Skip to main content
Log in

esiRNAs purified with chromatography suppress homologous gene expression with high efficiency and specificity

  • Research
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Many preclinical studies have shown RNA interference (RNAi) as a new promising way to treat various human diseases including cancer and virus infection and there is an increasing demand for the large-scale preparation of short interfering RNAs (siRNAs) at low cost. Data are accumulating to show that endoribonuclease-prepared siRNAs (esiRNAs) are superior to chemically synthesized siRNAs in terms of expense, efficiency, and specificity. Yet all procedures available for esiRNA purification were designed to produce small amount of siRNAs for laboratory use. In this article, a new method of purification of esiRNAs based on ion exchange chromatography and size exclusion chromatography is reported. The esiRNAs prepared with this method are shown here to be of high purity and specifically suppress homologous gene expression without activating interferon response and with higher efficiency than chemically synthesized siRNAs. We can expect that the new method can be scaled up easily to provide large quantities of esiRNAs to meet the requirement of preclinical and clinical studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dykxhoorn, D. M., Novina, C. D., and Sharp, P. A. (2003) Killing the messenger: short RNAs that silence gene expression. Nat. Rev. Mol. Cell Biol. 4, 457–467.

    Article  PubMed  CAS  Google Scholar 

  2. Campbell, T. N. and Choy, F. Y. (2005) RNA interference: past, present and future. Curr. Issues Mol. Biol. 7, 1–6.

    PubMed  CAS  Google Scholar 

  3. Wadhwa, R., Kaul, S. C., Miyagishi, M., and Taira, K. (2004) Know-how of RNA interference and its applications in research and therapy. Mutat. Res. 567, 71–84.

    Article  PubMed  CAS  Google Scholar 

  4. Hannon, G. J. and Rossi, J. J. (2004) Unlocking the potential of the human genome with RNA interference. Nature 431, 371–378.

    Article  PubMed  CAS  Google Scholar 

  5. Dillon, C. P., Sandy, P., Nencioni, A., Kissler, S., Rubinson, D. A., and Van Parijs, L. (2005) RNAi as an experimental and therapeutic tool to study and regulate physiological and disease processes. Annu. Rev. Physiol. 67, 147–173.

    Article  PubMed  CAS  Google Scholar 

  6. Fire, A., Xu, S., Montgomery, M. K., Kostas, S. A., Driver, S. E., and Mello, C. C. (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391, 806–811.

    Article  PubMed  CAS  Google Scholar 

  7. Elbashir, S. M., Harborth, J., Lendeckel, W., Yalcin, A., Weber, K., and Tuschl, T. (2001) Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411, 494–498.

    Article  PubMed  CAS  Google Scholar 

  8. Williams, B. R. (1997) Role of the double-stranded RNA-activated protein kinase (PKR) in cell regulation. Biochem. Soc. Trans. 25, 509–513.

    PubMed  CAS  Google Scholar 

  9. Caplen, N. J., Parrish, S., Imani, F., Fire, A., and Morgan, R. A. (2001) Specific inhibition of gene expression by small double-stranded RNAs in invertebrate and vertebrate systems. Proc. Natl. Acad. Sci. USA 98, 9742–9747.

    Article  PubMed  CAS  Google Scholar 

  10. Yang, D., Goga, A., and Bishop, J. M. (2004) RNA interference (RNAi) with RNase III-prepared siRNAs. Methods Mol. Biol. 252, 471–482.

    PubMed  CAS  Google Scholar 

  11. Kittler, R., Putz, G., Pelletier, L., et al. (2004) An endoribonuclease-prepared siRNA screen in human cells identifies genes essential for cell division. Nature 432, 1036–1040.

    Article  PubMed  CAS  Google Scholar 

  12. Qian, Z. K., Xuan, B. Q., Min, T. S., Xu, J. F., Li, L., and Huang, W. D. (2005) A cost-effective method of siRNA preparation and its application to inhibit hepatitis B virus replication in HepG2 cells. World J. Gastroenterol. 11, 1297–1302.

    PubMed  CAS  Google Scholar 

  13. Ho, S. N., Hunt, H. D., Horton, R. M., Pullen, J. K., and Pease, L. R. (1989) Site-directed mutagenesis by overlap extension using the polymerase chain reaction. Gene 77, 51–59.

    Article  PubMed  CAS  Google Scholar 

  14. Giladi, H., Ketzinel-Gilad, M., Rivkin, L., Felig, Y., Nussbaum, O., and Galun, E. (2003) Small interfering RNA inhibits hepatitis B virus replication in mice. Mol. Ther. 8, 769–776.

    Article  PubMed  CAS  Google Scholar 

  15. Ichim, T. E., Li, M., Qian, H., et al. (2004) RNA interference: a potent tool for gene-specific therapeutics. Am. J. Transplant 4, 1227–1236.

    Article  PubMed  CAS  Google Scholar 

  16. Fuchs, U., Damm-Welk, C., and Borkhardt, A. (2004) Silencing of disease-related genes by small interfering RNAs. Curr. Mol. Med. 4, 507–517.

    Article  PubMed  CAS  Google Scholar 

  17. Beal, J. (2005) Silence is golden: can RNA interference therapeutics deliver? Drug Discov. Today 10, 169–172.

    Article  PubMed  CAS  Google Scholar 

  18. Jackson, A. L. and Linsley, P. S. (2004) Noise amidst the silence: off-target effects of siRNAs? Trends Genet. 20, 521–524.

    Article  PubMed  CAS  Google Scholar 

  19. Jackson, A. L., Bartz, S. R., Schelter, J., et al. (2003) Expression profiling reveals off-target gene regulation by RNAi. Nat. Biotechnol. 21, 635–637.

    Article  PubMed  CAS  Google Scholar 

  20. Snove, O. Jr. and Holen, T. (2004) Many commonly used siRNAs risk off-target activity. Biochem. Biophys. Res. Commun. 319, 256–263.

    Article  PubMed  CAS  Google Scholar 

  21. Scacheri, P. C., Rozenblatt-Rosen, O., Caplen, N. J., et al. (2004) Short interfering RNAs can induce unexpected and divergent changes in the levels of untargeted proteins in mammalian cells. Proc. Natl. Acad. Sci. USA 101, 1892–1897.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weida Huang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xuan, B., Qian, Z., Tan, C. et al. esiRNAs purified with chromatography suppress homologous gene expression with high efficiency and specificity. Mol Biotechnol 31, 203–209 (2005). https://doi.org/10.1385/MB:31:3:203

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/MB:31:3:203

Index Entries

Navigation