Skip to main content
Log in

Molecular aspects of disease pathogenesis in the transmissible spongiform encephalopathies

  • Review
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

The transmissible spongiform encephalopathies (TSE), or prion diseases, are a group of rare, fatal, and transmissible neurodegenerative diseases of mammals for which there are no known viral or bacterial etiological agents. The bovine form of these diseases, bovine spongiform encephalopathy (BSE), has crossed over into humans to cause variant Creutzfeldt-Jakob disease. As a result, BSE and the TSE diseases are now considered a significant threat to human health. Understanding the basic mechanisms of TSE pathogenesis is essential for the development of effective TSE diagnostic tests and anti-TSE therapeutic regimens. This review provides an overview of the molecular mechanisms that underlie this enigmatic group of diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alper, T., Cramp, W. A., Haig, D. A., and Clarke, M. C. (1967) Does the agent of scrapie replicate without nucleic acid? Nature 214, 764–766.

    Article  PubMed  CAS  Google Scholar 

  2. Anderson, R. M., Donnelly, C. A., Ferguson, N. M., et al. (1996) Transmission dynamics and epidemiology of BSE in British cattle. Nature 382, 779–788.

    Article  PubMed  CAS  Google Scholar 

  3. Barron, R. M., Thomson, V., Jamieson, E., et al. (2001) Changing a single amino acid in the N-terminus of murine PrP alters TSE incubation time across three species barriers. EMBO J. 20, 5070–5078.

    Article  PubMed  CAS  Google Scholar 

  4. Beranger, F., Mange, A., Goud, B., and Lehmann, S. (2002) Stimulation of PrP(C) retrograde transport toward the endoplasmic reticulum increases accumulation of PrP(Sc) in prion-infected cells. J. Biol. Chem. 277, 38972–38977.

    Article  PubMed  CAS  Google Scholar 

  5. Bessen, R. A., Kocisko, D. A., Raymond, G. J. Nandan, S., Lansbury, P. T., and Caughey, B. (1995) Non-genetic propagation of strain-specific properties of scrapie prion protein. Nature 375, 698–700.

    Article  PubMed  CAS  Google Scholar 

  6. Bessen, R. A. and Marsh, R. F. (1992) Biochemical and physical properties of the prion protein from two strains of the transmissible mink encephalopathy agent. J. Virol. 66, 2096–2101.

    PubMed  CAS  Google Scholar 

  7. Bessen, R. A., and Marsh, R. F. (1994) Distinct PrP properties suggest the molecular basis of train variation in transmissible mink encephalopathy. J. Virol. 68, 7859–7868.

    PubMed  CAS  Google Scholar 

  8. Bessen, R. A., Raymond, G. J., and Caughey, B. (1997) In situ formation of protease-resistant prion protein in transmissible spongiform encephalopathy-infected brain slices. J. Biol. Chem. 272, 15227–15231.

    Article  PubMed  CAS  Google Scholar 

  9. Bolton, D. C., and Bendheim, P. E. (1988) A modified host protein model of scrapie, in Novel Infectious Agents and the Gentral Nervous System (Bock, G. and Marsh, J., eds.), John Wiley & Sons, Chichester, pp. 164–181.

    Google Scholar 

  10. Bolton, D. C., Bendheim, P. E., Marmorstein, A. D., and Potempska, A. (1987) Isolation and structural studies of the intact scrapie agent protein. Arch. Biochem. Biophys. 258, 579–590.

    Article  PubMed  CAS  Google Scholar 

  11. Bolton, D. C., McKinley, M. P., and Prusiner, S. B. (1982) Identification of a protein that purifies with the scrapie prion. Science 218, 1309–1311.

    Article  PubMed  CAS  Google Scholar 

  12. Borchelt, D. R., Scott, M., Taraboulos, A., Stahl, N., and Prusiner, S. B. (1990) Scrapie and cellular prion proteins differ in their kinetics of synthesis and topology in cultured cells. J. Cell Biol. 110, 743–752.

    Article  PubMed  CAS  Google Scholar 

  13. Borchelt, D. R., Taraboulos, A., and Prusiner, S. B. (1992) Evidence for synthesis of scrapie prion proteins in the endocytic pathway. J. Biol. Chem. 267, 16188–16199.

    PubMed  CAS  Google Scholar 

  14. Bossers, A., Belt, P. B. G. M., Raymond, G. J., Caughey, B., de Vries, R., and Smits, M. A. (1997) Scrapie susceptibility-linked polymorphisms modulate the in vitro conversion of sheep prion protein to protease-resistant forms. Proc. Natl. Acad. Sci. USA 94, 4931–4936.

    Article  PubMed  CAS  Google Scholar 

  15. Bounhar, Y., Zhang, Y., Goodyer, C. G., and LeBlanc, A. (2001) Prion protein protects human neurons against Bax-mediated apoptosis. J. Biol. Chem. 276, 39145–39149.

    Article  PubMed  CAS  Google Scholar 

  16. Bradley, R. and Wilesmith, J. W. (1993) Epidemiology and control of bovine spongiform encephalopathy (BSE). Br. Med. Bull. 49, 932–959.

    PubMed  CAS  Google Scholar 

  17. Brandner, S., Isenmann, S., Raeber, A., et al. (1996) Normal host prion protein necessary for scrapie-induced neurotoxicity. Nature 379, 339–343.

