  17. Leahy, D. J., Hendrickson, W. A., Aukhil, I., and Erickson, H. P. (1992) Structure of a fibronectin type III domain from tenascin-C by MAD analysis of the selenomethionyl protein. Science 258, 987–991.

    PubMed  CAS  Google Scholar 

  18. Yokosaki, Y., Matsuura, N., Higashiyami, S., Murakami, I., Obara, M., Yamakido, M., Shigeto, N., Chen, J., and Sheppard, D. (1998) Identification of the ligand binding site for the integrin a9b1 in the third fibronectin type III repeat of tenascin-C. J. Biol. Chem. 273, 11,423–11,428.

    CAS  Google Scholar 

  19. Huang, X. Z., Wu, J. F., Ferrando, R., Lee, J. H., Wang, Y. L., Farese, R. V. Jr., and Sheppard, D. (2000) Fatal bilateral chylothorax in mice lacking the integrin alpha9beta1. Mol. Cell Biol. 20, 5208–5215.

    PubMed  CAS  Google Scholar 

  20. Burkin, D. J., Gu, M., Hodges, B. L., Campanelli, J. T., and Kaufman, S. J. (1998) A functional role for specific spliced variants of the a7b1 integrin in acetylcholine receptor clustering. J. Cell Biol. 143, 1067–1075.

    PubMed  CAS  Google Scholar 

  21. Crawley, S., Farrell, E. M., Wang, W., Gu, M., Huang, H. Y., Huynh, V., Hodges, B. L., Cooper, D. N., and Kaufman, S. J. (1997) The alpha7beta1 integrin mediates adhesion and migration of skeletal myoblasts on laminin. Exp. Cell Res. 235, 274–286.

    PubMed  CAS  Google Scholar 

  22. Rigato, F., Garwood, J., Calco, V., Heck, N., Faivre-Sarrailh, C., and Faissner, A. (2002) Tenascin-C promotes neurite outgrowth of embryonic hippocampal neurons through the alternatively spliced fibronectin type III BD domains via activation of the cell adhesion molecule F3/contactin. J. Neurosci. 22, 6609.

    Google Scholar 

  23. Schnapp, L. M., Hatch, N., Ramos, D. M., Klimanskaya, I. V., Sheppard, D., and Pytela, R. (1995) The human integrin alpha 8 beta 1 functions as a receptor for tenascin, fibronectin, and vitronectin. J. Biol. Chem. 270, 23,196–23,202.

    CAS  Google Scholar 

  24. Denda, S., Reichardt, L. F., and Muller, U. (1998) Identification of osteopontin as a novel ligand for the integrin alpha8beta1 and potential roles for this integrin-ligand interaction in kidney morphogenesis. Mol. Biol. Cell 9, 1425–1435.

    PubMed  CAS  Google Scholar 

  25. Joshi, P., Chung, C. Y., Aukhil, I., and Erickson, H. P. (1993) Endothelial cells adhere to the RGD domain and the fibrinogen- like terminal knob of tenascin. J. Cell Sci. 106, 389–400.

    PubMed  CAS  Google Scholar 

  26. Sriramarao, P., Mendler, M., and Bourdon, M. A. (1993) Endothelial cell attachment and spreading on human tenascin is mediated by α2β1 and αvβ3 integrins. J. Cell Sci. 105, 1001–1012.

    PubMed  CAS  Google Scholar 

  27. Denda, S., Muller, U., Crossin, K. L., Erickson, H. P., and Reichardt, L. F. (1998) Utilization of a soluble integrin-alkaline phosphatase chimera to characterize integrin a8b1 receptor interactions with tenasin: murine a8b1 binds to the RGD site in tenascin-C fragments, but not to native tenascin-C. Biochemistry 37, 5464–5474.

    PubMed  CAS  Google Scholar 

  28. Linnala, A., Lehto, V. P., and Virtanen, I. (1997) Neuronal differentiation in SH-SY5Y human neuroblastoma cells induces systhesis and secretion of tenascin and upregulation of alpha(v) integrin receptors. J. Neurosci. Res. 49, 53–63.

