Skip to main content
Log in

Roles of phospholipase Cβ4 in synapse elimination and plasticity in developing and mature cerebellum

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

The β isoforms of phospholipase C (PLCβs) are thought to mediate signals from metabotropic glutamate receptor subtype 1 (mGluR1) that is crucial for the modulation of synaptic transmission and plasticity. Among four PLCβ isoforms, PLCβ4 is one of the two major isoforms expressed in cerebellar Purkinje cells. The authors have studied the roles of PLCβ4 by analyzing PLCβ4 knock-out mice, which are viable, but exhibit locomotor ataxia. Their cerebellar histology, parallel fiber synapse formation, and basic electrophysiology appear normal. However, developmental elimination of multiple climbing fiber innervation is clearly impaired in the rostral portion of the cerebellar vermis, where PLCβ4 mRNA is predominantly expressed in the wild-type mice. In the adult, long-term depression is deficient at parallel fiber to Purkinje cell synapses in the rostral cerebellum of the PLCβ4 knockout mice. The impairment of climbing fiber synapse elimination and the loss of long-term depression are similar to those seen in mice defective in mGluR1, Gαq, or protein kinase C. Thus, the authors’ results strongly suggest that PLCβ4 is part of a signaling pathway, including the mGluR1, Gαq and protein kinase C, which is crucial for both climbing fiber synapse elimination in the developing cerebellum and long-term depression induction in the mature cerebellum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gilman A. G. (1987) G proteins: transducers of receptor-generated signals. Annu. Rev. Biochem. 56, 615–649.

    Article  PubMed  CAS  Google Scholar 

  2. Nishizuka Y. (1992) Intracellular signaling by hydrolysis of phospholipids and activation of protein kinase C. Science 258, 607–614.

    Article  PubMed  CAS  Google Scholar 

  3. Berridge M. J. (1993) Inositol trisphosphate and calcium signalling. Nature 361, 315–325.

    Article  PubMed  CAS  Google Scholar 

  4. Exton J. H. (1996) Regulation of phospho-inositide phospholipases by hormones, neurotransmitters, and other agonists linked to G-proteins. Annu. Rev. Pharmacol. Toxicol. 36, 481–509.

    Article  Google Scholar 

  5. Min D. S., Kim D. M., Lee Y. H., Seo J., Suh P. - G., and Ryu S. H. (1993) Purification of a novel phospholipase C isozyme from bovine cerebellum. J. Biol. Chem. 268, 12,207–12,212.

    CAS  Google Scholar 

  6. Lee C. -W., Park D. J., Lee K. -H., Kim C. G., and Rhee S. -G. (1993) Purification, molecular cloning, and sequencing of phospholipase C-β4. J. Biol. Chem. 268, 21,318–21,327.

    CAS  Google Scholar 

  7. Bloomquist B. T., Shortridge R. D., Schneuwly S., Perdew M., Montell C., Steller H., Rubin G., and Pak W. L. (1988) Isolation of a putative phospholipase C gene of Drosophila, norpA, and its role in phototransduction. Cell 54, 723–733.

    Article  PubMed  CAS  Google Scholar 

  8. Ferreira P. A. and Pak W. L. (1994) Bovine phospholipase C highly homologous to the norpA protein of drosophila is expressed specifically in cones. J. Biol. Chem. 269, 3129–3131.

    PubMed  CAS  Google Scholar 

  9. Jiang H., Lyubarsky A., Dodd R., Vardi N., Pugh E., Baylor D., Simon M. I., and Wu D. (1996) Phospholipase C β4 is involved in modulating the visual response in mice. Proc. Natl. Acad. Sci. USA 93, 14,598–14,601.

    Google Scholar 

  10. Roustan P., Abitbol M., Nenini C., Ribeaudeau F., Gerard M., Vekemans M., Mallet J., and Dufier J. -L. (1995) The rat phospholipase Cβ4 gene is expressed at high abundance in cerebellar Purkinje cells. NeuroReport 6, 1837–1841.

    Article  PubMed  CAS  Google Scholar 

  11. Tanaka O. and Kondo H. (1994) Localization of mRNAs for three novel members (β3, β4 and γ2) of phospholipase C family in mature rat brain. Neurosci. Lett. 182, 17–20.

    Article  PubMed  CAS  Google Scholar 

  12. Watanabe M., Nakamura M., Sato K., Kano M., Simon M. I., and Inoue Y. (1998) Patterns of expression for the mRNA corresponding to the four isoforms of phospholipase Cβ in mouse brain. Eur. J. Neurosci. 10, 2016–2025.

