Skip to main content
Log in

The role of cholesterol in pathogenesis of alzheimer’s disease

Dual metabolic interaction between amyloid β-protein and cholesterol

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

The implication that cholesterol plays an essential role in the pathogenesis of Alzheimer’s disease (AD) is based on the 1993 finding that the presence of apolipoprotein E (apoE) allele ε4 is a strong risk factor for developing AD. Since apoE is a regulator of lipid metabolism, it is reasonable to assume that lipids such as cholesterol are involved in the pathogenesis of AD. Recent epidemiological and biochemical studies have strengthened this assumption by demonstrating the association between cholesterol and AD, and by proving that the cellular cholesterol level regulates synthesis of amyloid β-protein (Aβ). Yet several studies have demonstrated that oligomeric Aβ affects the cellular cholesterol level, which in turn has a variety of effects on AD-related pathologies, including modulation of tau phosphorylation, synapse formation and maintenance of its function, and the neurodegenerative process. All these findings suggest that the involvement of cholesterol in the pathogenesis of AD is dualistic—it is involved in Aβ generation and in the amyloid cascade, leading to disruption of synaptic plasticity, promotion of tau phosphorylation, and eventual neurodegeneration. This review article describes recent findings that may lead to the development of a strategy for AD prevention by decreasing the cellular cholesterol level, and also focuses on the impact of Aβ on cholesterol metabolism in AD and mild cognitive impairment (MCI), which may result in promotion of the amyloid cascade at later stages of the AD process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. LaDu M. J., Gilligan S. M., Lukens J. R., Cabana V. G., Reardon C. A., Van Eldik L. J., et al. (1998) Nascent astrocyte particles differ from lipoproteins in CSF. J. Neurochem. 70, 2070–2081.

    Article  PubMed  CAS  Google Scholar 

  2. Roheim P. S., Carey M., Forte T., and Vega G. L. (1979) Apolipoproteins in human cerebrospinal fluid. Proc. Natl. Acad. Sci. USA 76, 4646–4649.

    Article  PubMed  CAS  Google Scholar 

  3. Pitas R. E., Boyles J. K., Lee S. H., Foss D., and Mahley R. W. (1987) Astrocytes synthesize apolipoprotein E and metabolize apolipoprotein E- containing lipoproteins. Biochim. Biophys. Acta 917, 148–161.

    PubMed  CAS  Google Scholar 

  4. Pitas R. E., Boyles J. K., Lee S. H., Hui D., and Weisgraber K. H. (1987) Lipoproteins and their receptors in the central nervous system. Characterization of the lipoproteins in cerebrospinal fluid and identification of apolipoprotein B,E (LDL) receptors in the brain. J. Biol. Chem. 262, 14,352–14,360.

    CAS  Google Scholar 

  5. Borghini I., Barja F., Pometta D., and James R. W. (1995) Characterization of subpopulations of lipoprotein particles isolated from human cerebrospinal fluid. Biochim. Biophys. Acta 1255, 192–200.

    PubMed  Google Scholar 

  6. Michikawa M., Fan Q. W., Isobe I., and Yanagisawa K. (2000) Apolipoprotein E exhibits isoform-specific promotion of lipid efflux from astrocytes and neurons in culture. J. Neurochem. 74, 1008–1016.

    Article  PubMed  CAS  Google Scholar 

  7. Gong J. S., Kobayashi M., Hayashi H., Zou K., Sawamura N., Fujita S. C., Yanagisawa K., and Michikawa M. (2002) Apolipoprotein E (apoE)-isoform-dependent lipid release from astrocytes prepared from human-apoE3- and apoE4-knock-in mice. J. Biol. Chem. 277, 29,919–29,926.

    CAS  Google Scholar 

  8. Strittmatter W. J., Saunders A. M., Schmechel D., Pericak-Vance M., Enghild J., Salvesen G. S., and Roses A. D. (1993) Apolipoprotein E: high-avidity binding to β-amyloid and increased frequency of type 4 allele in late-onset familial Alzheimer disease. Proc. Natl. Acad. Sci. USA 90, 1977–1981.

    Article  PubMed  CAS  Google Scholar 

  9. Corder E. H., Saunders A. M., Strittmatter W. J., Schmechel D. E., Gaskell P. C., Small G. W., et al. (1993) Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families. Science 261, 921–923.

    Article  PubMed  CAS  Google Scholar 

  10. Saunders A. M., Strittmatter W. J., Schmechel D., George-Hyslop P. H., Pericak-Vance M. A., Joo S. H., et al. (1993) Association of apolipoprotein E allele epsilon 4 with late-onset familial and sporadic Alzheimer’s disease. Neurology 43, 1467–1472.

