Skip to main content
Log in

Long-term gene expression in dividing and nondividing cells using SV40-derived vectors

  • Review
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Among the goals of gene therapy is long-term expression of delivered transgenes. Recombinant Tag-deleted SV40 vectors (rSV40s) are especially well suited for this purpose. rSV40s deliver transgene expression that endures for extended periods of time in tissue culture and in vivo, in both dividing and nondividing cells. These vectors are particularly effective in transducing some cell types that have been almost unapproachable using other gene delivery systems, such as quiescent hematopoietic progenitor cells and their differentiated derivatives. Other cellular targets include neurons, brain microglia, hepatocytes, dendritic cells, vascular endothelium, and others. Because rSV40s do not elicit neutralizing antibodies they are useful for in vivo gene delivery in settings where more than one administration may be desirable. The key characteristics of these vectors include their high production titers and therefore suitability for large cell pools, effectiveness in delivering intracellular proteins, and untranslated RNAs, maintenance of transgene expression at constant levels for extended times, suitability for constitutive or conditional promoters and for combinatorial gene delivery and ability to integrate into genomes of both dividing and nondividing cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Monahan, P. E. and Samulski, R. J. (2000) Adeno-associated virus vectors for gene therapy: more pros than cons? Mol. Med. Today 6, 433–440.

    PubMed  CAS  Google Scholar 

  2. Tal, J. (2000) Adeno-associated virus-based vectors in gene therapy. J. Biomed. Sci. 7, 279–291.

    PubMed  CAS  Google Scholar 

  3. Amalfitano, A. and Parks, R. J. (2002) Separating fact from fiction: assessing the potential of modified adenovirus vectors for use in human gene therapy. Curr. Gene Therapy 2, 111–133.

    CAS  Google Scholar 

  4. Young, L. S. and Mautner, V. (2001) The promise and potential hazards of adenovirus gene therapy. Gut 48, 733–736.

    PubMed  CAS  Google Scholar 

  5. Weber, E., Anderson, W. F., and Kasahara, N. (2001) Recent advances in retrovirus vector-mediated gene therapy: teaching an old vector new tricks. Curr. Opin. Molec. Ther. 3, 439–453.

    CAS  Google Scholar 

  6. Arad, U., Zeira, E., El-Latif, M. A., et al. (2005) Liver-targeted gene therapy by SV40-based vectors using the hydrodynamic injection method. Human Gene Therapy 16, 361–371.

    PubMed  CAS  Google Scholar 

  7. Klimatcheva, E., Rosenblatt, J. D., and Planelles, V. (1999) Lentiviral vectors and gene therapy. Front. Biosci. 4, D481-D496.

    PubMed  CAS  Google Scholar 

  8. Hammerschmidt, W. (2000) Herpesvirus vectors come of age. Curr. Opin. Molec. Ther. 2, 532–539.

    CAS  Google Scholar 

  9. Trobridge, G., Vassilopoulos, G., Josephson, N., and Russell, D. W. (2002) Gene transfer with foamy virus vectors. Meth. Enzymol. 346, 628–648.

    PubMed  CAS  Google Scholar 

  10. Marusich, E. I., Parveen, Z., Strayer, D., Dornburg, R., and Pomerantz, R. J. (2005) Spleen necrosis virus (SNV)-based vector delivery of anti-HIV-1 genes potently protects human hematopoietic cells from HIV-1 infection. Virol. 332, 258–271.

    CAS  Google Scholar 

  11. Hallak, L. K., Merchan, J. R., Storgard, C. M., Loftus, J. C., and Russell, S. J. (2005) Targeted measles virus vector displaying echistatin infects endothelial cells via alpha(v)beta3 and leads to tumor regression. Cancer Res. 65, 5292–5300.

    PubMed  CAS  Google Scholar 

  12. Ebert, O., Harbaran, S., Shinozaki, K., and Woo, S. L. (2005) Systemic therapy of experimental breast cancer metastases by mutant vesicular stomatitis virus in immune-competent mice. Cancer Gene Therapy 12, 350–358.