    Article  PubMed  CAS  Google Scholar 

  18. Brown, P. (2002) Drug therapy in human and experimental transmissible spongiform encephalopathy. Neurology 58, 1720–1725.

    PubMed  CAS  Google Scholar 

  19. Bruce, M. E. (1996) Strain typing studies of scrapie and BSE, in Methods in Molecular Medicine Prion Diseases (Baker, H. and Ridley, R. M., eds.), Humana Press, Iotowa, NJ, pp. 223–236.

    Chapter  Google Scholar 

  20. Bruce, M. E., Will, R. G., Ironside, J. W., et al. (1997) Transmissions to mice indicate that ‘new variant’ CJD is caused by the BSE agent. Nature 389, 498–501.

    Article  PubMed  CAS  Google Scholar 

  21. Bueler, H., Aguzzi, A., Sailer, A., et al. (1993) Mice devoid of PrP are resistant to scrapie. Cell 73, 1339–1347.

    Article  PubMed  CAS  Google Scholar 

  22. Butler, D. A., Scott, M. R., Bockman, J. M. et al. (1988) Scrapie-infected murine neuroblastoma cells produce protease-resistant prion proteins. J. Virol. 62, 1558–1564.

    PubMed  CAS  Google Scholar 

  23. Cashman, N. R., Loertscher, R., Nalbantoglu, J., et al. (1990) Cellular isoform of the scrapie agent protein participates in lymphocyte activation. Cell 61, 185–192.

    Article  PubMed  CAS  Google Scholar 

  24. Castilla, J., Saa, P., Hetz, C., and Soto, C. (2005) In vitro generation of infectious scrapie prions. Cell 121, 195–206.

    Article  PubMed  CAS  Google Scholar 

  25. Castilla, J., Saa, P., and Soto, C. (2005) Detection of prions in blood. Nat. Med. 11, 982–985.

    PubMed  CAS  Google Scholar 

  26. Caughey, B., Brown, K., Raymond, G. J., Katzenstein, G. E., and Thresher, W. (1994) Binding of the protease-sensitive from of PrP (prion protein) to sulfated glycosaminoglycan and congo red [corrected]. J. Virol. 68, 2135–2141.

    PubMed  CAS  Google Scholar 

  27. Caughey, B., Neary, K., Buller, R., et al. (1990) Normal and scrapie-associated forms of prion protein differ in their sensitivities to phospholipase and proteases in intact neuroblastoma cells. J. Virol. 64, 1093–1101.

    PubMed  CAS  Google Scholar 

  28. Caughey, B., Race, R. E., Ernst, D., Buchmeier, M. J., and Chesebro, B. (1989) Prion protein biosynthesis in scrapie-infected and uninfected neuroblastoma cells. J. Virol. 63, 175–181.

    PubMed  CAS  Google Scholar 

  29. Caughey, B. and Raymond, G. J. (1993) Sulfated polyanion inhibition of scrapie-associated PrP accumulation in cultured cells. J. Virol. 67, 643–650.

    PubMed  CAS  Google Scholar 

  30. Caughey, B. and Raymond, G. J. (1991) The scrapie-associated form of PrP is made from a cell surface precursor that is both protease-and phospholipase-sensitive. J. Biol. Chem. 266, 18217–18223.

    PubMed  CAS  Google Scholar 

  31. Caughey, B., Raymond, G. J., and Bessen, R. A. (1998) Strain-dependent differences in beta-sheet conformations of abnormal prion protein. J. Biol. Chem. 273, 32230–32235.

    Article  PubMed  CAS  Google Scholar 

  32. Caughey, B., Raymond, G. J., Ernst, D., and Race, R. E. (1991) N-terminal truncation of the scrapie-associated form of PrP by lysosomal protease(s): implications regarding the site of conversion of PrP to the protease-resistant state. J. Virol. 65, 6597–6603.

    PubMed  CAS  Google Scholar 

  33. Caughey, B., Raymond, G. J., Kocisko, D. A., and Lansbury, P. T., Jr. (1997) Scrapie infectivity correlates with converting activity, protease resistance, and aggregation of scrapie-associated prion protein in guanidine denaturation studies. J. Virol. 71 4107–4110.

    PubMed  CAS  Google Scholar 

  34. Caughey, B. W., Dong, A., Bhat, K. S., Ernst, D., Hayes, S. F., and Caughey, W. S. (1991) Secondary structure analysis of the scrapie-associated protein PrP 27–30 in water by infrared spectroscopy. Biochemistry 30, 7672–7680.

    Article  PubMed  CAS  Google Scholar 

  35. Chabry, J., Caughey, B., and Chesebro, B. (1998) Specific inhibition of in vitro formation of protease-resistant prion protein by synthetic peptides. J. Biol. Chem. 273, 13203–13207.

    Article  PubMed  CAS  Google Scholar 

  36. Chesebro, B., Trifilo, M., Race, R., et al. (2005) Anchorless prion protein results in infectious amyloid disease without clinical scrapie. Science 308, 1435–1439.

    Article  PubMed  CAS  Google Scholar 

  37. Chiesa, R., Piccardo, P., Ghetti, B., and Harris, D. A. (1998) Neurological illness in transgenic mice ex pressing a prion protein with an insertional mutation. Neuron 21, 1339–1351.