    PubMed  CAS  Google Scholar 

  29. Taga, T., Suzuki, A., Gonzalez-Gomez, I., Gilles, F. H., Stins, M., Shimada, H., Barsky, L., Weinberg, K. I., and Laug, W. E. (2002) Alphav-integrin antagonist EMD 121974 induces apoptosis in brain tumor cells growing on vitronectin and tenascin. Int. J. Cancer 98, 690–697.

    PubMed  CAS  Google Scholar 

  30. Pearlman, A. L. and Sheppard, A. M. (1996) Extracellular matrix in early cortical development. Prog. Brain Res. 108, 117–134.

    PubMed  CAS  Google Scholar 

  31. Lander, A. D. (1987) Molecules that make axons grow. Mol. Neurobiol. 1, 213–245.

    Article  PubMed  CAS  Google Scholar 

  32. Whitworth, I. H., Brown, R. A., Dore, C., Green, C. J., and Terenghi, G. (1995) Oriented mats of fibronectin as a conduit material for use in peripheral nerve repair. J. Hand. Surg. 20, 429–436.

    CAS  Google Scholar 

  33. Elices, M. J., Urry, L. A., and Hemler, M. E. (1991) Receptor functions for the integrin VLA-3: fibronectin, collagen, and laminin binding are differentially influenced by Arg-Gly-Asp peptide and by divalent cations. J. Cell Biol. 112, 169–181.

    PubMed  CAS  Google Scholar 

  34. Pytela, R., Pierschbacher, M. D., and Ruoslahti, E. (1985) Identification and isolation of a 140 kd cell surface glycoprotein with properties expected of a fibronectin receptor. Cell 40, 191–198.

    PubMed  CAS  Google Scholar 

  35. Gu, M., Wang, W., Song, W. K., Cooper, D. N. W., and Kaufman, S. J. (1994) Selective modulation of the interaction of a7b1 integrin with fibronectin and laminin by L-14 lectin during skeletal muscle differentiation. J. Cell Sci. 107, 175–181.

    PubMed  CAS  Google Scholar 

  36. Muller, U., Bossy, B., Venstrom, K., and Reichardt, L. F. (1995) Integrin α8β1 promotes attachment, cell spreading, and neurite outgrowth on fibronectin. Mol. Biol. Cell 6, 433–448.

    PubMed  CAS  Google Scholar 

  37. Vogel, B. E., Tarone, G., Giancotti, F. G., Gailit, J., and Ruoslahti, E. (1990) A novel fibronectin receptor with an unexpected subunit composition (αvβ1). J. Biol. Chem. 265, 5934–5937.

    PubMed  CAS  Google Scholar 

  38. Charo, I. F., Nannizzi, L., Smith, J. W., and Cheresh, D. A. (1990) The vitronectin receptor alpha v beta 3 binds fibronectin and acts in concert with alpha 5 beta 1 in promoting cellular attachment and spreading on fibronectin. J. Cell Biol. 111, 2795–2800.

    PubMed  CAS  Google Scholar 

  39. Busk, M., Pytela, R., and Sheppard, D. (1992) Characterization of the integrin alpha v beta 6 as a fibronectin binding protein. J. Biol. Chem. 267, 5790–5796.

    PubMed  CAS  Google Scholar 

  40. Bowditch, R. D., Halloran, C. E., Aota, S., Obara, M., Plow, E. G., Yamada, K. M., and Ginsberg, M. H. (1991) Integrin alpha IIb beta 3 (platelet GPIIb-IIIa) recognizes multiple sites in fibronectin. J. Biol. Chem. 266, 23,323–23,328.

    CAS  Google Scholar 

  41. Obara, M., Kang, M. S., and Yamada, K. M. (1988) Site-directed mutagenesis of the cell-binding domain of human fibronectin: separable, synergistic sites mediate adhesive function. Cell 53, 649–657.