    Article  PubMed  CAS  Google Scholar 

  13. Baude A., Nusser Z., Roberts J. D., Mulvihill E., Mcllhinney R. A., and Somogyi P. (1993) The metabotropic glutamate receptor (mGluR1α) is concentrated at perisynaptic membrane of neuronal subpopulations as detected by immunogold reaction. Neuron 11, 771–787.

    Article  PubMed  CAS  Google Scholar 

  14. Nusser Z., Mulvihill E., P. S., and Somogyi P. (1994) Subsynaptic segregation of metabotropic and ionotropic glutamate receptors as revealed by immunogold localization. Neuroscience 61, 421–427.

    Article  PubMed  CAS  Google Scholar 

  15. Nakanishi S. (1994) Metabotropic glutamate receptors: synaptic transmission, modulation, and plasticity. Neuron 13, 1031–1037.

    Article  PubMed  CAS  Google Scholar 

  16. Pin J. -P. and Duvoisin R. (1995) The metabotropic glutamate receptors: Structure and functions. Neuropharmacology 34, 1–26.

    Article  PubMed  CAS  Google Scholar 

  17. Huang F. L., Yoshida Y., Nakabayashi H., Young W. S., and Huang K.-P. (1988) Immunocytochemical localization of protein kinase C isozymes in rat brain. J. Neurosci. 8, 4734–4744.

    PubMed  CAS  Google Scholar 

  18. Kose A., Saito N., Ito H., Kikkawa U., Nishizuka Y., and Tanaka C. (1988) Electron microscopic localization of type I protein kinase C in rat Purkinje cell. J. Neurosci. 8, 4262–4268.

    PubMed  CAS  Google Scholar 

  19. Saito N., Kikkawa U., Nishizuka Y., and Tanaka C. (1988) Distribution of protein kinase C-like immunoreactive neurons in rat brain. J. Neurosci. 8, 369–382.

    PubMed  CAS  Google Scholar 

  20. Furuichi T., Yoshikawa S., Miyawaki A., Wada K., Maeda N., and Mikoshiba K. (1989) Primary structure and functional expression of the inositol 1,4,5-trisphosphate-binding protein P400. Nature 342, 32–38.

    Article  PubMed  CAS  Google Scholar 

  21. Tanaka J., Nakagawa S., Kushiya E., Yamasaki M., Fukaya M., Iwanaga T., et al. (2000) Gq protein α subunits Gαq and Gα11 are localized at postsynaptic extra-junctional membrane of cerebellar Purkinje cells and hippocampal pyramidal cells. Eur. J. Neurosci. 12, 781–792.

    Article  PubMed  CAS  Google Scholar 

  22. Ito M. (1984) The Cerebellum and Neural Control. Raven, New York.

    Google Scholar 

  23. Crépel F. (1982) Regression of functional synapses in the immature mammaliam cerebellum. Trends Neurosci. 5, 266–269.

    Article  Google Scholar 

  24. Ichise T., Kano M., Hashimoto K., Yanagihara D., Nakao K., Shigemoto R., Katsuki M., and Aiba A. (2000) mGluR1 in cerebellar Purkinje cells essential for long-term depression, climbing fiber synapse elimination and motor coordination. Science 288, 1832–1835.

    Article  PubMed  CAS  Google Scholar 

  25. Kano M., Hashimoto K., Chen C., Abeliovich A., Aiba A., Kurihara H., et al. (1995) Impaired synapse elimination during cerebellar development in PKCγ mutant mice. Cell 83, 1223–1231.

    Article  PubMed  CAS  Google Scholar 

  26. Kano M., Hashimoto K., Kurihara H., Watanabe M., Inoue Y., Aiba A., and Tonegawa S. (1997) Persistent multiple climbing fiber innervation of cerebellar Purkinje cells in mice lacking mGluR1. Neuron 18, 71–79.

    Article  PubMed  CAS  Google Scholar 

  27. Kano M., Hashimoto K., Watanabe M., Kurihara H., Offermanns S., Jiangs H., et al. (1998) PLCβ4 is specifically involved in climbing fiber synapse elimination in the developing cerebellum. Proc. Natl. Acad. Sci. USA 95, 15,724–15,729.

    Article  CAS  Google Scholar 

  28. Offermanns S., Hashimoto K., Watanabe M., Sun W., Kurihara H., Thompson R. F., et al. (1997) Impaired motor coordination and persistent multiple climbing fiber innervation of cerebellar Purkinje cells in mice lacking Gαq. Proc. Natl. Acad. Sci. USA 94, 14,089–14,094.