    Article  PubMed  CAS  Google Scholar 

  38. Collinge, J., Palmer, M. S., Sidle, K. C., et al. (1995) Unaltered susceptibility to BSE in transgenic mice expressing human prion protein. Nature 378, 779–783.

    Article  PubMed  CAS  Google Scholar 

  39. Collinge, J., Sidle, K. C., Meads, J., Ironside, J., and Hill, A. F. (1996) Molecular analysis of prion strain variation and the aetiology of ‘new variant’ CJD. Nature 383, 685–690.

    Article  PubMed  CAS  Google Scholar 

  40. Collinge, J., Whittington, M. A., Sidle, K. C., et al. (1994) Prion protein is necessary for normal synaptic function. Nature 370, 295–297.

    Article  PubMed  CAS  Google Scholar 

  41. Collins, S., Boyd, A., Fletcher, A., et al. (2000) Creutzfeldt-Jakob disease: diagnostic utility of 14-3-3 protein immunodetection in cerebrospinal fluid. J. Clin. Neurosci. 7, 203–208.

    Article  PubMed  CAS  Google Scholar 

  42. Daude, N., Lehmann, S., and Harris, D. A. (1997) Identification of intermediate steps in the conversion of a mutant prion protein to a scrapie-like form in cultured cells. J. Biol. Chem. 272, 11604–11612.

    Article  PubMed  CAS  Google Scholar 

  43. DebBurman, S. K., Raymond, G. J., Caughey, B., and Lindquist, S. (1997) Chaperone-supervised conversion of prion protein to its protease-resistant form. Proc. Natl. Acad. Sci. USA 94, 13938–13943.

    Article  PubMed  CAS  Google Scholar 

  44. Deleault, N. R., Lucassen, R. W., and Supattapone, S. (2003) RNA molecules stimulate prion protein conversion. Nature 425, 717–720.

    Article  PubMed  CAS  Google Scholar 

  45. Diringer, H., Gelderblom, H., Hilmert, H., Ozel, M., Edelbluth, C., and Kimberlin, R. H. (1983) Scrapie infectivity, fibrils and low molecular weight protein. Nature 306, 476–478.

    Article  PubMed  CAS  Google Scholar 

  46. Fischer, M., Rulicke, T., Raeber A., et al. (1996) Prion protein (PrP) with amino-proximal deletions restoring susceptibility of PrP knockout mice to scrapie. EMBO J. 15, 1255–1264.

    PubMed  CAS  Google Scholar 

  47. Gabizon, R., Meiner, Z., Halimi, M., and Ben-Sasson, S. A. (1993) Heparin-like molecules bind differentially to prion-proteins and change their intracellular metabolic fate. J. Cell Physiol. 157, 319–325.

    Article  PubMed  CAS  Google Scholar 

  48. Gadjusek, D. C. (1988) Transmissible and nontransmissible amyloidoses: autocatalytic post-translational conversion of host precursor proteins to beta-pleated configurations. J. Neuroimmunol. 20, 95–110.

    Article  Google Scholar 

  49. Gasset, M., Baldwin, M. A., Fletterick, R. J., and Prusiner, S. B. (1993) Perturbation of the secondary structure of the scrapie prion protein under conditions that alter infectivity. Proc. Natl. Acad. Sci. USA 90, 1–5.

    Article  PubMed  CAS  Google Scholar 

  50. Glover, J. R., Kowal, A. S., Schirmer, E. C., Patino, M. M., Liu, J. J., and Lindquist, S. (1997) Self-seeded fibers formed by Sup35, the protein determinant of [PSI+], a heritable prion-like factor of S. cerevisiae. Cell 89, 811–819.

    Article  PubMed  CAS  Google Scholar 

  51. Goldfarb, L. G., Cervenakova, L., Brown, P., and Gajdusek, D. C. (1996) Genotype-phenotype correlations in familial spongiform encephalopathies associated with insert mutations. In: Transmissible Subacute Spongiform Encephalopathies: Prion Diseases (Court, L. and Dodet, B., eds.), Elsevier, Paris, pp. 425–431.

    Google Scholar 

  52. Goldmann, W., Hunter, N., Smith, G., Foster, J., and Hope, J. (1994) PrP genotype and agent effects in scrapie: change in allelic interaction with different isolates of agent in sheep, a natural host of scrapic. J. Gen. Virol. 75 (Pt 5), 989–995.

    PubMed  CAS  Google Scholar 

  53. Goldmann, W., Martin, T., Foster, J., et al. (1996) Novel polymorphisms in the caprine PrP gene: a codon 142 mutation associated with serapie incubation period. J. Gen. Virol. 77 (Pt 11), 2885–2891.

    PubMed  CAS  Google Scholar 

  54. Griffith, J. S. (1967) Self-replication and scrapie. Nature 215, 1043–1044.

    Article  PubMed  CAS  Google Scholar 

  55. Haraguchi, T., Fisher, S., Olofsson, S., et al. (1989) Asparagine-linked glycosylation of the scrapie and cellular prion proteins. Arch. Biochem. Biophys. 274, 1–13.

    Article  PubMed  CAS  Google Scholar 

  56. Hegde, R. S., Mastrianni, J. A., Scott, M. R., et al. (1998) A transmembrane form of the prion protein in neurodegenerative disease. Science 279, 827–834.