    PubMed  CAS  Google Scholar 

  13. Rheme, C., Ehrengruber, M. U., and Grandgigard, D. (2005) Alphaviral cytotoxicity and its implication in vector development. Exp. Physiol. 90, 45–52.

    PubMed  CAS  Google Scholar 

  14. Quintana-Vazquez, D., Vazquez-Bloomquist, D. M., Galban Rodriguez, E., Herrera Buch, A. M., and Duarte Cano, C. A. (2005) A vaccination strategy consisting of Semliki-Forest-virus (SFV) DNA prime and fowlpox-virus boost significantly protects mice from a recombinant (HIV-1) vaccinia virus infection. Biotechnol. Appl. Biochem. 41, 59–66.

    PubMed  CAS  Google Scholar 

  15. Nagorsen, D., Panelli, M., Dudley, M. E., Finkelstein, S. E., Rosenberg, S. A., and Marincola, F. M. (2003). Biased epitope selection by recombinant vaccinia-virus (rVV)-infected mature or immature dendritic cells. Gene Ther. 10, 1754–1765.

    PubMed  CAS  Google Scholar 

  16. Wang, M., Tsou, T. H., Chen, L. S., et al. (2004) Inhibition of simian virus 40 large tumor antigen expression in human fetal glial cells by an antisense oligodeoxynucleotide delivered by JC virus-like particle. Hum. Gene Ther. 15, 1077–1090.

    PubMed  CAS  Google Scholar 

  17. Sasaki, K., Inoue, M., Shibata, H., et al. (2005) Efficient and stable Sendai virus-mediated gene transfer into primate embryonic stem cells with pluripotency preserved. Gene Therapy 12, 203–210.

    PubMed  CAS  Google Scholar 

  18. Hay, J. G. (2004) Sinbis virus: an effective targeted cancer therapeutic. Trends Biotechnol. 22, 501–503.

    PubMed  CAS  Google Scholar 

  19. Smyth, J. W., Fleeton, M. N., Sheahan, B. J., and Atkins, G. J. (2005) Treatment of rapidly growing K-BALB and CT26 mouse tumours using Semliki Forest virus and derived vector. Gene Therapy 12, 147–159.

    PubMed  CAS  Google Scholar 

  20. Ferrari, S., Griesenbach, U., Shiraki-Iida, T., et al. (2004) A defective nontransmissible recombinant Sendai virus mediates efficient gene transfer to airway epithelium in vivo. Gene Therapy 11, 1659–1664.

    PubMed  CAS  Google Scholar 

  21. Gloriosco, J. C. and Fink, D. J. (2004) Herpes vector-mediated gene transfer in treatment of diseases of the nervous system. Ann. Rev. Microbiol. 58, 253–271.

    Google Scholar 

  22. Wang, L., Kaneko, S., Honda, M., and Kobayashi, K. (2002) Approach to establishing a liver targeting gene therapeutic vector using naturally occurring defective hepatitis B viruses devoid of immunogenic T cell epitope. Virus Res. 85, 187–197.

    PubMed  CAS  Google Scholar 

  23. Jenne, L., Hauser, C., Arrighi, J. F., Saurat, J. H., and Hugin, A. W. (2000) Poxvirus as a vector to transduce human dendritic cells for immunotherapy: abortive infection but reduced APC function. Gene Therapy 7, 1575–1583.

    PubMed  CAS  Google Scholar 

  24. Bledsoe, A. W., Jackson, C. A., McPherson, S., and Morrow, C. D. (2000) Cytokine production in motor neurons by poliovirus replicon vector gene delivery. Nature Biotechnol. 18, 964–969.

    CAS  Google Scholar 

  25. Borst, E. and Messerle, M. (2000) Development of a cytomegalovirus vector for somatic gene therapy. Bone Marrow Transpl. 2, S80-S82.