    PubMed  CAS  Google Scholar 

  11. Poirier J., Davignon J., Bouthillier D., Kogan S., Bertrand P., and Gauthier S. (1993) Apolipoprotein E polymorphism and Alzheimer’s disease. Lancet 342, 697–699.

    Article  PubMed  CAS  Google Scholar 

  12. Selkoe D. J. (1994) Alzheimer’s disease: a central role for amyloid. J. Neuropathol. Exp. Neurol. 53, 438–447.

    PubMed  CAS  Google Scholar 

  13. Anderton B. H., Callahan L., Coleman P., Davies P., Flood D., Jicha G. A., et al. (1998) Dendritic changes in Alzheimer’s disease and factors that may underlie these changes. Prog. Neurobiol. 55, 595–609.

    Article  PubMed  CAS  Google Scholar 

  14. Terry R. D. (2000) Cell death or synaptic loss in Alzheimer disease. J. Neuropathol. Exp. Neurol. 59, 1118–1119.

    PubMed  CAS  Google Scholar 

  15. Hardy J. A. and Higgins G. A. (1992) Alzheimer’s disease: the amyloid cascade hypothesis. Science 256, 184–185.

    Article  PubMed  CAS  Google Scholar 

  16. Esiri M., Hyman B., Beyreuther K., and Masters C. (1997), in Greenfield’s Neuropathology (Graham D. and Lantos P., eds.), (Edward Arnold, London), vol. 2, pp. 153–233.

    Google Scholar 

  17. Jarvik G. P., Wijsman E. M., Kukull W. A., Schellenberg G. D., Yu C., and Larson E. B. (1995) Interactions of apolipoprotein E genotype, total cholesterol level, age, and sex in prediction of Alzheimer’s disease: a case-control study. Neurology 45, 1092–1096.

    PubMed  CAS  Google Scholar 

  18. Notkola I. L., Sulkava R., Pekkanen J., Erkinjuntti T., Ehnholm C., Kivinen P., et al. (1998) Serum total cholesterol, apolipoprotein E epsilon 4 allele, and Alzheimer’s disease. Neuroepidemiology 17, 14–20.

    Article  PubMed  CAS  Google Scholar 

  19. Sparks D. L. (1997) Coronary artery disease, hypertension, ApoE, and cholesterol: a link to Alzheimer’s disease? Ann. NY Acad. Sci. 826, 128–146.

    Article  PubMed  CAS  Google Scholar 

  20. Kivipelto M., Helkala E. L., Hanninen T., Laakso M. P., Hallikainen M., Alhainen K., et al. (2001) Midlife vascular risk factors and late-life mild cognitive impairment: a population-based study. Neurology 56, 1683–1989.

    PubMed  CAS  Google Scholar 

  21. Wolozin B., Kellman W., Ruosseau P., Celesia G. G., and Siegel G. (2000) Decreased prevalence of Alzheimer disease associated with 3-hydroxy-3-methyglutaryl coenzyme A reductase inhibitors. Arch. Neurol. 57, 1439–1443.

    Article  PubMed  CAS  Google Scholar 

  22. Jick H., Zornberg G. L., Jick S. S., Seshadri S., and Drachman D. A. (2000) Statins and the risk of dementia. Lancet 356, 1627–1631.

    Article  PubMed  CAS  Google Scholar 

  23. Fagan A. M., Younkin L. H., Morris J. C., Fryer J. D., Cole T. G., Younkin S. G., et al. (2000) Differences in the Aβ40/Aβ42 ratio associated with cerebrospinal fluid lipoproteins as a function of apolipoprotein E genotype. Ann. Neurol. 48, 201–210.

    Article  PubMed  CAS  Google Scholar 

  24. Locatelli S., Lutjohann D., Schmidt H. H., Otto C., Beisiegel U., and von Bergmann K. (2002) Reduction of plasma 24S-hydroxycholesterol (cerebrosterol) levels using high-dosage simvastatin in patients with hypercholesterolemia: evidence that simvastatin affects cholesterol metabolism in the human brain. Arch. Neurol. 59, 213–216.

    Article  PubMed  Google Scholar 

  25. Eckert G. P., Kirsch C., and Muller W. E. (2001) Differential effects of lovastatin treatment on brain cholesterol levels in normal and ApoE-deficient mice. Neuroreport 12, 883–887.

    Article  PubMed  CAS  Google Scholar 

  26. Cucchiara B. and Kasner S. E. (2001) Use of statins in CNS disorders. J. Neurol. Sci. 187, 81–89.

    Article  PubMed  CAS  Google Scholar 

  27. Bodovitz S. and Klein W. L. (1996) Cholesterol modulates α-secretase cleavage of amyloid precursor protein. J. Biol. Chem. 271, 4436–4440.