    Article  PubMed  CAS  Google Scholar 

  57. Hill, A. F., Butterworth, R. J., Joiner, S., et al. (1999) Investigation of variant Creutzfeldt-Jakob disease and other human prion diseases with tonsil biopsy samples. Lancet 353, 183–189.

    Article  PubMed  CAS  Google Scholar 

  58. Hill, A. F., Joiner, S., Linehan, J., Desbruslais, M., Lantos, P. L., and Collinge, J. (2000) Species-barrier-independent prion replication in apparently resistant species. Proc. Natl. Acad. Sci. USA 97, 10248–10253.

    Article  PubMed  CAS  Google Scholar 

  59. Holscher, C., Delius, H., and Burkle, A. (1998) Overexpression of nonconvertible PrPc delta 114–121 in scrapie-infected mouse neuroblastoma cells leads to trans-dominant inhibition of wild-type PrP(Sc) accumulation. J. Virol. 72, 1153–1159.

    PubMed  CAS  Google Scholar 

  60. Hope, J., Morton, L. J., Farquhar, C. F., Multhaup, G., Beyreuther, K., and Kimberlin, R. H. (1986) The major polypeptide of scrapie-associated fibrils (SAF) has the same size, charge distribution and N-terminal protein sequence as predicted for the normal brain protein (PrP). EMBO J. 5, 2591–2597.

    PubMed  CAS  Google Scholar 

  61. Hope, J., Multhaup, G., Reekie, L. J., Kimberlin, R. H., and Beyreuther, K. (1988) Molecular pathology of scrapie-associated fibril protein (PrP) in mouse brain affected by the ME7 strain of scrapie. Eur. J. Biochem. 172, 271–277.

    Article  PubMed  CAS  Google Scholar 

  62. Horiuchi, M., Baron, G. S., Xiong, L. W., and Caughey, B. (2001) Inhibition of interactions and interconversions of prion protein isoforms by peptide fragments from the C-terminal folded domain. J. Biol. Chem. 276, 15489–15497.

    Article  PubMed  CAS  Google Scholar 

  63. Horiuchi, M. and Cuaghey, B. (1999) Specific binding of normal prion protein to the scrapie form via a localized domain initiates its conversion to the protease-resistant state. EMBO J. 18, 3193–3203.

    Article  PubMed  CAS  Google Scholar 

  64. Horiuchi, M., Priola, S. A., Chabry, J., and Caughey, B. (2000) Interactions between heterologous forms of prion protein: binding, inhibition of conversion, and species barriers. Proc. Natl. Acad. Sci. USA 97, 5836–5841.

    Article  PubMed  CAS  Google Scholar 

  65. Hsiao, K. K., Scott, M., Foster, D., Groth, D. F., Dearmond, S. J., and Prusiner, S. B. (1990) Spontaneous neurodegeneration in transgenic mice with mutant prion protein. Science 250, 1587–1590.

    Article  PubMed  CAS  Google Scholar 

  66. Jarrett, J. T. and Lansbury, P. T., Jr. (1993) Seeding “one-dimensional crystallization” of amyloid: a pathogenic mechanism in Alzheimer's disease and scrapie? Cell 73, 1055–1058.

    Article  PubMed  CAS  Google Scholar 

  67. Jeffrey, M., Goodsir, C. M., Bruce, M., McBride, P. A., Scott, J. R., and Halliday, W. G. (1994) Correlative light and electron microscopy studies of PrP localisation in 87V scrapie. Brain Res. 656, 329–343.

    Article  PubMed  CAS  Google Scholar 

  68. Jeffrey, M., Goodsir, C. M., Bruce, M. E., McBride, P. A., Fowler, N., and Scott, J. R. (1994) Murine scrapie-infected neurons in vivo release excess prion protein into the extracellular space. Neurosci. Lett. 174, 39–42.

    Article  PubMed  CAS  Google Scholar 

  69. Jeffrey, M., Goodsir, C. M., Holliman, A., et al. (1998) Determination of the frequency and distribution of vascular and parenchymal amyloid with polyclonal and N-terminal-specific PrP antibodies in scrapie-affected sheep and mice. Vet. Rec. 142, 534–537.

    PubMed  CAS  Google Scholar 

  70. Jeffrey, M., Martin, S., Barr, J., Chong, A., and Fraser, J. R. (2001) Onset of accumulation of PrPres in murine ME7 scrapie in relation to pathological and PrP immunohistochemical changes. J. Comp Pathol. 124, 20–28.

    Article  PubMed  CAS  Google Scholar 

  71. Kascsak, R. J., Rubenstein, R., Merz, P. A., et al. (1986) Immunological comparison of scrapie-associated fibrils isolated from animals infected with four different scrapie strains. J. Virol. 59, 676–683.

    PubMed  CAS  Google Scholar 

  72. Kascsak, R. J., Rubenstein, R., Merz, P. A., Carp, R. I., Wisniewski, H. M., and Diringer, H. (1985) Biochemical differences among scrapie-associated fibrils support the biological diversity of scrapie agents. J. Gen. Virol. 66 (Pt 8), 1715–1722.

    Article  PubMed  CAS  Google Scholar 

  73. Kimberlin, R. H. and Walker, C. A. (1986) Suppression of scrapie infection in mice by heteropolyanion 23, dextran sulfate, and some other polyanions. Antimicrob. Agents Chemother. 30, 409–413.