    Article  CAS  Google Scholar 

  29. Daniel H., Lévénès C., and Crépel F. (1998) Cellular mechanisms of cerebellar LTD. Trends Neurosci. 21, 401–407.

    Article  PubMed  CAS  Google Scholar 

  30. Ito M. (1989) Long-term depression. Annu. Rev. Neurosci. 12, 85–102.

    Article  PubMed  CAS  Google Scholar 

  31. Ito M. (1998) Cerebellar learning in the vestibulo-ocular reflex. Trends Cogn. Sci. 2, 313–321.

    Article  Google Scholar 

  32. Aiba A., Kano M., Chen C., Stanton M. E., Fox G. D., Herrup K., Zwingman T. A., and Tonegawa S. (1994) Deficient cerebellar long-term depression and impaired motor learning in mGluR1 mutant mice. Cell 79, 377–388.

    Article  PubMed  CAS  Google Scholar 

  33. Conquet F., Bashir Z. I., Davies C. H., Daniel H., Ferraguti F., Bordi F., et al. (1994) Motor deficit and impairment of synaptic plasticity in mice lacking mGluR1. Nature 372, 237–243.

    Article  PubMed  CAS  Google Scholar 

  34. De Zeeuw C. I., Hansel C., Blan F., Koekkoek S. K., van Alphen A. M., Linden D. J., and Oberdick J. (1998) Expression of a protein kinase C inhibitor in Purkinje cells blocks cerebellar LTD and adaptation of the vestibulo-ocular reflex. Neuron 20, 495–508.

    Article  PubMed  Google Scholar 

  35. Kano M., and Kato M. (1987) Quisqualate receptors are specifically involved in cerebellar synaptic plasticity. Nature 325, 276–279.

    Article  PubMed  CAS  Google Scholar 

  36. Linden D. J. and Connor J. A. (1991) Participation of postsynaptic PKC in cerebellar long-term depression in culture. Science 254, 1656–1659.

    Article  PubMed  CAS  Google Scholar 

  37. Shigemoto R., Abe T., Nomura S., Nakanishi S., and Hirano T. (1994) Antibodies inactivating mGluR1 metabotropic glutamate receptor block long-term depression in cultured Purkinje cells. Neuron 12, 1245–1255.

    Article  PubMed  CAS  Google Scholar 

  38. Napieralski J. A. and Eisenman L. M. (1996) Further evidence for a unique developmental compartment in the cerebellum of the meander tail mutant mouse as revealed by the quantitative analysis of Purkinje cells. J. Comp. Neurol. 364, 718–728.

    Article  Google Scholar 

  39. Hawkes R. and Gravel C. (1991) The modular cerebellum. Progr. Neurobiol. 36, 309–327.

    Article  CAS  Google Scholar 

  40. Kim D., Jun K. S., Lee S. B., Kang N. -G., Min D. S., Kim Y. -H., et al. (1997) Phospholipase C isozymes selectively couple to specific neurotransmitter receptors. Nature 389, 290–293.

    Article  PubMed  CAS  Google Scholar 

  41. Hashimoto K., Watanabe M., Kurihara H., Offermanns S., Jiang H., Wu Y., et al. (2000) Climbing fiber synapse elimination during postnatal cerebellar development requires signal transduction involving Gαq and phospholipase C β4. Progr. Brain Res. 124, 31–48.

    Article  CAS  Google Scholar 

  42. Sugiyama T., Hirono M., Suzuki K., Nakamura Y., Aiba A., Nakamura K., et al. (1999) Localization of phospholipase Cβ isozymes in the mouse cerebellum. Biochem. Biophys. Res. Commun. 265, 473–478.

    Article  PubMed  CAS  Google Scholar 

  43. Edwards F. A., Konnerth A., Sakmann B., and Takahashi T. (1989) A thin slice preparation for patch-clamp recordings from neurons of the mammalian central nervous system. Pflügers Archiv (Eur. J. Physiol.) 414, 600–612.

    Article  CAS  Google Scholar 

  44. Miyata M., Finch E. A., Khiroug L., Hashimoto K., Hayasaka S., Oda S., et al. (2000) Local calcium release in dendritic spines required for long-term synaptic depression. Neuron 28, 233–244.

    Article  PubMed  CAS  Google Scholar 

  45. Miyata M., Okada D., Hashimoto K., Kano M., and Ito M. (1999) Corticotropin-releasing factor plays a permissive role in cerebellar long-term depression. Neuron 22, 763–775.

    Article  PubMed  CAS  Google Scholar 

  46. Lévénès C., Daniel H., Jaillard D., Conquet F., and Crépel F. (1997) Incomplete regression of multiple climbing fibre innervation of cerebellar Purkinje cells in mGLuR1 mutant mice. Neuro Report 20, 571–574.

