Skip to main content
Log in

Zinc and disease of the brain

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Zinc is one of the most abundant transition metals in the brain. A substantial fraction (10–15%) of brain zinc is located inside presynaptic vesicles of certain glutamatergic terminals in a free or loosely bound state. This vesicle zinc is released with neuronal activity or depolarization, probably serving physiologic functions. However, with excess release, as may occur in a variety of pathologic conditions, zinc may translocate to and accumulate in postsynaptic neurons, events which may contribute to selective neuronal cell death. Intracellular mechanisms of zinc neurotoxicity may include disturbances in energy metabolism, increases in oxidative stress, and activation of apoptosis cascades. Zinc inhibits glyceraldehyde-3-phosphate dehydrogenase (GAPDH), and depletes nicotinamide adenine dinucleotide (NAD+) and adenosine triphosphate (ATP). On the other hand, zinc activates protein kinase C (PKC) and extracellular signal-regulated kinase (Erk-1/2), and induces NADPH oxidase; these events results in oxidative neuronal injury. Zinc can also trigger caspase activation and apoptosis via the p75NTR pathway. Interestingly, the converse—depletion of intracellular zinc—also induces neuronal death, but in this case, exclusively via classical apoptosis. In addition to the neurotoxic effect, zinc may contribute to the pathogenesis of chronic neurodegenerative disease. For example, in Alzheimer’s disease (AD), mature amyloid plaques, but not preamyloid deposits, are found to contain high levels of zinc, suggesting the role of zinc in the process of plaque maturation. Further insights into roles of zinc in brain diseases may help set a new direction toward the development of effective treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Keilin D. and Mann T. (1939) Carbonic anhydrase. Nature 144, 442.

    CAS  Google Scholar 

  2. Coleman J. E. (1992) Zinc proteins: enzymes, storage proteins, transcription factors, and replication proteins. Annu. Rev. Biochem. 61, 897–946.

    Article  PubMed  CAS  Google Scholar 

  3. Vallee B. L. and Falchuck K. H. (1993) The biochemical basis of zinc physiology. Physiol. Rev. 73, 79–118.

    PubMed  CAS  Google Scholar 

  4. Vallee B. L. and Auld D. S. (1995) Metallochemistry in biochemistry. EXS 73, 259–277.

    PubMed  CAS  Google Scholar 

  5. O’Halloran T. V. (1993) Transition metals in control of gene expression. Science 261, 715–725.

    Article  PubMed  CAS  Google Scholar 

  6. Vallee B. L., Coleman J. E., and Auld D. S. (1991) Zinc fingers, zinc clusters, and zinc twists in DNA-binding protein domains. Proc. Natl. Acad. Sci. USA 88, 999–1003.

    Article  PubMed  CAS  Google Scholar 

  7. Szallasi Z., Bogi K., Gohari S., Biro T., Acs P., and Blumberg P. M. (1996) Non-equivalent role for the first and second zinc fingers of protein kinase Cdelta. Effect of their mutation of phorbol ester-induced translocation in NIH 3T3 cells. J. Biol. Chem. 271, 18,229–18,301.

    Google Scholar 

  8. Sakane F., Yamada K., Kanoh H., Yokoyama C., and Tanabe T. (1990) Porcine diacylglycerol kinase sequence has zinc finger and E-F hand motifs. Nature 344, 345–348.

    Article  PubMed  CAS  Google Scholar 

  9. Mills J. S. and Johnson J. D. (1985) Metal ions as allosteric regulators of calmodulin. J. Biol. Chem. 260, 15,100–15,105.

    CAS  Google Scholar 

  10. Baudier J., Haglid K., Haiech J., and Gerard D. (1983) Zinc ion binding to human brain calcium binding proteins, calmodulin and S 100b protein. Biochem. Biophys. Res. Commun. 114, 1138–1146.

    Article  PubMed  CAS  Google Scholar 

  11. Ebadi M., Elsayed M. A., and Aly M. H. (1994) The importance of zinc and metallothionein in the brain. Biol. Signals. 3, 123–126.

    PubMed  CAS  Google Scholar 

  12. Aschner M., Cherian M. G., Klassen C. D. Palmiter R. D., Erickson J. C., and Bush A. I. (1997) Metallothioneins in the brain: the role in physiology and pathology. Toxicol. Appl. Pharmacol. 142, 229–242.