    Google Scholar 

  26. Stevenson, A. J., Clarke, D., Meredith, D. M., Kinsey, S. E., Whitehouse, A., and Bonifer, C. (2000) Herpesvirus saimiri-based gene delivery vectors maintain heterologous expression throughout mouse embryonic stem cell differentiation in vitro. Gene Therapy 7, 464–471.

    PubMed  CAS  Google Scholar 

  27. Tanaka, S., Iwai, M., Harada, Y., et al. (2000) Targeted killing of carcinoembryonic antigen (CEA)-producing cholangiocarcinoma cells by polyamidoamine dendrimer-mediated transfer of an Epstein-Barr virus (EBV)-based plasmid vector carrying the CEA promoter. Cancer Gene Therapy 7, 1241–1250.

    PubMed  CAS  Google Scholar 

  28. Fayad, R., Zhang, H., Quinn, D., Huang, Y., and Qiao, L. (2004) Oral administration with papillomavirus pseudovirus encoding IL-2 fully restores mucosal and systemic immune responses to vaccinations in aged mice. J. Immunol. 173, 2692–2698.

    PubMed  CAS  Google Scholar 

  29. Yamada, T., Ueda, M., Seno, M., Kondo, A., Tanizawa, K., and Kuroda, S. (2004) Novel tissue and cell type-specific gene/drug delivery system using surface engineered hepatitis B virus nano-particles. Current Drug Targets—Infect. Dis. 4, 163–167.

    CAS  Google Scholar 

  30. Guo, Z. S., and Bartlett, D. L. (2004) Vaccinia as a vector for gene delivery. Exp. Opin. Biol. Therapy 4, 901–917.

    CAS  Google Scholar 

  31. Yamanaka, R. (2004) Alphavirus vectors for cancer gene therapy. International Journal of Oncology 24, 919–923.

    PubMed  CAS  Google Scholar 

  32. Josephson, N. C., Trobridge, G., and Russell, D. W. (2004) Transduction of long-term and mobilized peripheral blood-derived ND/SCID repopulating cells by foamy virus vectors. Human Gene Therapy 15, 87–92.

    PubMed  CAS  Google Scholar 

  33. Westaway, E. G., Mackenzie, J.M., and Khromykh, A. A. (2003) Kunjin RNA replication and applications of Kunjin replicons. Adv. Virus Res. 59, 99–140.

    PubMed  CAS  Google Scholar 

  34. Nakamura, H., Kimura, T., Ikegami, H., et al. (2003) Highly efficient and minimally invasive in-vitro gene transfer to the mouse uterus using haemagglutinating virus of Japan (HJ) envelope vector. Molec. Hum. Reprod. 9, 603–609.

    CAS  Google Scholar 

  35. Kost, T. A., Condreay, J. P., and Jarvid, D. L. (2005) Baculovirus as versatile vector for protein expression in insect and mammalian cells. Nat. Biotechnol. 23, 567–575.

    PubMed  CAS  Google Scholar 

  36. Strayer, D. S. (1999) Gene therapy using SV40-derived vectors: what does the future hold?. J. Cell. Physiol. 181, 375–384.

    PubMed  CAS  Google Scholar 

  37. Strayer, D. S., Lamothe, M., Wei, D., Milano, J., and Kondo, R. (2001) Generation of recombinant SV40 vectors for gene transfer. In: SV40 Protocols, (Raptis, L., ed., Humana Press, Totowa, NJ, pp. 103–117.

    Google Scholar 

  38. Strayer, D. S., Zern, M. A., and Chowdhury, J. R. (2002) What can SV40-derived vectors do for gene therapy?. Curr. Opin. Molec Ther. 4, 313–323.

    CAS  Google Scholar 

  39. Strayer, D. S., Cordelier, P., Kondo, R., et al. (2005) What they are, how they work and why they do what they do: the story of SV40-derived gene therapy vectors and what they have to offer. Curr. Gene Ther. 5, 151–165.