    Article  PubMed  CAS  Google Scholar 

  28. Racchi M., Baetta R., Salvietti N., Ianna P., Franceschini G., Paoletti R., et al. (1997) Secretory processing of amyloid precursor protein is inhibited by increase in cellular cholesterol content. Biochem. J. 322, 893–898.

    PubMed  CAS  Google Scholar 

  29. Simons M., Keller P., De Strooper B., Beyreuther K., Dotti C. G., et al. (1998) Cholesterol depletion inhibits the generation of β-amyloid in hippocampal neurons. Proc. Natl. Acad. Sci. USA 95, 6460–6464.

    Article  PubMed  CAS  Google Scholar 

  30. Kojro E., Gimpl G., Lammich S., Marz W., and Fahrenholz F. (2001) Low cholesterol stimulates the nonamyloidogenic pathway by its effect on the α-secretase ADAM 10. Proc. Natl. Acad. Sci. USA 98, 5815–5820.

    Article  PubMed  CAS  Google Scholar 

  31. Fassbender K., Simons M., Bergmann C., Stroick M., Lutjohann D., Keller P., et al. (2001) Simvastatin strongly reduces levels of Alzheimer’s disease β-amyloid peptides Aβ 42 and Aβ 40 in vitro and in vivo. Proc. Natl. Acad. Sci. USA 98, 5856–5861.

    Article  PubMed  CAS  Google Scholar 

  32. Bouillot C., Prochiantz A., Rougon G., and Allinquant B. (1996) Axonal amyloid precursor protein expressed by neurons in vitro is present in a membrane fraction with caveolae-like properties. J. Biol. Chem. 271, 7640–7644.

    Article  PubMed  CAS  Google Scholar 

  33. Lee S. J., Liyanage U., Bickel P. E., Xia W., Lansbury P. T., Jr., and Kosik K. S. (1998) A detergent-insoluble membrane compartment contains Aβ in vivo. Nat. Med. 4, 730–734.

    Article  PubMed  CAS  Google Scholar 

  34. Wahrle S., Das P., Nyborg A. C., McLendon C., Shoji M., Kawarabayashi T., et al. (2002) Cholesterol-dependent γ-secretase activity in buoyant cholesterol-rich membrane microdomains. Neurobiol. Dis. 9, 11–23.

    Article  PubMed  CAS  Google Scholar 

  35. Mason R. P., Shoemaker W. J., Shajenko L., Chambers T. E., and Herbette L. G. (1992) Evidence for changes in the Alzheimer’s disease brain cortical membrane structure mediated by cholesterol. Neurobiol. Aging 13, 413–419.

    Article  PubMed  CAS  Google Scholar 

  36. Svennerholm L. and Gottfries C. G. (1994) Membrane lipids, selectively diminished in Alzheimer brains, suggest synapse loss as a primary event in early-onset form (type I) and demyelination in late-onset form (type II). J. Neurochem. 62, 1039–1047.

    Article  PubMed  CAS  Google Scholar 

  37. Roth G. S., Joseph J. A., and Mason R. P. (1995) Membrane alterations as causes of impaired signal transduction in Alzheimer’s disease and aging. Trends Neurosci. 18, 203–206.

    Article  PubMed  CAS  Google Scholar 

  38. Mulder M., Ravid R., Swaab D. F., de Kloet E. R., Haasdijk E. D., Julk J., et al. (1998) Reduced levels of cholesterol, phospholipids, and fatty acids in cerebrospinal fluid of Alzheimer disease patients are not related to apolipoprotein E4. Alzheimer Dis. Assoc. Disord. 12, 198–203.

    Article  PubMed  CAS  Google Scholar 

  39. Czyzewski K., Lalowski M. M., Pfeffer A., and Barcikowska M. (2001) Lipid metabolism parameters in patients with Alzheimer’s disease and their first degree relatives. Acta Neurobiol. Exp. 61, 21–26.

    CAS  Google Scholar 

  40. Howland D. S., Trusko S. P., Savage M. J., Reaume A. G., Lang D. M., Hirsch J. D., et al. (1998) Modulation of secreted β-amyloid precursor protein and amyloid β-peptide in brain by cholesterol. J. Biol. Chem. 273, 16,576–16,582.

    Article  CAS  Google Scholar 

  41. Chochina S. V., Avdulov N. A., Igbavboa U., Cleary J. P., O’Hare E. O., and Wood W. G. (2001) Amyloid β-peptide 1–40 increases neuronal membrane fluidity: role of cholesterol and brain region. J. Lipid Res. 42, 1292–1297.