    Article  PubMed  CAS  Google Scholar 

  13. Wallwork J. C. (1987) Zinc and the central nervous system. Prog. Food Nutr. Sci. 11, 203–247.

    PubMed  CAS  Google Scholar 

  14. Frederickson C. J. (1989) Neurobiology of zinc and zinc-containing neurons. Int. Rev. Neurobiol. 31, 145–238.

    PubMed  CAS  Google Scholar 

  15. Frederickson C. J., Klitenick M. A., Manton W. I., and Kirkpatrick J. B. (1983) Cytoarchitectonic distribution of zinc in the hippocampus of man and the rat. Brain Res. 273, 335–339.

    Article  PubMed  CAS  Google Scholar 

  16. Danscher G. (1981) Histochemical demonstration of heavy metals. A revised version of the sulphide silver method suitable for both light and electronmicroscopy. Histochemistry 71, 1–16.

    Article  PubMed  CAS  Google Scholar 

  17. Frederickson C. J., Kasarskis E. J., Ringo D., Frederickson R. E. (1987) A quinoline fluorescence method for visualizing and assaying the histochemically reactive zinc (bouton zinc) in the brain. J. Neurosci. Methods 20, 91–103.

    Article  PubMed  CAS  Google Scholar 

  18. Wenzel H. J., Cole T. B., Born D. E., Schwartzkroin P. A., and Palmiter R. D. (1997) Ultrastructural localization of zinc transporter-3 (ZnT-3) to synaptic vesicle membranes within mossy fiber boutons in the hippocampus of mouse and monkey. Proc. Natl. Acad. Sci. USA 94, 12,676–12,681.

    Article  CAS  Google Scholar 

  19. Perez-Clausell J. (1996) Distribution of terminal fields stained for zinc in the neocortex of the rat. J. Chem. Neuroanat. 11, 99–111.

    Article  PubMed  CAS  Google Scholar 

  20. Sensi S. L., Canzoniero L. M. T., Yu S. P., Ying H., Koh J. Y., Kerchner G. A., and Choi D. W. (1997) Measurement of intracellular free zinc in living cortical neurons: routes of entry. J. Neurosci. 17, 9554–9564.

    PubMed  CAS  Google Scholar 

  21. Howell G. A., Welch M. G., and Frederickson C. J. (1984) Stimulation-induced uptake and release of zinc in hippocampal slices. Nature 308, 736–738.

    Article  PubMed  CAS  Google Scholar 

  22. Assaf S. Y. and Chung S. H. (1984) Release of endogenous Zn2+ from brain tissue during activity. Nature 308, 734–736.

    Article  PubMed  CAS  Google Scholar 

  23. Choi D. W. and Koh J. H. (1998) Zinc and brain injury. Annu. Rev. Neurosci. 21, 347–375.

    Article  PubMed  CAS  Google Scholar 

  24. Tonder N, Johansen F. F., Frederickson C. J., Zimmer J., and Diemer N. H. (1990) Possible role of zinc in the selective degeneration of dentate hilar neurons after cerebral ischemia in the adult rat. Neurosci. Lett. 109, 247–252.

    Article  PubMed  CAS  Google Scholar 

  25. Koh J. Y., Suh S. W., Gwag B. J., He Y. Y., Hsu C. Y., and Choi D. W. (1996) The role of zinc in selective neuronal death after transient global cerebral ischemia. Science 272, 1013–1016.

    Article  PubMed  CAS  Google Scholar 

  26. Lee J. M., Zipfel G. J., and Choi D. W. (1999) The changing landscape of ischaemic brain injury mechanisms. Nature 399, A7–14.

    PubMed  CAS  Google Scholar 

  27. Frederickson C. J., Hernandez M. D., and McGinty J. F. (1989) Translocation of zinc may contribute to seizure-induced death of neurons. Brain Res. 480, 317–321.

    Article  PubMed  CAS  Google Scholar 

  28. Lee J. Y., Cole T. B., Palmiter R. D., and Koh J. Y. (2000) Accumulation of zinc in degenerating hippocampal neurons of ZnT3-null mice after seizures: evidence against synaptic vesicle origin. J. Neurosci. 20, RC79.

    Google Scholar 

  29. Cole T. B., Wenzel H. J., Kafer K. E., Schwartzkroin P. A., and Palmiter R. D. (1999) Elimination of zinc from synaptic vesicles in the intact mouse brain by disruption of the ZnT3 gene. Proc. Natl. Acad. Sci. USA 96, 1716–1721.

    Article  PubMed  CAS  Google Scholar 

  30. Yeiser E. C., Lerant A. A., Casto R. M., and Levenson C. W. (1999) Free zinc increases at the site of injury after cortical stab wounds in mature but not immature rat brain. Neurosci. Lett. 277, 75–78.