    PubMed  CAS  Google Scholar 

  40. Strayer, D. S., Pomerantz, R. J., Yu, M., et al. (2000) Efficient gene transfer to hematopoietic progenitor cells using SV40-derived vectors. Gene Ther. 7, 886–895.

    PubMed  CAS  Google Scholar 

  41. Strayer, D. S. (2000) SV40-based gene transfer vectors: turning an adversary into a friend. Curr. Opin. Mol. Ther. 2, 570–578.

    PubMed  CAS  Google Scholar 

  42. Sandalon, Z., Dalyot-Herman, N., Oppenheim, A. B., and Oppenheim, A. (1997) In vitro assembly of SV40 virions and pseudovirions: vector development for gene therapy. Hum. Gene Ther., 8, 843–849.

    PubMed  CAS  Google Scholar 

  43. Vera, M., Prieto, J., Strayer, D. S., and Fortes, P. (2004) Factors influencing the production of recombinant SV40 vectors. Molec. Ther. 10, 780–791.

    CAS  Google Scholar 

  44. DeFillippis, R. A., Goodwin, E. C., Wu, L., and DiMaio, D. (2003) Endogenous human papillomavirus E6 and E7 proteins differently regulate proliferation, senescence, and apoptosis in HeLa cervical carcinoma cells. J. Virol. 77, 1551–1563.

    Google Scholar 

  45. Naeger, L. K., Goodwin, E. C., Hwang, E. S., DeFilippis, R. A., Zhang, H., and DiMaio, D. (1999) Bovine papillomavirus E2 protein activates a com plex growth-inhibitory program in p53-negative HT-3 cervical carcinoma cells that includes repression of eyclin A and cdc25A phosphatase genes and accumulation of hypophosphorylated retinoblastoma protein Cell Growth Diff, 10, 413–422.

    PubMed  CAS  Google Scholar 

  46. Buchschacher, G. L., Jr., and Wong-Staal, F. (2000) Development of lentiviral vectors for gene therapy for human disease, Blood 95, 2499–2504.

    PubMed  CAS  Google Scholar 

  47. Vera, M., and Fortes, P. (2004) Simian virus-40 as a gene therapy vector. DNA Cell Biol. 23, 271–282.

    PubMed  CAS  Google Scholar 

  48. Kimchi-Sarfati, C., Ben-Nun-Schaul, O., rund, D., Oppenheim, A., and Goottesman, M. M. (2002) In vitro-packaged SV40 pseudoviriors as highly efficient vectors for gene transfer. Hum. Gene Ther. 13, 299–310.

    Google Scholar 

  49. Fried, M., and Priver, C. (1986) The biology of simian virus 40 and polyomavirus. Cancer Cells 4, 1–16.

    CAS  Google Scholar 

  50. Cole, C. N., and Conzen, S. D. (2001) Polyomavirinae: the viruses and their replication, in Fields Virology, (Knipe, D. M. and Howley, P. M., eds.), Lippincott Williams and Wilkins, Philadelphia, PA, pp. 2141–2174.

    Google Scholar 

  51. Lane, D. P., and Crawford, L. V. (1979) T antigen is bound to a host protein in SV40-transformed cells. Nature 278, 261–263.

    PubMed  CAS  Google Scholar 

  52. DeCaprio, J. A., Ludlow, J. W., Figge, J., et al. (1988) SV40 large tumor antigen forms a specific complex with the product of the retinoblastoma susceptibility gene. Cell 54, 275–283.

    PubMed  CAS  Google Scholar 

  53. BouHamdan, M., Duan, L.-X., Pomerantz, R. J. and Strayer, D. S. (1999) Inhibition of HIV-1 by anti-integrase single-chain variable fragment (SFv): delivery by SV40 provides durable protection against HIV-1 and does not require selection. Gene Ther. 6, 660–666.