    PubMed  CAS  Google Scholar 

  42. Aota, S., Nagai, T., and Yamada, K. M. (1991) Characterization of regions of fibronectin besides the arginine-glycine-aspartic acid sequence required for adhesive function of the cell-binding domain using site-directed mutagenesis. J. Biol. Chem. 266, 15,938–15,943.

    CAS  Google Scholar 

  43. Young, B. A., Taooka, Y., Liu, S., Askins, K. J., Yokosaki, Y., Thomas, S. M., and Sheppard, D. (2001) The cytoplasmic domain of the integin α9 subunit requires the adapter protein paxillin to inhibit cell spreading but promotes cell migration in a paxillin-independent manner. Mol. Biol. Cell 12, 3214–3225.

    PubMed  CAS  Google Scholar 

  44. Rogers, S. L., Letourneau, P. C., Peterson, B. A., Furcht, L. T., and McCarthy, J. B. (1987) Selective interaction of peripheral and central nervous systems with two distinct cell-binding of fibronectin. J. Cell Biol. 105, 1435–1442.

    PubMed  CAS  Google Scholar 

  45. Pinkstaff, J. K., Detterich, J., Lynch, G., and Gall, C. (1999) Integrin subunit gene expression is regionally differentiated in adult brain. J. Neurosci. 19, 1541–1556.

    PubMed  CAS  Google Scholar 

  46. Lin, W. H., Higgins, D., Pacheco, M., Aletta, J., Perini, S., Marcucci, K. A., and Roth, J. A. (1993) Manganese induces spreading and process outgrowth in rat pheochromocytoma (PC12) cells. J. Neurosci. Res. 34, 546–561.

    PubMed  CAS  Google Scholar 

  47. Walowitz, J. L. and Roth, J. A. (1999) Activation of ERK1 and ERK2 is required for manganes-induced neurite outgrowth in rat pheochromocytoma (PC12) cells. J. Neurosci. Res. 57, 847–854.

    PubMed  CAS  Google Scholar 

  48. Waite, K. A., Mugnai, G., and Culp, L. A. (1987) A second cell-binding domain on fibronectin (RGDS-independent) for neurite extension from human neuroblastoma cells. Exp. Cell Res. 169, 311–327.

    PubMed  CAS  Google Scholar 

  49. McCarthy, J. B., Chelberg, M. K., Mickelson, D. J., and Furcht, L. T. (1988) Localization and chemical synthesis of fibronectin peptides with melanoma adhesion and heparin binding activities. Biochemistry 27, 1380–1388.

    PubMed  CAS  Google Scholar 

  50. Haugen, P. K., Letourneau, P. C., Drake, S. L., Furcht, L. T., and McCarthy, J. B. (1992) A cellsurface heparan sulfate proteoglycan mediates neural cell adhesion and spreading on a defined sequence from the C-terminal cell and heparin binding domain of fibronectin, FN-C/H II. J. Neurosci. 12, 2597–2608.

    PubMed  CAS  Google Scholar 

  51. McCarthy, J. B., Skubitz, A. P., Qi, Z., Yi, X. Y., Mickelson, D. J., Klein, D. J., and Furcht, L. T. (1990) RGD-independent cell adhesion to the carboxy-terminal heparin-binding fragment of fibronectin involves heparin-dependent and — independent activities. J. Cell Biol. 110, 777–787.

    PubMed  CAS  Google Scholar 

  52. Drake, S. L., Varnum, J., Mayo, K. H., Letourneau, P. C., Furcht, L. T., and McCarthy, J. B. (1993) Structural features of fibronectin synthetic peptide FN-C/H II, responsible for cell adhesion, neurite extension, and heparin sulfate binding. J. Biol. Chem. 268, 15,859–15,867.

    CAS  Google Scholar 

  53. Hari, S. P., McAllister, H., Chuang, W. L., Christ, M. D., and Rabenstein, D. L. (2000) Interaction of heparin with a synthetic pentadecapeptide from the C-terminal heparin-binding domain of fibronectin. Biochemistry 39, 3763–3773.