    Article  PubMed  CAS  Google Scholar 

  31. Aizenman E., Stout A. K., Hartnett K. A., Dineley K. E., McLaughlin B., and Reynolds I. J. (2000) Induction of neuronal apoptosis by thiol oxidation: putative role of intracellular zinc release: J. Neurochem. 75, 1878–1888.

    Article  PubMed  CAS  Google Scholar 

  32. Suh S. W., Koh J. Y., and Choi D. W. (1996) Extracellular zinc mediates selective neuronal death in hippocampus and amygdala following kainate-induced seizures. Soc. Neurosci. Abstr. 22, 2101.

    Google Scholar 

  33. Lee J. Y., Park J., Kim Y. H., Kim D. H., Kim C. G., and Koh J. Y. (2000) Induction by synaptic zinc of heat shock protein-70 in hippocampus after kainate seizures. Exp. Neurol. 161, 433–441.

    Article  PubMed  CAS  Google Scholar 

  34. Suh S. W., Chen J. W., Motamedi M., Bell B., Listiak K., Pons N. F., et al. (2000) Evidence that synaptically-released zinc contributes to neuronal injury after traumatic brain injury. Brain Res. 852, 268–273.

    Article  PubMed  CAS  Google Scholar 

  35. Sheline C. T., Behrens M. M., and Choi D. W. (2000) Zinc-induced cortical neuronal death: contribution of energy failure attributable to loss of NAD+ and inhibition of glycolysis. J. Neurosci. 20, 3139–3146.

    PubMed  CAS  Google Scholar 

  36. Noh K. M., Kim Y. H., and Koh J. Y. (1999) Mediation by membrane protein kinase C of zinc-induced oxidative neuronal injury in mouse cortical cultures. J. Neurochem. 72, 1609–1616.

    Article  PubMed  CAS  Google Scholar 

  37. Park J. A. and Koh J. Y. (1999) Induction of an immediate early gene egr-1 by zinc through extracellular signal-regulated kinase activation in cortical culture: its role in zinc-induced neuronal death. J. Neurochem. 73, 450–456.

    Article  PubMed  CAS  Google Scholar 

  38. Kim Y. H., Kim E. Y., Gwag B. J., Sohn S., and Koh J. Y. (1999) Zinc-induced cortical neuronal death with features of apoptosis and necrosis: mediation by free-radicals. Neuroscience 89, 175–182.

    Article  PubMed  CAS  Google Scholar 

  39. Noh K. M. and Koh J. Y. (2000) Induction and activation by zinc of NADPH oxidase in cultured cortical neurons and astrocytes. J. Neurosci. 20, RC111.

    Google Scholar 

  40. Szabo C. and Dawson V. L. (1998) Role of poly(ADP-ribose) synthetase in inflammation and ischaemia-reperfusion. Trends Pharmacol. Sci. 19, 287–298.

    Article  PubMed  CAS  Google Scholar 

  41. Park J. A., Lee, J. Y., Sato T. A., and Koh J. Y. (2000) Co-induction of p75NTR and p75NTR-associated death executor in neurons after zinc exposure in cortical culture or transient ischemia in the rat. J. Neurosci. 20, 9096–9103.

    PubMed  CAS  Google Scholar 

  42. Mukai J., Hachiya T., Shoji-Hoshino S., Kimura M., Nadano D., Suvanto P., et al. (2000) NADE, a p75NTR-associated cell death executor, is involved in signal transduction mediated by the common neurotrophin receptor p75NTR. J. Biol. Chem. 275, 17,566–17,570.

    Article  CAS  Google Scholar 

  43. Ahn Y. H., Kim Y. H., Hong S. H., and Koh J. Y. (1998) Depletion of intracellular zinc induces protein synthesis-dependent neuronal apoptosis in mouse cortical culture. Exp. Neurol. 154, 47–56.

    Article  PubMed  CAS  Google Scholar 

  44. Weiss J. H., Sensi S. L., and Koh J. Y. (2000) Zn2+: a novel ionic mediator of neural injury in brain disease. Trends Pharmacol. Sci. 21, 395–401.

    Article  PubMed  CAS  Google Scholar 

  45. Kim A. H., Sheline C. T., Tian M., Higashi T., McMahon R. J., Cousins R. J., and Choi D. W. (2000) L-type Ca2+ channel-mediated Zn2+ toxicity and modulation by ZnT-1 in PC12 cells. Brain Res. 886, 99–107.

    Article  PubMed  CAS  Google Scholar 

  46. Kim Y. H., Park J. H., Hong S. H., and Koh J. Y. (1999) Nonproteolytic neuroprotection by human recombinant tissue plasminogen activator. Science 284, 647–650.