    PubMed  CAS  Google Scholar 

  54. Jayan, G. C., Cordelier, P., Patel, C., et al. (2001) SV40-derived vectors provide effective transgene expression and inhibition of HIV-1 using constitutive, conditional, and pol III promoters. Gene Ther. 8, 1033–1042.

    PubMed  CAS  Google Scholar 

  55. Matskevich, A. A., Cordelier, P., and Strayer, D. S. (2003) Conditional expression of interferons α and γ activated by HBV as genetic therapy for hepatitis B. J. Interferon Cytokine Res. 23, 709–721.

    PubMed  CAS  Google Scholar 

  56. Matskevich, A. A., and Strayer, D. S. (2005) Exploiting hepatitis C virus activation of NFκB to deliver HCV-responsive expression of interferons α and γ. Gene Ther. 10, 1861–1873.

    Google Scholar 

  57. Zern, M. A., Ozaki, I., Duan, L.-X., Pomerantz, R., Liu, S.-L., and Strayer, D. S. (1999) A novel SV40-based vector successfully transduces and expresses an alpha 1-antitrypsin ribozyme in a human hepatoma-derived cell line. Gene Ther. 6, 114–120.

    PubMed  CAS  Google Scholar 

  58. Cordelier, P., Morse, B., and Strayer, D. S. (2003) Targeting CCR5 with siRNAs: using recombinant SV40-derived vectors to protect macrophages and microglia from R5-tropic HIV. Oligonucleotides 13, 281–294.

    PubMed  CAS  Google Scholar 

  59. Strayer, D. S., and Milano, J. (1996) SV40 mediates stable gene transfer in vivo. Gene Ther. 3, 581–587.

    PubMed  CAS  Google Scholar 

  60. Strayer, D. S., Duan, L.-X., Ozaki, I., Milano, J., Bobraski, L. E., and Bagasra, O. (1997) Titering Replication-Defective virus for use in gene transfer. BioTechniques 22, 447–450.

    PubMed  CAS  Google Scholar 

  61. Yang, Y., Ki, Q., Ertl, H. C., and Wilson, J. M. (1995) Cellular and humoral immune responses to viral antigens create barriers to lung-directed gene therapy with recombinant adenoviruses. J. Virol. 69, 2004–2015.

    PubMed  CAS  Google Scholar 

  62. Sauter, B. V., Parashar, B., Chowdhury, N. R., et al. (2000) Gene transfer to the liver using a replication-deficient recombinant SV40 vector results in long-term amelioration of jaundice in Gunn rats. Gastroenterol. 119, 1348–1357.

    CAS  Google Scholar 

  63. Duan, Y.-Y., Wu, J., Zhu, J.-L., et al. (2004) Bifunctional gene therapy for human a1-antitrypsin deficiency in an animal model using SV40-derived vectors. Gastroenterol. 127, 1222–1232.

    CAS  Google Scholar 

  64. Kondo, R., Feitelson, M. A., and Strayer, D. S. (1998) Use of SV40 to immunize against hepatitis B surface antigen: Implications for the use of SV40 for gene transduction and its use as an immunizing agent. Gene Ther. 5, 575–582.

    PubMed  CAS  Google Scholar 

  65. Pelkmans, L., Kartenbeck, J., and Helenius, A. (2001) Caveolar endocytosis of simian virus 40 reveals a new two-step vesicular-transport pathway to the ER. Nat. Cell Biol. 3, 473–483.

    PubMed  CAS  Google Scholar 

  66. Pelkmans, L., Puntener, D., and Helenius, A. (2002) Local actin polymerization and dynamin recruitment in SV40-induced internalization of caveolae. Science 296, 535–539.

    PubMed  CAS  Google Scholar 

  67. McKee, H. J., and Strayer, D. S. (2002) Immune response against SIV envelope glycoprotein, using recombinant SV40 as a vaccine delivery vector. Vaccine 20, 3613–3625.