    PubMed  CAS  Google Scholar 

  74. Knaus, K. J., Morillas, M., Swietnicki, W., Malone, M., Surewicz, W. K., and Yee, V. C. (2001) Crystal structure of the human prion protein reveals a mechanism for oligomerization. Nat. Struct. Biol. 8, 770–774.

    Article  PubMed  CAS  Google Scholar 

  75. Kocisko, D. A., Come, J. H., Priola, S. A., et al. (1994) Cell-free formation of protease-resistant prion protein. Nature 370, 471–474.

    Article  PubMed  CAS  Google Scholar 

  76. Kocisko, D. A., Lansbury, P. T., Jr., and Caughey, B. (1996) Partial unfolding and refolding of scrapie-associated prion protien: evidence for a critical 16-kDa C-terminal domain. Biochemistry 35, 13434–13442.

    Article  PubMed  CAS  Google Scholar 

  77. Kocisko, D. A., Priola, S. A., Raymond, G. J., Chesebro, B., Lansbury, P. T., Jr., and Caughey, B. (1995) Species specificity in the cell-free conversion of prion protein to protease-resistant forms: a model for the scrapie species barrier. Proc. Natl. Acad. Sci. USA 92, 3923–3927.

    Article  PubMed  CAS  Google Scholar 

  78. Lawson, V. A., Priola, S. A., Wehrly, K., and Chesebro, B. (2001) N-terminal truncation of prion protein affects both formation and conformation of abnormal protease-resistant prion protein generated in vitro. J. Biol. Chem. 276, 35265–35271.

    Article  PubMed  CAS  Google Scholar 

  79. Legname, G., Baskakov, I. V., Nguyen, H. O., et al. (2004) Synthetic mammalian prions. Science 305, 673–676.

    Article  PubMed  CAS  Google Scholar 

  80. Lehmann, S. and Harris, D. A. (1996) Mutant and infectious prion proteins display common biochemical properties in cultured cells. J. Biol. Chem. 271, 1633–1637.

    Article  PubMed  CAS  Google Scholar 

  81. Lehmann, S. and Harris, D. A. (1995) A mutant prion protein displays an aberrant membrane association when expressed in cultured cells. J. Biol. Chem. 270, 24589–24597.

    Article  PubMed  CAS  Google Scholar 

  82. Llewelyn, C. A., Hewitt, P. E., Knight, R. S., Amar, K., Cousens, S., Mackenzie, J., and Will, R. G. (2004) Possible transmission of variant Creutzfeldt-Jakob disease by blood transfusion. Lancet 363, 417–421.

    Article  PubMed  CAS  Google Scholar 

  83. Locht, C., Chesebro, B., Race, R., and Keith, J. M. (1986) Molecular cloning and complete sequence of prion protein cDNA from mouse brain infected with the scrapie agent. Proc. Natl. Acad. Sci. USA 83, 6372–6376.

    Article  PubMed  CAS  Google Scholar 

  84. Lopez, C. D., Yost, C. S., Prusiner, S. B., Myers, R. M., and Lingappa, V. R. (1990) Unusual topogenic sequence directs prion protein biogenesis. Science 248, 226–229.

    Article  PubMed  CAS  Google Scholar 

  85. Mallucci, G., Dickinson, A., Linehan, J., Klohn, P. C., Brandner, S., and Collinge, J. (2003) Depleting neuronal PrP in prion infection prevents disease and reverses spongiosis. Science 302, 871–874.

    Article  PubMed  CAS  Google Scholar 

  86. Manson, J. C., Clarke, A. R., McBride, P. A., McConnell, I., and Hope, J. (1994) PrP gene dosage determines the timing but not the final intensity or distribution of lesions in scrapie pathology. Neurodegeneration. 3, 331–340.

    PubMed  CAS  Google Scholar 

  87. Manson, J. C., Jamieson, E., Baybutt, H., et al. (1999) A single amino acid alteration (101L) introduced into murine PrP dramatically alters incubation time of transmissible spongiform encephalopathy. EMBO J. 18, 6855–6864.

    Article  PubMed  CAS  Google Scholar 

  88. Marsh, R. F. and Kimberlin, R. H. (1975) Comparison of scrapie and transmissible mink encephalopathy in hamsters. II. Clinical signs, pathology, and pathogenesis. J. Infect. Dis. 131, 104–110.

    PubMed  CAS  Google Scholar 

  89. McKinley, M. P., Taraboulos, A., Kenaga, L., et al. (1991) Intrastructural localization of scrapie prion proteins in cytoplasmic vesicles of infected cultured cells. Lab Invest, 65, 622–630.

    PubMed  CAS  Google Scholar 

  90. Merz, P. A., Somerville, R. A., Wisniewski, H. M., and Iqbal, K. (1981) Abnormal fibrils form scrapie-infected brain. Acta Neuropathol. (Berl) 54, 63–74.

    Article  CAS  Google Scholar 

  91. Merz, P. A., Somerville, R. A., Wisniewski, H. M., Manuelidis, L., and Manuelidis, E. E. (1983) Scrapie-associated fibrils in Creutzfeldt-Jakob disease. Nature 306, 474–476.

    Article  PubMed  CAS  Google Scholar 

  92. Mouillet-Richard, S., Ermonval, M., Chebassier, C., et al. (2000) Signal transduction through prion protein. Science 289, 1925–1928.