    PubMed  CAS  Google Scholar 

  54. Haugen, P. K., McCarthy, J. B., Roche, K. F., Furcht, L. T., and Letourneau, P. C. (1992) Central and peripheral neurite outgrowth differs in preference for heparin-binding versus integin-binding sequences. J. Neurosci. 12, 2034–2042.

    PubMed  CAS  Google Scholar 

  55. Humphries, M. J., Komoriya, A., Akiyama, S. K., Olden, K., and Yamada, K. M. (1987) Identification of two distinct regions of the type III connecting segment of human plasma fibronectin that promote cell type-specific adhesion. J. Biol. Chem. 262, 6886–6892.

    PubMed  CAS  Google Scholar 

  56. Komoriya, A., Green, L. J., Mervic, M., Yamada, S. S., Yamada, K. M., and Humphries, M. J. (1991) The minimal essential sequence for a major cell type-specific adhesion site (CS1) within the alternatively spliced type III connecting segment domain of fibronectin is leucine-aspartic acid-valine. J. Biol. Chem. 266, 15,075–15,079.

    CAS  Google Scholar 

  57. Yanaka, K., Camarata, P. J., Spellman, S. R., McCarthy, J. B., Furcht, L. T., Low, W. C., and Heros, R. C. (1996) Neuronal protection from cerebral ischemia by synthetic fibronectin peptides to leukocyte adhesion molecules. J. Cereb. Blood Flow Metab. 16, 1120–1125.

    PubMed  CAS  Google Scholar 

  58. Wilke, M. S., Vespa, J., Skubitz, A. P., Furcht, L. T., and McCarthy, J. B. (1993) Human keratinocytes adhere to and spread on synthetic peptide FN-C/H-V derived from fibronectin. J. Invest. Dermatol. 101, 43–48.

    PubMed  CAS  Google Scholar 

  59. Kato, K., Mohri, H., Tamura, T., and Okubo, T. (1997) A synthetic peptide, FN-C/H-V, from the C-terminal heparin-binding domain of fibronectin, promotes adhesion of PMA stimulated U937 cells. Biochem. Biophys. Res. Comm. 239, 205–211.

    PubMed  CAS  Google Scholar 

  60. Takada, Y., Elices, M. J., Crouse, C., and Hemmler, M. E. (1989) The primary structure of the alpha 4 subunit of VLA-4: homology to other integrins and a possible cell-cell adhesion function. EMBO J. 8, 1361–1368.

    PubMed  CAS  Google Scholar 

  61. Liao, Y.-F., Gotwals, P. J., Koteliansky, V. E., Sheppard, D., and Van De Water, L. (2002) The EIIIA segment of fibronectin is a ligand for integrins α9β1 and α4β1 providing a novel mechanism for regulating cell adhesion by alternative splicing. J. Biol. Chem. 277, 14,467–14,474.

    CAS  Google Scholar 

  62. Schittny, J. C. and Yurchenco, P. D. (1989) Basement membranes: molecular organization and function in development and disease. Curr. Opin. Cell Biol. 1, 983–988.

    PubMed  CAS  Google Scholar 

  63. Luckenbill-Edds, L. (1997) Laminin and the mechanism of neuronal outgrowth. Brain Res. Brain Res. Rev. 23, 1–27.

    PubMed  CAS  Google Scholar 

  64. Clark, P., Britland, S. and Connolly, P. (1993) Growth cone guidance and neuron morphology on micropatterned laminin surfaces. J. Cell Sci. 105, 203–212.

    PubMed  CAS  Google Scholar 

  65. Baron-van Evercooren, A., Kleinman, H. K., Ohno, S., Marangos, P., Schwartz, J. P., and Dubois-Dalcq, M. E. (1982) Nerve growth factor, laminin, and fibronectin promote neurite growth in human fetal sensory ganglia cultures. J. Neurosci. Res. 8, 179–193.

    PubMed  CAS  Google Scholar 

  66. Liesi, P., Narvanen, A., Soos, J., Sariola, H., and Snounou, G. (1989) Identification of a neurite outgrowth-promoting domain of laminin using synthetic peptides. FEBS Lett. 244, 141–148.