    PubMed  CAS  Google Scholar 

  42. Ji S. R., Wu Y., and Sui S. F. (2002) Cholesterol is an important factor affecting the membrane insertion of β-amyloid peptide (Aβ 1–40), which may potentially inhibit the fibril formation. J. Biol. Chem. 277, 6273–6279.

    Article  PubMed  CAS  Google Scholar 

  43. Yip C. M., Elton E. A., Darabie A. A., Morrison M. R., and McLaurin J. (2001) Cholesterol, a modulator of membrane-associated Aβ-fibrillogenesis and neurotoxicity. J. Mol. Biol. 311, 723–734.

    Article  PubMed  CAS  Google Scholar 

  44. Zhou Y. and Richardson J. S. (1996) Cholesterol protects PC12 cells from beta-amyloid induced calcium disordering and cytotoxicity. Neuroreport 7, 2487–2490.

    Article  PubMed  CAS  Google Scholar 

  45. Hartmann H., Eckert A., and Muller W. E. (1994) Apolipoprotein E and cholesterol affect neuronal calcium signalling: the possible relationship to β-amyloid neurotoxicity. Biochem. Biophys. Res. Commun. 200, 1185–1192.

    Article  PubMed  CAS  Google Scholar 

  46. Eckert G. P., Cairns N. J., Maras A., Gattaz W. F., and Muller W. E. (2000) Cholesterol modulates the membrane-disordering effects of β-amyloid peptides in the hippocampus: specific changes in Alzheimer’s disease. Dement. Geriatr. Cogn. Disord. 11, 181–186.

    Article  PubMed  CAS  Google Scholar 

  47. Poirier J., Delisle M. C., Quirion R., Aubert I., Farlow M., Lahiri D., et al. (1995) Apolipoprotein E4 allele as a predictor of cholinergic deficits and treatment outcome in Alzheimer disease. Proc. Natl. Acad. Sci. USA 92, 12,260–12,264.

    Article  CAS  Google Scholar 

  48. Garver W. S., Krishnan K., Gallagos J. R., Michikawa M., Francis G. A., and Heidenreich R. A. (2002) Niemann-Pick C1 protein regulates cholesterol transport to the trans- Golgi network and plasma membrane caveolae. J. Lipid Res. 43, 579–589.

    PubMed  CAS  Google Scholar 

  49. Mori T., Paris D., Town T., Rojiani A. M., Sparks D. L., Delledonne A., et al. (2001) Cholesterol accumulates in senile plaques of Alzheimer disease patients and in transgenic APP(SW) mice. J. Neuropathol. Exp. Neurol. 60, 778–785.

    PubMed  CAS  Google Scholar 

  50. Michikawa M., Gong J. S., Fan Q. W., Sawamura N., and Yanagisawa K. (2001) A novel action of alzheimer’s amyloid β-protein (Aβ): oligomeric Aβ promotes lipid release. J. Neurosci. 21, 7226–7235.

    PubMed  CAS  Google Scholar 

  51. Gong J. S., Sawamura N., Zou K., Sakai J., Yanagisawa K., and Michikawa M. (2002) Amyloid β-protein affects cholesterol metabolism in cultured neurons: Implications for pivotal role of cholesterol in the amyloid cascade. J. Neurosci. Res. 70, 438–446.

    Article  PubMed  CAS  Google Scholar 

  52. Zou K, Gong JS, Yanagisawa K, Michikawa M. (2002) A novel function of monomeric amyloid β-protein serving as an antioxidant molecule against metal-induced oxidative damage. J. Neurosci. 22, 4883–4841.

    Google Scholar 

  53. Mauch D. H., Nagler K., Schumacher S., Goritz C., Muller E. C., Otto A., and Pfrieger F. W. (2001) CNS synaptogenesis promoted by gliaderived cholesterol. Science 294, 1354–1357.

    Article  PubMed  CAS  Google Scholar 

  54. Ullian E. M., Sapperstein S. K., Christopherson K. S., and Barres B. A. (2001) Control of synapse number by glia. Science 291, 657–661.

    Article  PubMed  CAS  Google Scholar 

  55. Fan Q. W., Yu W., Gong J. S., Zou K., Sawamura N., Senda T., et al. (2002) Cholesterol-dependent modulation of dendrite outgrowth and microtubule stability in cultured neurons. J. Neurochem. 80, 178–190.