    Article  PubMed  CAS  Google Scholar 

  93. Paitel, E., Fahraeus, R., and Checler, F. (2003) Cellular prion protein sensitizes neurons to apoptotic stimuli through Mdm2-regulated and p53-dependent caspase 3-like activation. J. Biol. Chem. 278, 10061–10066.

    Article  PubMed  CAS  Google Scholar 

  94. Palmer, M. S., Dryden, A. J., Hughes, J. T., and Collinge, J. (1991) Homozygous prion protein genotype predisposes to sporadic Creutzfeldt-Jakob disease. Nature 352, 340–342.

    Article  PubMed  CAS  Google Scholar 

  95. Pan, K. M., Baldwin, M., Nguyen, J., et al. (1993) Conversion of alpha-helices into beta-sheets features in the formation of the scrapie prion proteins. Proc. Natl. Acad. Sci. USA 90, 10962–10966.

    Article  PubMed  CAS  Google Scholar 

  96. Parchi, P., Castellani, R., Capellari, S., et al. (1996) Molecular basis of phenotypic variability in sporadic Creutzfeldt-Jakob disease. Ann. Neurol. 39, 767–778.

    Article  PubMed  CAS  Google Scholar 

  97. Paushkin, S. V., Kushnirov, V. V., Smirnov, V. N., and Ter-Avanesyan, M. D. (1997) In vitro propagation of the prion-like state of yeast Sup35 protein. Science 277, 381–383.

    Article  PubMed  CAS  Google Scholar 

  98. Peden, A. H., Head, M. W., Ritchie, D. L., Bell, J. E., and Ironside, J. W. (2004) Preclinical vCJD after blood transfusion in a PRNP codon 129 heterozygous patient. Lancet 364, 527–529.

    Article  PubMed  Google Scholar 

  99. Petersen, R. B., Parchi, P., Richardson, S. L., Urig, C. B., and Gambetti, P. (1996) Effect of the D178N mutation and the codon 129 polymorphism on the metabolism of the prion protein. J. Biol. Chem. 271, 12661–12668.

    Article  PubMed  CAS  Google Scholar 

  100. Priola, S. A. (1999) Prion protein and species barriers in the transmissible spongiform encephalopathies. Biomed. Pharmacother. 53, 27–33.

    Article  PubMed  CAS  Google Scholar 

  101. Priola, S. A. and Caughey, B. (1994) Inhibition of scrapie-associated PrP accumulation. Probing the role of glycosaminoglycans in amyloidogenesis. Mol. Neurobiol. 8, 113–120.

    PubMed  CAS  Google Scholar 

  102. Priola, S. A., Caughey, B., Race, R. E., and Chesebro, B. (1994) Heterologous PrP molecules interfere with accumulation of protease-resistant PrP in scrapie-infected murine neuroblastoma cells. J. Virol. 68, 4873–4878.

    PubMed  CAS  Google Scholar 

  103. Priola, S. A., Chabry, J., and Chan, K. (2001) Efficient conversion of normal prion protein (PrP) by abnormal hamster PrP is determined by homology at amino acid residue 155. J. Virol. 75, 4673–4680.

    Article  PubMed  CAS  Google Scholar 

  104. Priola, S. A. and Chesebro, B. (1998) Abnormal properties of prion protein with insertional mutations in different cell types. J. Biol. Chem. 273, 11980–11985.

    Article  PubMed  CAS  Google Scholar 

  105. Priola, S. A. and Chesebro, B. (1995) A single hamster PrP amino acid blocks conversion to protease-resistant PrP in scrapie-infected mouse neuroblastoma cells. J. Virol. 69, 7754–7758.

    PubMed  CAS  Google Scholar 

  106. Priola, S. A. and Lawson, V. A. (2001) Glycosylation influences cross-species formation of protease-resistant prion protein. EMBO J. 20, 6692–6699.

    Article  PubMed  CAS  Google Scholar 

  107. Priola, S. A. and Vorberg, I. (2004) Identification of possible animal origins of prion disease in human beings. Lancet 363, 2013–2014.

    Article  PubMed  Google Scholar 

  108. Prusiner, S. B. (1991) Molecular biology of prion diseases. Science 252, 1515–1522.

    Article  PubMed  CAS  Google Scholar 

  109. Prusiner, S. B. (1982) Novel proteinaceous infectious particles cause scrapie. Science 216, 136–144.

    Article  PubMed  CAS  Google Scholar 

  110. Prusiner, S. B., Scott, M., Foster, D., et al. (1990) Transgenetic studies implicate interactions between homologous PrP isoforms in scrapie prion replication. Cell 63, 673–686.

    Article  PubMed  CAS  Google Scholar 

  111. Race, R. and Chesebro, B. (1998) Scrapie infectivity found in resistant species. Nature 392, 770.

    Article  PubMed  CAS  Google Scholar 

  112. Race, R., Meade-White, K., Raines, A., Raymond, G. J., Caughey, B., and Chesebro, B. (2002) Subclinical scrapie infection in a resistant species: persistence, replication, and adaptation of infectivity during four passages. J. Infect. Dis. 186 Suppl 2, S166-S170.

    Article  PubMed  Google Scholar 

  113. Race, R., Raines, A., Raymond, G. J., Caughey, B., and Chesebro, B. (2001) Long-term subclinical carrier state precedes scrapie replication and adaptation in a resistant species: analogies to bovine spongiform encephalopathy and variant Creutzfeldt-Jakob disease in humans. J. Virol. 75, 10106–10112.