    PubMed  CAS  Google Scholar 

  68. Strayer D. S., Kondo, R., Milano, J., and Duan, L.-X. (1997) Use of SV40-based vectors to transduce foreign genes to normal human peripheral blood mononuclear cells. Gene Ther. 4, 219–225.

    PubMed  CAS  Google Scholar 

  69. Strayer, D. S., Branco, F., Zern, M. A., et al. (2002) Durability of transgene expression and vector integration: recombinant SV40-derived gene therapy vectors. Molec. Ther. 6, 227–237.

    CAS  Google Scholar 

  70. Liu, B., Daviau, J., Nichols, C. N., and Strayer, D. S. (2005) In vivo gene transfer to rat bone marrow progenitor cells using rSV40 viral vectors. Blood 105, 2655–2663.

    Google Scholar 

  71. Goldstein, H., Pettoello-Mantovani, M., Anderson, C. M., Cordelier, P., Pomerantz, R. J., and Strayer, D. S. (2002) Gene therapy delivered in vivo using an SV40-derived vector inhibits the development of in vivo HIV-1 infection of Thy/liv-SCID/hu mice. J. Infect. Dis. 185, 1425–1430.

    PubMed  CAS  Google Scholar 

  72. Patel, M., Cordelier, P., Strayer, D. S., and Goldstein, H. (2004) Potent in vivo inhibition of HIV-1 infection in Thy/Liv-SCID-Hu mice after in vivo treatment with a combination of SV40-derived vectors targeting CCR5 expression. Molec. Ther. 9, S141.

    Google Scholar 

  73. Ho, D. D. (1998) Toward HIV eradication or remission: the tasks ahead. Science 280 1866–1867.

    PubMed  CAS  Google Scholar 

  74. Strayer, D. S., Branco, F., Landré, J., BouHamdan, M., Shaheen, F., and Pomerantz, R. J. (2002) Combination genetic therapy to inhibit HIV-1. Molec. Ther. 5, 33–41.

    CAS  Google Scholar 

  75. Chen, W. Y., Bailey, E. C., McCune, S. L., Dong, J. Y., and Townes, T. M. (1997) Reactivation of silenced, virally transduced genes by inhibitors of histone deacetylase. Proc. Natl. Acad. Sci. USA 94, 5798–5803.

    PubMed  CAS  Google Scholar 

  76. McInerney, J. M., Nawrocki, J. R., and Lowrey, C. H. (2000) Long-term silencing of retroviral vectors is resistant to reversal by tricostatin A and 5-azacytidine. Gene Ther. 7, 653–663.

    PubMed  CAS  Google Scholar 

  77. Yamano, T., Ura, K., Morishita, R., Nakajima, H., Monden, M., and Kaneda, Y. (2000) Amplification of transgene expression in vitro and in vivo using a novel inhibitor of histone deacetylase. Molec. Ther. 1, 574–580.

    CAS  Google Scholar 

  78. Pannell D., and Ellis, J. (2001) Silencing of gene expression: implications for design of retrovirus vectors. Rev. Med. Virol. 11, 205–217.

    PubMed  CAS  Google Scholar 

  79. Rosenqvist, N., Hard, A. F., Segerstad, C., Samuelsson, C., Johansen, J., and Lundberg, C. (2002) Activation of silenced transgene expression in neural precursor cell lines by inhibitors of histone deacetylation. J. Gene Med. 4, 248–257.

    PubMed  Google Scholar 

  80. Yao, S., Sukonnik, T., Bharadwai, R. R., Pasceri, P., and Ellis, J. (2004) Retrovirus silencing, variegation, extinction, and memory are controlled by dynamic interplay of multiple epigenetic modifications. Molec. Ther. 10, 27–36.

    CAS  Google Scholar 

  81. Swindle, C. S., and Klug, C. A. (2002) Mechanisms that regulate silencing of gene expression from retroviral vectors. J. Hematother. Stem Cell Res. 11, 449–456.

