Skip to main content
Log in

Optimal molecular profiling of tissue and tissue components

Defining the best processing and microdissection methods for biomedical applications

  • Protocol
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Isolation of well-preserved pure cell populations is a prerequisite for sound studies of the molecular basis of any tissue-based biological phenomenon. This article reviews current methods for obtaining anatomically specific signals from molecules isolated from tissues, a basic requirement for productive linking of phenotype and genotype. The quality of samples isolated from tissue and used for molecular analysis is often glossed over or omitted from publications, making interpretation and replication of data difficult or impossible. Fortunately, recently developed techniques allow life scientists to better document and control the quality of samples used for a given assay, creating a foundation for improvement in this area. Tissue processing for molecular studies usually involves some or all of the following steps: tissue collection, gross dissection/identification, fixation, processing/embedding, storage/archiving, sectioning, staining, microdissection/annotation, and pure analyte labeling/identification and quantification. We provide a detailed comparison of some current tissue microdissection technologies, and provide detailed example protocols for tissue component handling upstream and downstream from microdissection. We also discuss some of the physical and chemical issues related to optimal tissue processing, and include methods specific to cytology specimens. We encourage each laboratory to use these as a starting point for optimization of their overall process of moving from collected tissue to high quality, appropriately anatomically tagged scientific results. In optimized protocols is a source of inefficiency in current life science research. Improvement in this area will significantly increase life science quality and productivity. The article is divided into introduction, materials, protocols, and notes sections. Because many protocols are covered in each of these sections, information relating to a single protocol is not contiguous. To get the greatest benefit from this article, readers are advised to read through the entire article first, identify protocols appropriate to their laboratory for each step in their workflow, and then reread entries in each section pertaining to each of these single protocols.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Eltoum, I. A., Siegal, G. P., and Frost, A. R. (2002) Microdissection of histologic sections: past, present, and future. Adv. Anat. Pathol. 9, 316–322.

    Article  PubMed  Google Scholar 

  2. Srinivasan, M., Sedmak, D., and Jewell, S. (2002) Effect of fixatives and tissue processing on the content and integrity of nucleic acids. Am. J. Pathol. 161, 1961–1971.

    PubMed  CAS  Google Scholar 

  3. Best, C. J. and Emmert-Buck, M. R. (2001) Molecular profiling of tissue samples using laser capture microdissection. Expert Rev. Mol. Diagn. 1, 53–60.

    Article  PubMed  CAS  Google Scholar 

  4. Ahram, M., Flaig, M. J., Gillespie, J. W., et al. (2003) Evaluation of ethanol-fixed, paraffin-embedded tissues for proteomic applications. Proteomics 3, 413–421.

    Article  PubMed  CAS  Google Scholar 

  5. Englert, C. R., Baibakov, G. V., and Emmert-Buck, M. R. (2000) Layered expression scanning: rapid molecular profiling of tumor samples. Cancer Res. 60, 1526–1530.

    PubMed  CAS  Google Scholar 

  6. Fend, F., Emmert-Buck, M. R., Chuaqui, R., et al. (1999) Immuno-LCM: laser capture microdissection of immunostained frozen sections for mRNA analysis. Am. J. Pathol. 154, 61–66.

    PubMed  CAS  Google Scholar 

  7. Gillespie, J. W., Best, C. J., Bichsel, V. E., et al. (2002) Evaluation of non-formalin tissue fixation for molecular profiling studies. Am. J. Pathol. 160, 449–457.

    PubMed  CAS  Google Scholar 

  8. Gillespie, J. W., Ahram, M., Best, C. J., et al. (2001) The role of tissue microdissection in cancer research. Cancer J. 7, 32–39.

    PubMed  CAS  Google Scholar 

  9. Ornstein, D. K., Gillespie, J. W., Paweletz, C. P., et al. (2000) Proteomic analysis of laser capture microdissected human prostate cancer and in vitro prostate cell lines. Electrophoresis 21, 2235–2242.

    Article  PubMed  CAS  Google Scholar 

  10. Simone, N. L., Remaley, A. T., Charboneau, L., et al. (2000) Sensitive immunoassay of tissue cell proteins procured by laser capture microdissection. Am. J. Pathol. 156, 445–452.

    PubMed  CAS  Google Scholar 

  11. Bancroft, J. D. and Gamble, M. (2002) Theory and Practice of Histological Techniques, 5th ed. Churchill Livingstone, Edinburgh.

    Google Scholar 

  12. Carson, F. L. (2003) Histotechnology: A Self Instructional Text, 2nd ed. ASCP Press, Chicago.

    Google Scholar 

  13. Kiernan, J. A. (2001) Histological and Histochemical Methods, 3rd ed. Oxford University Press, Oxford, UK.

    Google Scholar 

  14. Kiernan, J. A. and Mason, I. (2002) Microscopy and Histology for Molecular Biologists: A User’s Guide. Portland Press, London.