    PubMed  CAS  Google Scholar 

  67. Liesi, P., Laatikainen, T., and Wright, J. M. (2001) Biologically active sequence (KDI) mediates the neurite outgrowth function of the gamma-1 chain of laminin-1. J. Neurosci. Res. 66, 1047–1053.

    PubMed  CAS  Google Scholar 

  68. Liesi, P., Seppala, I., and Trenkner, E. (1992) Neuronal migration in cerebellar microcultures is inhibited by antibodies against a neurite outgrowth domain of laminin. J. Neurosci. Res. 33, 170–176.

    PubMed  CAS  Google Scholar 

  69. Hager, G., Pawelzik, H., Kreutzberg, G. W., and Zieglgansberger, W. (1998) A peptide derived from a neurite outgrowth-promoting domain on the α1 chain of laminin modulates the electrical properties of neocortical neurons. Neurosci. 86, 1145–1154.

    CAS  Google Scholar 

  70. Tashiro, K., Sephel, G. C., Weeks, B., Sasaki, M., Martin, G. R., Kleinman, H. K., and Yamada, Y. (1989) A synthetic peptide containing the IKVAV sequence from the A chain of laminin mediates cell attachment, migration, and neurite outgrowth. J. Biol. Chem. 264, 16,174–16,182.

    CAS  Google Scholar 

  71. Nomizu, M., Weeks, B. S., Weston, C. A., Kim, W. H., Kleinman, H. K., and Yamada, Y. (1995) Structure-activity study of a laminin alpha 1 chain active peptide segment Ile-Lys-Val-Ala-Val (IKVAV). FEBS Lett. 365, 227–231.

    PubMed  CAS  Google Scholar 

  72. Kleinman, H. K., Weeks, B. S., Cannon, F. B., Sweeney, T. M., Sephel, G. C., Clement, B., Zain, M., Olson, M. O., Jucker, M., and Burrous, B. A. (1991) Identification of a 110-kDa nonintegrin cell surface laminin-binding protein which recognizes an A chain neurite promoting peptide. Arch. Biochem. Biophys. 290, 320–325.

    PubMed  CAS  Google Scholar 

  73. Chalazonitis, A., Tennyson, V. M., Kibbey, M. C., Rothman, T. P., and Gershon, M. D. (1997) The alphal subunit of laminin-1 promotes the development of neurons by interacting with LBP110 expressed by neural crest-derived cells immunoselected from the fetal mouse gut. J. Neurobiol. 33, 118–138.

    PubMed  CAS  Google Scholar 

  74. Kibbey, M. C., Jucker, M., Weeks, B. S., Neve, R. L., Van Norstand, W. E., and Kleinman, H. K. (1993) β-Amyloid precursor protein binds to the neurite-promoting IKVAV site of laminin. Proc. Natl. Acad. Sci. USA 90, 10,150–10,153.

    CAS  Google Scholar 

  75. Agius, E., Sagot, Y., Duprat, A. M., and Cochard, P. (1996) Antibodies directed against the β1-integrin subunit and peptides containing the IKVAV sequence of laminin perturb neurite outgrowth of peripheral neurons on immature spinal cord substrata. Neurosci. 71, 773–786.

    CAS  Google Scholar 

  76. Graf, J., Ogle, R. C., Robey, F. A., Sasaki, M., Martin, G. R., Yamada, Y., and Kleinman, H. K. (1987) A pentapeptide from the laminin B1 chain mediates cell adhesion and binds the 67,000 laminin receptor. Biochemistry 26, 6896–6900.

    PubMed  CAS  Google Scholar 

  77. Ranieri, J. P., Bellamkonda, R., Bekos, E. J., Gardella, J. A. Jr., Mathieu, H. J., Ruiz, L., and Aebischer, P. (1994) Spatial control of neuronal cell attachment and differentiation on covalently patterned laminin oligopeptide substrates. Int. J. Dev. Neurosci. 12, 725–735.

    PubMed  CAS  Google Scholar 

  78. Tong, Y. W. and Shoichet, M. S. (2001) Enhancing the neuronal interaction on fluoropolymer surfaces with mixed peptides or spacer group linkers. Biomaterials 22, 1029–1034.