    PubMed  CAS  Google Scholar 

  82. Kalberer, C. P., Pawliuk, R., Imren, S., et al. (2000) P reselection of retrovirally transduced bone marrow avoids subsequent stem cell gene silencing and age-dependent extinction of expression of human betaglobin in engrafted mice. Proc. Natl. Acad. Sci. USA 97, 5411–5415.

    PubMed  CAS  Google Scholar 

  83. Iba, H., Mizutani, T., and Ito, T. (2003) SWI/SNF chromatin remodeling complex and retroviral gene silencing. Rev. Med. Virol. 13, 99–110.

    PubMed  CAS  Google Scholar 

  84. Swindle, C. S., Kim, H. G., and Klug, C. A. (2004) Mutation of CpGs in the murine stem cell virus retroviral vector long terminal repeat represses silencing in embryonic stem cells. J. Biol. Chem. 279, 34–41.

    PubMed  CAS  Google Scholar 

  85. Lung, H. Y., Meeus, I. S., Weinberg, R. S., and Atweh, G. F. (2000) In vivo silencing of the human gamma-globin gene in murine erythroid cells following retroviral transduction. Blood Cells Molec. Dis. 26, 613–619.

    CAS  Google Scholar 

  86. Svoboda, J., Hejnar, J., Geryk, J., Elleder, D., and Vernerova, Z. (2000) Retrovirus in foreign species and the problem of provirus silencing. Gene 261, 181–188.

    PubMed  CAS  Google Scholar 

  87. Pannell, D., Osborne, C. S., Yao, S., et al. (2000) Retrovirus vector silencing is de nova methylase independent and marked by a repressive histone code. EMBO J. 19, 5884–5894.

    PubMed  CAS  Google Scholar 

  88. McKee, H. J., and Strayer, D. S. (2003) Immunization against SIV Gag using recombinant SV40 vectors elicits strong, durable cell mediated immune responses. Proc. 10th Conf. Retroviruses Opportun. Infect. 10, 211.

    Google Scholar 

  89. McKee, H. J., and Strayer, D. S. (2003) Delivery of SIV gag together with immunostimulatory cytokines by SV40-derived vectors generates very strong antigen-specific immune responses. Molec. Ther. 7, S262.

    Google Scholar 

  90. McKee, H. J., T'Sao, P. Y., Vera, M., Fortes, P., and Strayer, D. S. (2004) Durable cytotoxic immune responses against gp120 elicited by recombinant SV40 vectors encoding HIV gp120±IL-15. Genet. Vaccines Ther. 2, 1–11.

    Google Scholar 

  91. Calarota, S. A., Otero, M., Cordelier, P., Pomerantz, R. J., and Strayer, D. S. (2002) Transduction of primary human monocyte-derived macrophages and dendritic cells by recombinant SV40 vectors. Molec. Ther. 5, S256.

    Google Scholar 

  92. Wang, L., Cao, O., Swalm, B., Dobrzynski, E., Mingozzi, F., and Herzog, R. W. (2005) Major role of local immune responses in antibody formation to factor IX in AAV gene transfer. Gene Ther. 12, 1453–1464.

    PubMed  CAS  Google Scholar 

  93. Strayer, D. S., Feitelson, M. A., Sun, B., and Matskevich, A. A. (2005) Paradigms for conditional expression of RNAi moleucles for use against viral targets. Meth. Enzymol. 392, 227–241.

    PubMed  CAS  Google Scholar 

  94. Cordelier, P., and Strayer, D. S. (2003) Conditional expression of a1-antitrypsin delivered by recombinant SV40 vectors protects lymphocytes against HIV. Gene Ther. 10, 2153–2156.

    PubMed  CAS  Google Scholar 

  95. Botchan, M., Topp, W., and Sambrook, J. (1976) The arrangement of simian virus 40 sequences in the DNA of transformed cells. Cell 9, 269–287.