    Google Scholar 

  15. Histonet Listserver Information http://www./histonet.org/

  16. Gassmann, M. (2003) Quality assurance of RNA derived from laser microdissected tissue samples obtained by the PALM(R) MicroBeam System using the RNA 6000 Pico LabChip(R) kit. 1–8. Agilent Technologies.

  17. Horobin, R. W. and Kiernan, J. A. (2002) Conn’s Biological Stains: A Handbook of Dyes, Stains and Fluorochromes For Use in Biology and Medicine 10th ed. Published for the Biological Stain Commission by BIOS Scientific Publishers, Distributed in US by Springer-Verlag (U.S.), Oxford, UK.

  18. Zhuang, Z., Bertheau, P., Emmert-Buck, M. R., et al. (1995) A microdissection technique for archival DNA analysis of specific cell populations in lesions <1 mm in size. Am. J. Pathol. 146, 620–625.

    PubMed  CAS  Google Scholar 

  19. Lee, J. Y., Dong, S. M., Kim, S. Y., Yoo, N. J., Lee, S. H., and Park, W. S. (1998) A simple, precise and economical microdissection technique for analysis of genomic DNA from archival tissue sections. Virchows Arch. 433, 305–309.

    Article  PubMed  CAS  Google Scholar 

  20. Gupta, S. K., Douglas-Jones, A. G., and Morgan, J. M. (1997) Microdissection of stained archival tissue. Mol. Pathol. 50, 218–220.

    Article  PubMed  CAS  Google Scholar 

  21. Harsch, M., Bendrat, K., Hofmeier, G., Branscheid, D., and Niendorf, A. (2001) A new method for histological microdissection utilizing an ultrasonically oscillating needle: demonstrated by differential mRNA expression in human lung carcinoma tissue. Am. J. Pathol. 158, 1985–1990.

    PubMed  CAS  Google Scholar 

  22. Beltinger, C. P. and Debatin, K. M. (1998) A simple combined microdissection and aspiration device for the rapid procurement of single cells from clinical peripheral blood smears. Mol. Pathol. 51, 233–236.

    Article  PubMed  CAS  Google Scholar 

  23. Zhang, Z., Nakamura, M., Taniguchi, E., Shan, L., Yokoi, T., and Kakudo, K. (1997) A simple approach to single-cell microdissection and molecular analysis. Anal. Quant. Cytol. Histol. 19, 514–518.

    PubMed  CAS  Google Scholar 

  24. Emmert-Buck, M. R., Bonner, R. F., Smith, P. D., et al. (1996) Laser capture microdissection [see comments]. Science 274, 998–1001.

    Article  PubMed  CAS  Google Scholar 

  25. Curran, S., McKay, J. A., McLeod, H. L., and Murray, G. I. (2000) Laser capture microscopy. Mol. Pathol. 53, 64–68.

    Article  PubMed  CAS  Google Scholar 

  26. Goldsworthy, S. M., Stockton, P. S., Trempus, C. S., Foley, J. F., and Maronpot, R. R. (1999) Effects of fixation on RNA extraction and amplification from laser capture microdissected tissue. Mol. Carcinog. 25, 86–91.

    Article  PubMed  CAS  Google Scholar 

  27. Lawrie, L. C., Curran, S., McLeod, H. L., Fothergill, J. E., and Murray, G. I. (2001) Application of laser capture microdissection and proteomics in colon cancer. Mol. Pathol. 54, 253–258.

    Article  PubMed  CAS  Google Scholar 

  28. Craven, R. A. and Banks, R. E. (2002) Use of laser capture microdissection to selectively obtain distinct populations of cells for proteomic analysis. Methods Enzymol. 356, 33–49.

    Article  PubMed  CAS  Google Scholar 

  29. Nakazono, M., Qiu, F., Borsuk, L. A., and Schnable, P. S. (2003) Laser-capture microdissection, a tool for the global analysis of gene expression in specific plant cell types: identification of genes expressed differentially in epidermal cells or vascular tissues of maize. Plant Cell 15, 583–596.

    Article  PubMed  CAS  Google Scholar 

  30. Luzzi, V., Mahadevappa, M., Raja, R., Warrington, J. A., and Watson, M. A. (2003) Accurate and reproducible gene expression profiles from laser capture microdissection, transcript amplification, and high density oligonucleotide microarray analysis. J. Mol. Diagn. 5, 9–14.

    PubMed  CAS  Google Scholar 

  31. Burgemeister, R., Gangnus, R., Haar, B., Schutze, K., and Sauer, U. (2003) High quality RNA retrieved from samples obtained by using LMPC (laser microdissection and pressure catapulting) technology. Pathol. Res. Pract. 199, 431–436.