    PubMed  CAS  Google Scholar 

  79. Tashiro, K., Monji, A., Yoshida, I., Hayashi, Y., Matsuda, K., Tashiro, N., and Mitsuyama, Y. (1999) An IKLLI-containing peptide derived from the laminin α1 chain mediating heparinbinding, cell adhesion, neurite outgrowth and proliferation, represents a binding site for integrin α3β1 and heparin sulfate proteoglycan. Biochem. J. 340, 119–126.

    PubMed  CAS  Google Scholar 

  80. Gehlsen, K. R., Sriramarao, P., Furcht, L. T., and Skubitz, A. P. (1992) A synthetic peptide derived from the carboxy terminus of the laminin A chain represents a binding site for the alpha 3 beta 1 integrin. J. Cell Biol. 117, 449–459.

    PubMed  CAS  Google Scholar 

  81. Tashiro, K., Sephel, G. C., Greatorex, D., Sasaki, M., Shirashi, N., Martin, G. R., Kleinman, H. K., and Yamada, Y. (1991) The RGD containing site of mouse laminin A chain is active for cell attachment, spreading, migration and neurite outgrowth. J. Cell Physiol. 146, 451–459.

    PubMed  CAS  Google Scholar 

  82. Verrier, S., Pallu, S., Bareille, R., Jonczyk, A., Meyer, J., Dard, M., and Amedee, J. (2002) Function of linear and cyclic RGD-containing peptides in osteoprogenitor cell adhesion process. Biomaterials 23, 585–596.

    PubMed  CAS  Google Scholar 

  83. Aumailley, M., Gere, M., Sonnenberg, A., Deutzman, R., and Timpl, R. (1990) Identification of the Arg-gly-asp sequence in laminin A chain as a latent cell-binding site being exposed in fragment P1. FEBS Lett. 262, 82–86.

    PubMed  CAS  Google Scholar 

  84. Schulze, B. M. K., Poschl, E., Yamada, Y., and Timpl, R. (1996) Structural and functional analysis of the globular domain IVa of the laminin alpha 1 chain and its impact on an adjacent RGD site. Biochem. J. 314, 847–851.

    PubMed  CAS  Google Scholar 

  85. Richard, B. L., Nomizu, M., Yamada, Y., Kleinman, H. K., Aota, S., and Yamada, K. M. (1996) Identification of synthetic peptides derived from laminin alpha1 and alpha2 chains with cell type specificity for neurite outgrowth. Exp. Cell Res. 228, 98–105.

    PubMed  CAS  Google Scholar 

  86. Powell, S. K., Rao, J., Roque, E., Nomizu, M., Kuratomi, Y., Yamada, Y., and Kleinman, H. K. (2000) Neural cell response to multiple novel sites in laminin-1. J. Neurosci. Res. 61, 302–312.

    PubMed  CAS  Google Scholar 

  87. Hunter, D. D., Cashman, N., Morris-Valero, R., Bulock, J. W., Adams, S. P., and Sanes, J. R. (1991) An LRE (leucine-arginine-glutamate)-dependent mechanism for adhesion of neurons to S-laminin. J. Neurosci. 11, 3960–3971.

    PubMed  CAS  Google Scholar 

  88. Porter, B. E., Weis, J., and Sanes, J. R. (1995) A motoneuron-selective stop signal in the synaptic protein s-laminin. Neuron 14, 549–559.

    PubMed  CAS  Google Scholar 

  89. Brandenberger, R., Kammerer, R. A., Engel, J., and Chiquet, M. (1996) Native chick laminin-4 containing the beta 2 chain (s-laminin) promotes motor axon growth. J. Cell Biol. 135, 1583–1592.

    PubMed  CAS  Google Scholar 

  90. Bandtlow, C. E. and Loschinger, J. (1997) Developmental changes in neuronal responsiveness to the CNS myelin-associated neurite growth inhibitor NI-35/250. Eur. J. Neurosci. 9, 2743–2752.