    PubMed  CAS  Google Scholar 

  96. Botchan, M., Stringer, J., Mitchison, T., and Sambrook, J. (1980) Integration and excision of SV40 DNA from the chromosome of a transformed cell. Cell 20, 143–152.

    PubMed  CAS  Google Scholar 

  97. Mitchell, R. S., Beitzel, B. F., Shroder, A. R. W., et al. (2004) Retroviral DNA integration: ASLV, HIV, and MLV show distinct target site preferences. PLOS Biol. 2, 1127–1137

    CAS  Google Scholar 

  98. Pajer, P., Pecenka, V., Karafiat, V., Kralova, J., Horeijsi, Z., and Svorak, M. (2003) The twist gene is a common target of retroviral integration and transcriptional deregulation in experimental nephroblastoma. Oncogene 22, 665–673.

    PubMed  CAS  Google Scholar 

  99. Audit, M., Dejardin, J., Hohl, B., et al. (1999) Introduction of a cis-acting mutation in the capsid-coding gene of moloney murine leukemia virus extends its leukemogenic properties. J. Virol. 73, 10,472–10,479.

    CAS  Google Scholar 

  100. Nusse, R., van Ooyen, A., Rijsewijk, F., van Lohuizen, M., Schuring, E., and van't Veer, L. (1985) Retroviral insertional mutagenesis in murine mammary cancer. Proc. Royal Soc. London—Ser. B: Biol. Sci. 226, 3–13.

    CAS  Google Scholar 

  101. Narayanan, R., Srinivasan, A., and Aaronson, S. A. (1984) Sequences in the long terminal repeats of the Moloney murine sarcoma virus: 124 genome which control transforming gene function. Virol. 137, 32–40.

    CAS  Google Scholar 

  102. Hanecak, R., Pattengale, P. K., and Fan, H. (1991) Deletion of a GC-rich region flanking the enhancer element within the long terminal repeat sequences alters the disease specificity of Moloney murine leukemia virus. J. Virol. 65, 5357–5363.

    PubMed  CAS  Google Scholar 

  103. Tupper, J. C., Chen, H., Hays, E. F., Bristol, G. C., and Yoshimura, F. K. (1992) Contributions to transcriptional activity and to viral leukemogenicity made by sequences within and downstream of the MCF13 murine leukemia virus enhancer. J. Virol. 66, 7080–7088.

    PubMed  CAS  Google Scholar 

  104. Lenz, J., Celander, D., Crowther, R. L., Patarca, R., Perkins, D. W., and Haseltine, W. A. (1984) Determination of the leukaemogenicity of a murine retrovirus by sequences within the long terminal repeat. Nature 308, 467–470.

    PubMed  CAS  Google Scholar 

  105. Marshall, E. (2003) Gene therapy. Second child in French trial is found to have leukemia. Science 299, 320.

    PubMed  CAS  Google Scholar 

  106. Hacein-Bey-Abina, S., Von Kalle, C., Schmidt, M., et al. (2003) LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science 302, 415–419.

    PubMed  CAS  Google Scholar 

  107. Engel, B. C., Kohn, D. B., and Podsakoff, G. M. (2003) Update on gene therapy of inherited immune deficiencies. Curr. Opin. Molec. Ther. 5, 503–507.

    CAS  Google Scholar 

  108. Kohn, D. B., Sadelain, M., and Glorioso, J. C. (2003) Occurrence of leukaemia following gene therapy of X-linked SCID. Nature Rev. Cancer 3, 477–488.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David S. Strayer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Strayer, D.S., Agrawal, L., Cordelier, P. et al. Long-term gene expression in dividing and nondividing cells using SV40-derived vectors. Mol Biotechnol 34, 257–270 (2006). https://doi.org/10.1385/MB:34:2:257

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/MB:34:2:257

Keywords

Navigation