    Article  PubMed  CAS  Google Scholar 

  114. Race, R. E., Caughey, B., Graham, K., Ernst, D., and Chesebro, B. (1988) Analyses of frequency of infection, specific infectivity, and prion protein biosynthesis in scrapie-infected neuroblastoma cell clones. J. Virol. 62, 2845–2849.

    PubMed  CAS  Google Scholar 

  115. Race, R. E., Fadness, L. H., and Chesebro, B. (1987) Characterization of scrapie infection in mouse neuroblastoma cells. J. Gen. Virol. 68 (Pt 5), 1391–1399.

    PubMed  Google Scholar 

  116. Race, R. E., Priola, S. A., Bessen, R. A., et al. (1995) Neuron-specific expression of a hamster prion protein minigene in transgenic mice induces susceptibility to hamster scrapie agent. Neuron 15, 1183–1191.

    Article  PubMed  CAS  Google Scholar 

  117. Raeber, A. J., Race, R. E., Brandner, S., et al. (1997) Astrocyte-specific expression of hamster prion protein (PrP) renders PrP knockout mice susceptible to hamster scrapie. EMBO J. 16, 6057–6065.

    Article  PubMed  CAS  Google Scholar 

  118. Raymond, G. J., Bossers, A., Raymond, L. D., et al. (2000) Evidence of a molecular barrier limiting susceptibility of humans, cattle and sheep to chronic wasting disease. EMBO J. 19, 4425–4430.

    Article  PubMed  CAS  Google Scholar 

  119. Raymond, G. J., Hope, J., Kocisko, D. A., et al. (1997) Molecular assessment of the potential transmissibilities of BSE and scrapie to humans. Nature 388, 285–288.

    Article  PubMed  CAS  Google Scholar 

  120. Riek, R., Hornemann, S., Wider, G., Billeter, M., Glockshuber, R., and Wuthrich, K. (1996) NMR structure of the mouse prion protein domain PrP(121–321). Nature 382, 180–182.

    Article  PubMed  CAS  Google Scholar 

  121. Riek, R., Hormemann, S., Wider, G., Glockshuber, R., and Wuthrich, K. (1997) ANMR characterization of the full-length recombinant murine prion protein, mPrP(23–231). FEBS Lett. 413, 282–288.

    Article  PubMed  CAS  Google Scholar 

  122. Rubenstein, R., Carp, R. I., and Callahan, S. M. (1984) In vitro replication of scrapie agent in a new ronal model: infection of PC12 cells. J. Gen. Virol. 65 (Pt 12), 2191–2198.

    PubMed  Google Scholar 

  123. Rubenstein, R., Merz, P. A., Kascsak, R. J., et al. (1991) Scrapie-infected spleens: analysis of infectivity, scrapie-associated fibrils, and protease-resistant proteins. J. Infect. Dis. 164, 29–35.

    PubMed  CAS  Google Scholar 

  124. Saborio, G. P., Permanne, B., and Soto, C. (2001) Sensitive detection of pathological prion protein by cyclic amplification of protein misfolding. Nature 411, 810–813.

    Article  PubMed  CAS  Google Scholar 

  125. Safar, J., Roller, P. P., Gajdusek, D. C., and Gibbs, C. J., Jr. (1993) Thermal stability and conformational transitions of scrapie amyloid (prion) protein correlate with infectivity. Protein Sci. 2, 2206–2216.

    Article  PubMed  CAS  Google Scholar 

  126. Safar, J., Wille, H., Itri, V., et al. (1998) Eight prion strains have PrP(Sc) molecules with different conformations. Nat. Med. 4, 1157–1165.

    Article  PubMed  CAS  Google Scholar 

  127. Sakaguchi, S., Katamine, S., Nishida, N., et al. (1996) Loss of cerebellar Purkinje cells in aged mice homozygous for a disrupted PrP gene. Nature 380, 528–531.

    Article  PubMed  CAS  Google Scholar 

  128. Schatzl, H. M., Laszlo, L., Holtzman, D. M., et al. (1997) A hypothalamic neuronal cell line persistently infected with scrapie prions exhibits apoptosis. J. Virol. 71, 8821–8831.

    PubMed  CAS  Google Scholar 

  129. Scott, M., Foster, D., Mirenda, C., et al. (1989) Transgenic mice expressing hamster prion protein produce species-specific scrapie infectivity and amyloid plaques. Cell 59, 847–857.

    Article  PubMed  CAS  Google Scholar 

  130. Scott, M., Groth, D., Foster, D., et al. (1993) Propagation of prions with artificial properties in transgenic mice expressing chimeric PrP genes. Cell 73, 979–988.

    Article  PubMed  CAS  Google Scholar 

  131. Scott, M. R., Kohler, R., Foster, D., and Prusiner, S. B. (1992) Chimeric prion protein expression in cultured cells and transgenic mice. Protein Sci. 1, 986–997.

    PubMed  CAS  Google Scholar 

  132. Serio, T. R., Cashikar, A. G., Kowal, A. S., et al. (2000) Nucleated conformational conversion and the replication of conformational information by a prion determinant. Science 289, 1317–1321.

    Article  PubMed  CAS  Google Scholar 

  133. Snow, A. D., Kisilevsky, R., Willmer, J., Prusiner, S. B., and Dearmond, S. J. (1989) Sulfated glycosaminoglycans in amyloid plaques of prion diseases. Acta Neuropathol. (Berl) 77, 337–342.