    Article  PubMed  CAS  Google Scholar 

  32. Fink, L., Kohlhoff, S., Stein, M. M., et al. (2002) cDNA array hybridization after laser-assisted microdissection from nonneoplastic tissue. Am. J. Pathol. 160, 81–90.

    PubMed  CAS  Google Scholar 

  33. Cohen, C. D., Grone, H. J., Grone, E. F., Nelson, P. J., Schlondorff, D., and Kretzler, M. (2002) Laser microdissection and gene expression analysis on formaldehyde-fixed archival tissue. Kidney Int. 61, 125–132.

    Article  PubMed  CAS  Google Scholar 

  34. Kleeberger, W., Rothamel, T., Glockner, S., Lehmann, U., and Kreipe, H. (2000) Laser-assisted microdissection and short tandem repeat PCR for the investigation of graft chimerism after solid organ transplantation. Pathobiology 68, 196–201.

    Article  PubMed  CAS  Google Scholar 

  35. Inoue, K., Sakurada, Y., Murakami, M., Shirota, M., and Shirota, K. (2003) Detection of gene expression of vascular endothelial growth factor and flk-1 in the renal glomeruli of the normal rat kidney using the laser microdissection system. Virchows Arch. 442, 159–162.

    PubMed  CAS  Google Scholar 

  36. Mori, M., Mimori, K., Yoshikawa, Y., et al. (2002) Analysis of the gene-expression profile regarding the progression of human gastric carcinoma. Surgery 131, S39-S47.

    Article  PubMed  Google Scholar 

  37. Brockhoff, G., Fleischmann, S., Meier, A., Wachs, F. P., Hofstaedter, F., and Knuechel, R. (1999) Use of a mechanical dissociation device to improve standardization of flow cytometric cytokeratin DNA measurements of colon carcinomas. Cytometry 38, 184–191.

    Article  PubMed  CAS  Google Scholar 

  38. Pertoft, H. (2000) Fractionation of cells and subcellular particles with Percoll. J. Biochem. Biophys. Methods 44, 1–30.

    Article  PubMed  CAS  Google Scholar 

  39. Tai, Y. T., Teoh, G., Shima, Y., et al. (2000) Isolation and characterization of human multiple myeloma cell enriched populations. J. Immunol. Methods 235, 11–19.

    Article  PubMed  CAS  Google Scholar 

  40. Moskaluk, C. A. and Kern, S. E. (1997) Microdissection and polymerase chain reaction amplification of genomic DNA from histological tissue sections. Am. J. Pathol. 150, 1547–1552.

    PubMed  CAS  Google Scholar 

  41. Goelz, S. E., Hamilton, S. R., and Vogelstein, B. (1985) Purification of DNA from formaldehyde fixed and paraffin embedded human tissue. Biochem. Biophys. Res. Commun. 130, 118–126.

    Article  PubMed  CAS  Google Scholar 

  42. Emmert-Buck, M. R., Gillespie, J. W., Paweletz, C. P., et al. (2000) An approach to proteomic analysis of human tumors. Mol. Carcinog. 27, 158–165.

    Article  PubMed  CAS  Google Scholar 

  43. Ikeda, K., Monden, T., Kanoh, T., et al. (1998) Extraction and analysis of diagnostically useful proteins from formalin-fixed, paraffin-embedded tissue sections. J. Histochem. Cytochem. 46, 397–403.

    PubMed  CAS  Google Scholar 

  44. Novelli, M., Savoia, P., Cambieri, I., et al. (2000) Collagenase digestion and mechanical disaggregation as a method to extract and immunophenotype tumour lymphocytes in cutaneous T-cell lymphomas. Clin. Exp. Dermatol. 25, 423–431.

    Article  PubMed  CAS  Google Scholar 

  45. Maitra, A., Wistuba, I. I., Virmani, A. K., et al. (1999) Enrichment of epithelial cells for molecular studies. Nat. Med. 5, 459–463.

    Article  PubMed  CAS  Google Scholar 

  46. Guerrero, R. B., Batts, K. P., Brandhagen, D. J., Germer, J. J., Perez, R. G., and Persing, D. H. (1997) Effects of formalin fixation and prolonged block storage on detection of hepatitis C virus RNA in liver tissue. Diagn. Mol. Pathol. 6, 277–281.

    Article  PubMed  CAS  Google Scholar 

  47. Ohyama, H., Zhang, X., Kohno, Y., and Alevizos, M. (2000) Laser capture microdissection-generated target sample for high-density oligonucleotide array hybridization. Biotechniques 29, 530–536.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Steven Bova.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bova, G.S., Eltoum, I.A., Kiernan, J.A. et al. Optimal molecular profiling of tissue and tissue components. Mol Biotechnol 29, 119–152 (2005). https://doi.org/10.1385/MB:29:2:119

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/MB:29:2:119

Index Entries

Navigation