    Google Scholar 

  47. Finch E. A. and Augustine G. J. (1998) Local calcium signalling by inositol-1,4,5-trisphosphate in Purkinje cell dendrites. Nature 396, 753–756.

    Article  PubMed  CAS  Google Scholar 

  48. Takechi H., Eilers J., and Konnerth A. (1998) A new class of synaptic response involving calcium release in dendritic spines. Nature 396, 757–760.

    Article  PubMed  CAS  Google Scholar 

  49. Rabacchi S., Bailly Y., Delhaye-Bouchaud N., and Mariani J. (1992) Involvement of the N-methyl D-aspartate (NMDA) receptor in synapse elimination during cerebellar development. Science 256, 1823–1825.

    Article  PubMed  CAS  Google Scholar 

  50. Kakizawa S., Yamasaki M., Watanabe M., and Kano M. (2000) Critical period for activity-dependent synapse elimination in developing cerebellum. J. Neurosci. 20, 4954–4961.

    PubMed  CAS  Google Scholar 

  51. Bravin M., Rossi F., and Strata P. (1995) Different climbing fibres innervate separate dendritic regions of the same Purkinje cell in hypogranular cerebellum. J. Comp. Neurol. 357, 395–407.

    Article  PubMed  CAS  Google Scholar 

  52. Mariani J., Benoit P., Hoang M. D., Thomson M. -A., and Delhaye-Bouchaud N. (1990) Extent of multiple innervation of cerebellar Purkinje cells by climbing fibers in X-irradiated rats. Comparison of different schedules of irradiation during the first postnatal week. Dev. Brain Res. 57, 63–70.

    Article  CAS  Google Scholar 

  53. Crepel F., Delhaye-Bouchaud N., and Dupont J. L. (1981) Fate of the multiple innervation of cerebellar Purkinje cells by climbing tibers in immature control, x-irradiated and hypothyroid rats. Dev. Brain Res. 1, 59–71.

    Article  Google Scholar 

  54. Hepler J. R., Kozasa T., Smrcka A. V., Simon M. I., Rhee S. G., Sternweis P. C., and Gilman A. G. (1993) Purification from Sf9 cells and characterization of recommbinant Gqα and G11α. Activation of purified phospholipase C isozymes by G protein a subunit. J. Biol. Chem. 268, 14,367–14,375.

    CAS  Google Scholar 

  55. Jiang H., Wu D., and Simon M. I. (1994) Activation of phospholipase C β4 by heterotrimeric GTP-binding proteins. J. Biol. Chem. 269, 7593–7596.

    PubMed  CAS  Google Scholar 

  56. Park D., Jhon D. -Y., Lee C. -W., Lee C. -H., and Rhee S. G. (1993) Activation of phospholipase C isozymes by G protein βγ subunits. J. Biol. Chem. 268, 4573–4577.

    PubMed  CAS  Google Scholar 

  57. Chen C., Kano M., Abeliovich A., Chen L., Bao S., Kim J. J., et al. (1995) Impaired motor coordination correlates with persistent multiple climbing fiber innervation in PKCγ mutant mice. Cell 83, 1233–1242.

    Article  PubMed  CAS  Google Scholar 

  58. Inoue T., Kato K., Kohda K., and Mikoshiba K. (1998) Type 1 inositol 1,4,5-trisphosphate receptor is required for induction of long-term depression in cerebellar Purkinje neurons. J. Neurosci. 18, 5366–5373.

    PubMed  CAS  Google Scholar 

  59. Kasono K. and Hirano T. (1995) Involvement of inositol trisphosphate in cerebellar long-term depression. Neuroreport 6, 569–572.

    Article  PubMed  CAS  Google Scholar 

  60. Hansel C. and Linden D. J. (2000) Long-term depression of the cerebellar climbing fiber: Purkinje neuron synapse. Neuron 26, 473–482.

    Article  PubMed  CAS  Google Scholar 

  61. Strata P. and Rossi F. (1998) Plasticity of the olivocerebellar pathway. Trends Neurosci. 21, 407–413.

    Article  PubMed  CAS  Google Scholar 

  62. Miyata M., Kim H.-T., Hashimoto K., et al. (2001) Deficient long-term synaptic depression in the rostral cerebellum correlated with impaired motor learning in phospholipase Cβ4 mutant mice. European J. Neurosci. 13, 1945–1954.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masanobu Kano.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hashimoto, K., Miyata, M., Watanabe, M. et al. Roles of phospholipase Cβ4 in synapse elimination and plasticity in developing and mature cerebellum. Mol Neurobiol 23, 69–82 (2001). https://doi.org/10.1385/MN:23:1:69

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/MN:23:1:69

Index Entries

Navigation