    PubMed  CAS  Google Scholar 

  91. Plunet, W., Kwon, B. K., and Tetzlaff, W. (2002) Promoting axonal regeneration in the central nervous system by enhancing the cell body response to axotomy. J. Neurosci. Res. 68, 1–6.

    PubMed  CAS  Google Scholar 

  92. Davies, S. J., Fitch, M. T., Memberg, S. P., Hall, A. K., Raisman, G., and Silver, J. (1997) Regeneration of adult axons in white matter tracts of the central nervous system. Nature 390, 680–683.

    PubMed  CAS  Google Scholar 

  93. Chen, M. S., Huber, A. B., van der Haar, M. E., Frank, M., Schnell, L., Spillman, A. A., Christ, F., and Schwab, M. E. (2000) Nogo-A is a myelin-associated neurite outgrowth inhibitor and an antigen for monoclonal antibody IN-1. Nature 403, 434–439.

    PubMed  CAS  Google Scholar 

  94. Condic, M. L. (2001) Adult neuronal regeneration induced by transgenic integrin expression. J. Neurosci. 21, 4782–4788.

    PubMed  CAS  Google Scholar 

  95. Werner, A., Willem, M., Jones, L. L., Kreutzberg, G. W., Mayer, U., and Raivich, G. (2000) Impaired axonal regeneration in alpha7 integrin-deficient mice. J. Neurosci. 20, 1822–1830.

    PubMed  CAS  Google Scholar 

  96. Kuecherer-Ehret, A., Graeber, M. B., Edgar, D., Thoenen, H., and Kreutzberg, G. W. (1990) Immunoelectron microscopic localization of laminin in normal and regenerating mouse sciatic nerve. J. Neurocytol. 19, 101–109.

    PubMed  CAS  Google Scholar 

  97. Zhang, Y., Campbell, G., Anderson, P. N., Martini, R., Schachner, M., and Lieberman, A. R. (1995) Molecular basis of interactions between regerating adult rat thalamic axons and Schwann cells in peripheral nerve grafts. 2. Tenascin-C. J. Comp. Neurol. 361, 210–224.

    PubMed  CAS  Google Scholar 

  98. Yip, J. W., Yip, Y. P., and Capriotti, C. (1995) The expression, origin and function of tenascin durin peripheral nerve formation in the chick. Brain Res. Dev. Brain Res. 86, 297–310.

    PubMed  CAS  Google Scholar 

  99. Vogelezang, M. G., Liu, Z., Relvas, J. B., Raivich, G., Scherer, S. S., ffrench-Constant, C. (2001) α4 integrin is expressed during peripheral nerve regeneration and enhances neurite outgrowth. J. Neurosci. 21, 6732–6744.

    PubMed  CAS  Google Scholar 

  100. Mathews, G. A. and ffrench-Constant, C. (1995) Embryonic fibronectins are up-regulated following peripheral nerve injury in rats. J. Neurobiol. 26, 171–188.

    PubMed  CAS  Google Scholar 

  101. Condic, M. L., Snow, D. M., and Letourneau, P. C. (1999) Embryonic neurons adapt to the inhibitory proteoglycan aggrecan by increasing integrin expression. J. Neurosci. 19, 10,036–10,043.

    CAS  Google Scholar 

  102. Snow, D. M. and Letourneau, P. C. (1992) Neurite outgrowth on a step gradient of chondroitin sulfate proteoglycan (CS-PG). J. Neurobiol. 23, 322–336.

    PubMed  CAS  Google Scholar 

  103. Challacombe, J. F., Snow, D. M., and Letourneau, P. C. (1997) Dynamic microtubule ends are required for growth cone turning to avoid an inhibitory guidance cue. J. Neurosci. 17, 3085–3095.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sally Meiners.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meiners, S., Mercado, M.L.T. Functional peptide sequences derived from extracellular matrix glycoproteins and their receptors. Mol Neurobiol 27, 177–195 (2003). https://doi.org/10.1385/MN:27:2:177

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/MN:27:2:177

Index Entries

Navigation