    Article  PubMed  CAS  Google Scholar 

  47. Kim Y. H. and Koh J. Y. (2000) EGF receptor-dependent cytoprotection by tPA and HGF against zinc toxicity in cortical culture. Soc. Neurosci. (Abstr.) 26, 775.

    Google Scholar 

  48. Hyun H. J., Sohn J. H., Ahn Y. H., Shin H. C., Koh J. Y., and Yoon Y. H. (2000) Depletion of intracellular zinc induces macromolecule synthesis- and caspase- dependent apoptosis of cultured retinal cells. Brain Res. 869, 39–48

    Article  PubMed  CAS  Google Scholar 

  49. Hyun H. J., Sohn J. H., HA D. W., Koh J. Y., and Yoon Y. H. (2000) Depletion of intracellular zinc and copper with TPEN results in apoptosis of cultured human retinal pigment epithelial cells. Invest. Opthalmol. Vis. Sci. 42, 460–465.

    Google Scholar 

  50. Constantinidis J. (1991) The hypothesis of zinc deficiency in the pathogenesis of neurofibrillary tangles. Med. Hypotheses 35, 319–323.

    Article  PubMed  CAS  Google Scholar 

  51. Perry D. K., Smyth M. J., Sennicke H. R., Salvesen G. S., Duriez P., Poirier G. G., and Human Y. A. (1997) Zinc is a potent inhibitor of the apoptotic protease, caspase-3. A novel target for zinc in the inhibition of apoptosis. J. Biol. Chem. 272, 18,530–18,533.

    Article  CAS  Google Scholar 

  52. Newsome D. A., Swartz M., Leone N. C., Elston R. C., and Miller E. (1998) Oral zinc in macular degeneration. Arch. Ophthalmol. 106, 192–198.

    Google Scholar 

  53. Lovell M. A., Robertson J. D., Teesdale W. J., Campbell J. L., and Markesbery W. R. (1998) Copper, iron and zinc in Alzheimer’s disease senile plaques. J. Neurol. Sci. 158, 47–52.

    Article  PubMed  CAS  Google Scholar 

  54. Suh S. W., Jensen K. B., Jensen M. S., Silva D. S., Kesslak P. J., Danscher G., and Frederickson C. J. (2000) Histochemically-reactive zinc in amyloid plaques, angiopathy, and degenerating neurons of Alzheimer’s diseased brains. Brain Res. 852, 274–278.

    Article  PubMed  CAS  Google Scholar 

  55. Lee J. Y., Mook-Jung I. H., and Koh J. Y. (1999) Histochemically reactive zinc in plaques of the Swedish mutant beta-amyloid precursor protein transgenic mice. J. Neurosci. 19, RC10, 1–5.

    Google Scholar 

  56. Bush A. I., Pettingell W. H., Multhaup G., d Paradis M., Vonsattel J. P., Gusella J. F., et al. (1994) Rapid induction of Alzheimer A beta amyloid formation by zinc. Science 265, 1464–1467.

    Article  PubMed  CAS  Google Scholar 

  57. Hsiao K., Chapman P., Nilsen S., Eckman C., Harigaya Y., Younkin S., et al. (1996) Correlative memory dificits, Abeta elevation, and amyloid plaques in transgenic mice. Science 274, 99–102.

    Article  PubMed  CAS  Google Scholar 

  58. Pike C. J., Burdick D., Walencewicz A. J., Glabe C. G., and Cotman C. W. (1993) Neurodegeneration induced by beta-amyloid peptides in vitro: the role of peptide assembly state. J. Neurosci. 13, 16676–1687.

    Google Scholar 

  59. Cuajungco M. P., Goldstein L. E., Nunomura A., Smith M. A., Lim J. T., Atwood C. S., et al. (2000) Evidence that the beta-amyloid plaques of Alzheimer’s disease represent the redox-silencing and entombment of abeta by zinc. J. Biol. Chem. 275, 19,439–19,442.

    Article  CAS  Google Scholar 

  60. Cherny R. A., Barnham K. J., Lynch T., Volitakis I., Li Q. X., McLean C. A., et al. (2000) Chelation and intercalation: complementary properties in a compound for the treatment of Alzheimer’s disease. J. Struct. Biol. 130, 209–216.

    Article  PubMed  CAS  Google Scholar 

  61. Ha H. C. and Snyder S. H. (2000) Poly(ADP-ribose) polymerase-1 in the nervous system. Neurobiol. Dis. 7, 225–239.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae-Young Koh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koh, JY. Zinc and disease of the brain. Mol Neurobiol 24, 99–106 (2001). https://doi.org/10.1385/MN:24:1-3:099

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/MN:24:1-3:099

Index Entries

Navigation