    Article  CAS  Google Scholar 

  134. Supattapone, S., Bosque, P., Muramoto, T., et al. (1999) Prion protein of 106 residues creates an artifical transmission barrier for prion replication in transgenic mice. Cell 96, 869–878.

    Article  PubMed  CAS  Google Scholar 

  135. Taraboulos, A., Raeber, A. J., Borchelt, D. R., Serban, D., and Prusiner, S. B. (1992) Synthesis and trafficking of prion proteins in cultured cells. Mol. Biol. Cell 3, 851–863.

    PubMed  CAS  Google Scholar 

  136. Taraboulos, A., Scott, M., Semenov, A., Avrahami, D., Laszlo, L., and Prusiner, S. B. (1995) Cholesterol depletion and modification of COOH-terminal targeting sequence of the prion protein inhibit formation of the scrapie isoform. J. Cell Biol. 129, 121–132.

    Article  PubMed  CAS  Google Scholar 

  137. Taylor, K. L., Cheng, N., Williams, R. W., Steven, A. C., and Wickner, R. B. (1999) Prion domain initiation of amyloid formation in vitro from native Ure2p. Science 283, 1339–1343.

    Article  PubMed  CAS  Google Scholar 

  138. Telling, G. C., Parchi, P., Dearmond, S. J., et al. (1996) Evidence for the conformation of the pathologic isoform of the prion protein enciphering and propagating prion diversity. Science 274, 2079–2082.

    Article  PubMed  CAS  Google Scholar 

  139. Tobler, I., Gaus, S. E., Deboer, T., et al. (1996) Altered circadian activity rhythms and sleep in mice devoid of prion protein. Nature 380, 639–642.

    Article  PubMed  CAS  Google Scholar 

  140. Vilette, D., Andreoletti, O., Archer, F., et al. (2001) Ex vivo propagation of infectious sheep scrapie agent in heterologous epithelial cells expressing ovine prion protein. Proc. Natl. Acad. Sci. USA 98, 4055–4059.

    Article  PubMed  CAS  Google Scholar 

  141. Vorberg, I., Chan, K., and Priola, S. A. (2001) Deletion of beta-strand and alpha-helix secondary structure in normal prion protein inhibits formation of its protease-resistant isoform. J. Virol. 75, 10024–10032.

    Article  PubMed  CAS  Google Scholar 

  142. Vorberg, I., Groschup, M. H., Pfaff, E., and Priola, S. A. (2003) Multiple amino acid residues within the rabbit prion protein inhibit formation of its abnormal isoform. J. Virol. 77, 2003–2009.

    Article  PubMed  CAS  Google Scholar 

  143. Vorberg, I. and Priola, S. A. (2002) Molecular basis of scrapie strain glycoform variation. J. Biol. Chem. 277, 36775–36781.

    Article  PubMed  CAS  Google Scholar 

  144. Vorberg, I., Raines, A., and Priola, S. A. (2004) Acute formation of protease-resistant prion protein does not always lead to persistent scrapie infection in vitro. J. Biol. Chem. 279, 29218–29225.

    Article  PubMed  CAS  Google Scholar 

  145. Vorberg, I., Raines, A., Story, B., and Priola, S. A. (2004) Susceptibility of common fibroblast cell lines to transmissible spongiform encephalopathy agents. J. Infect. Dis. 189, 431–439.

    Article  PubMed  CAS  Google Scholar 

  146. Wells, G. A. H., Scott, A. C., Johnson, C. T., et al. (1987) A novel progressive spongiform encephalopathy in cattle. Vet. Rec. 121, 419–420.

    PubMed  CAS  Google Scholar 

  147. Wickner, R. B. (1994) [URE3] as an altered URE2 protein: evidence for a prion analog in Saccharomyces cerevisiae. Science 264, 566–569.

    Article  PubMed  CAS  Google Scholar 

  148. Will, R. G., Ironside, J. W., Zeidler, M., et al. (1996) A new variant of Creutzfeldt-Jakob disease in the UK. Lancet 347, 921–925.

    Article  PubMed  CAS  Google Scholar 

  149. Williams, E. S. and Young, S. (1980) Chronic wasting disease of captive mule deer: a spongiform encephalopathy. J. Wildl. Dis. 16, 89–98.

    PubMed  CAS  Google Scholar 

  150. Williams, E. S. and Young, S. (1982) Spongiform encephalopathy of Rocky Mountain elk. J. Wildl. Dis. 18, 465–471.

    PubMed  CAS  Google Scholar 

  151. Zahn, R., Liu, A., Luhrs, T., et al. (2000) NMR solution structure of the human prion protein. Proc. Natl. Acad. Sci. USA 97, 145–150.

    Article  PubMed  CAS  Google Scholar 

  152. Zulianello, L., Kaneko, K., Scott, M., et al. (2000) Dominat-negative inhibition of prion formation diminished by deletion mutagenesis of the prion protein. J. Virol. 74, 4351–4360.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suzette A. Priola.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Priola, S.A., Vorberg, I. Molecular aspects of disease pathogenesis in the transmissible spongiform encephalopathies. Mol Biotechnol 33, 71–88 (2006). https://doi.org/10.1385/MB:33:1:71

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/MB:33:1:71

Index Entries

Navigation