    Article  PubMed  CAS  Google Scholar 

  56. Koudinov A. R. and Koudinova N. V. (2001) Essential role for cholesterol in synaptic plasticity and neuronal degeneration. FASEB J. 15, 1858–1860.

    PubMed  CAS  Google Scholar 

  57. Liu Y., Peterson D. A., and Schubert D. (1998) Amyloid β peptide alters intracellular vesicle trafficking and cholesterol homeostasis. Proc. Natl. Acad. Sci. USA 95, 13,266–13,271.

    CAS  Google Scholar 

  58. Fan Q. W., Wei Y., Senda T., Yanagisawa K., and Michikawa M. (2001) Cholesterol-dependent modulation of tau phosphorylation in cultured neurons. J. Neurochem. 76, 391–400.

    Article  PubMed  CAS  Google Scholar 

  59. Sawamura N., Gong J. S., Garver W. S., Heidenreich R. A., Ninomiya H., Ohno K., et al. (2001) Site-specific phosphorylation of tau accompanied by activation of mitogen-activated protein kinase (MAPK) in brains of Niemann-Pick type C mice. J. Biol. Chem. 276, 10,314–10,319.

    Article  CAS  Google Scholar 

  60. Sawamura N., Gong J. S., Chang T. Y., Yanagisawa K, and Michikawa M. (2002) Promotion of tau phosphorylation by MAP kinase Erk1/2 is accompanied by reduced cholesterol level in detergent-insoluble membrane fraction in Niemann-Pick C1-deficient cells. J. Neurochem. 84, 1086–1096.

    Article  CAS  Google Scholar 

  61. Brown D. A. and London E. (1997) Structure of detergent-resistant membrane domains: does phase separation occur in biological membranes? Biochem. Biophys. Res. Commun. 240, 1–7.

    Article  PubMed  CAS  Google Scholar 

  62. Simons K. and Ikonen E. (1997) Functional rafts in cell membranes. Nature 387, 569–572.

    Article  PubMed  CAS  Google Scholar 

  63. Kakio A., Nishimoto S. I., Yanagisawa K., Kozutsumi Y., and Matsuzaki K. (2001) Cholesterol-dependent formation of GM1 gangliosidebound amyloid β-protein, an endogenous seed for Alzheimer amyloid. J. Biol. Chem. 276, 24,985–24,990.

    Article  CAS  Google Scholar 

  64. Mizuno T., Nakata M., Naiki H., Michikawa M., Wang R., Haass C., et al. (1999) Cholesteroldependent generation of a seeding amyloid β-protein in cell culture. J. Biol. Chem. 274, 15,110–15,114.

    Article  CAS  Google Scholar 

  65. Matsuzaki K. and Horikiri C. (1999) Interactions of amyloid β-peptide (1–40) with ganglioside-containing membranes. Biochemistry 38, 4137–4142.

    Article  PubMed  CAS  Google Scholar 

  66. Choo-Smith L. P., Garzon-Rodriguez W., Glabe C. G., and Surewicz W. K. (1997) Acceleration of amyloid fibril formation by specific binding of Aβ(1–40) peptide to ganglioside-containing membrane vesicles. J. Biol. Chem. 272, 22,987–22,990.

    Article  CAS  Google Scholar 

  67. McLaurin J., Franklin T., Fraser P. E., and Chakrabartty A. (1998) Structural transitions associated with the interaction of Alzheimer β-amyloid peptides with gangliosides. J. Biol. Chem. 273, 4506–4515.

    Article  PubMed  CAS  Google Scholar 

  68. Yanagisawa K., Odaka A., Suzuki N., and Ihara Y. (1995) GM1 ganglioside-bound amyloid β-protein (Aβ): a possible form of preamyloid in Alzheimer’s disease. Nat. Med. 1, 1062–1066.

    Article  PubMed  CAS  Google Scholar 

  69. Igbavboa U., Avdulov N. A., Schroeder F., and Wood W. G. (1996) Increasing age alters transbilayer fluidity and cholesterol asymmetry in synaptic plasma membranes of mice. J. Neurochem. 66, 1717–1729.

    Article  PubMed  CAS  Google Scholar 

  70. Hayashi H., Igbavboa U., Hamanaka H., Kobayashi M., Fujita S. C., Wood W. G., et al. (2002) Cholesterol is increased in the exofacial leaflet of synaptic plasma membranes of human apolipoprotein E4 knock-in mice. Neuroreport 13, 383–386.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Makoto Michikawa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Michikawa, M. The role of cholesterol in pathogenesis of alzheimer’s disease. Mol Neurobiol 27, 1–12 (2003). https://doi.org/10.1385/MN:27:1:1

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/MN:27:1:1

Index Entries

Navigation