Skip to main content
Log in

Typing single-nucleotide polymorphisms using a gel-based sequencer

A new data analysis tool and suggestions for improved efficiency

  • Hints and Tips
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Single-nucleotide polymorphisms (SNPs) are increasingly used as genetic markers. Although a high number of SNP-genotyping techniques have been described, most techniques still have low throughput or require major investments. For laboratories that have access to an automated sequencer, a single-base extension (SBE) assay can be implemented using the ABI SNaPshot™ kit. Here we present a modified protocol comprising multiplex template generation, multiplex SBE reaction, and multiplex sample analysis on a gel-based sequencer such as the ABI 377. These sequencers run on a Macintosh platform, but on this platform the software available for analysis of data from the ABI 377 has limitations. First, analysis of the size standard included with the kit is not facilitated. Therefore a new size standard was designed. Second, using Genotype (ABI), the analysis of the data is very tedious and time consuming. To enable automated batch analysis of 96 samples, with 10 SNPs each, we developed SNPtyper. This is a spreadsheet-based tool that uses the data from Genotyper and offers the user a convenient interface to set parameters required for correct allele calling. In conclusion, the method described will enable any lab having access to an ABI sequencer to genotype up to 1000 SNPs per day for a single experimenter, without investing in new equipment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dietrich, W. F., Weber, J. L., Nickerson, D. A., and Kwok, P. Y. (1999) Identification and analysis of DNA polymorphisms, in: Genome Analysis, a Laboratory Manual, vol. 4: Mapping Genomes (Green, E. D., Birren, B., Klapholz, S., Myers, R. M., and Hieter, P., eds.), Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp. 135–186.

    Google Scholar 

  2. Saiki, R. K., Walsh, P. S., Levenson, C. H., and Erlich, H. A. (1989) Genetic analysis of amplified DNA with immobilized sequence-specific oligonucleotide probes. Proc. Natl. Acad. Sci. USA 86, 6230–6234.

    Article  PubMed  CAS  Google Scholar 

  3. Hacia, J. G., Sun, B., Hunt, N., et al. (1998) Strategies for mutational analysis of the large multiexon ATM gene using high-density oligonucleotide arrays. Genome Res. 8, 1245–1258.

    PubMed  CAS  Google Scholar 

  4. Prince, J. A., Feuk, L., Howell, W. M., et al. (2001) Robust and accurate single nucleotide polymorphism genotyping by dynamic allele-specific hybridization (DASH): design criteria and assay validation. Genome Res. 11, 152–162.

    Article  PubMed  CAS  Google Scholar 

  5. Livak, K. J., Flood, S. J., Marmaro, J., Giusti, W., and Deetz, K. (1995) Oligonucleotides with fluorescent dyes at opposite ends provide a quenched probe system useful for detecting PCR product and nucleic acid hybridization. PCR Methods Appl. 4, 357–362.

    PubMed  CAS  Google Scholar 

  6. Livak, K. J. (1999) Allelic discrimination using fluorogenic probes and the 5′ nuclease assay. Genet. Anal. 14, 143–149.

    PubMed  CAS  Google Scholar 

  7. Tyagi, S. and Kramer, F. R. (1996) Molecular beacons: probes that fluoresce upon hybridization. Nat. Biotechnol. 14, 303–308.

    Article  PubMed  CAS  Google Scholar 

  8. Pastinen, T., Kurg, A., Metspalu, A., Peltonen, L., and Syvanen, A. C. (1997) Minisequencing: a specific tool for DNA analysis and diagnostics on oligonucleotide arrays. Genome Res. 7, 606–614.

    PubMed  CAS  Google Scholar 

  9. Nikiforov, T. T., Rendle, R. B., Goelet, P., et al. (1994) Genetic bit analysis: a solid phase method for typing single nucleotide polymorphisms. Nucleic Acids Res. 22, 4167–4175.

    Article  PubMed  CAS  Google Scholar 

  10. Braun, A., Little, D. P., and Koster, H. (1997) Detecting CFTR gene mutations by using primer oligo base extension and mass spectrometry. Clin. Chem. 43, 1151–1158.

    PubMed  CAS  Google Scholar 

  11. Kristensen, V. N., Kelefiotis, D., Kristensen, T., and Børresen-Dal, A. L. (2001) High-throughput methods for detection of genetic variation. Biotechniques 30, 318–332.

    PubMed  CAS  Google Scholar 

  12. Syvänen, A.-C. (2001) Accessing genetic variation: genotyping single nucleotide polymorphisms. Nat. Rev. Genetics 2, 930–942.

    Article  Google Scholar 

  13. Syvänen, A.-C. (1999) From gels to chips: “minisequencing” primer extension for analysis of point mutations and single nucleotide polymorphisms. Hum. Mutat. 13, 1–10.

    Article  PubMed  Google Scholar 

  14. Lindblad-Toh, K., Winchester, E., Daley, M. J., et al. (2000) Large-scale discovery and genotyping of single-nucleotide polymorphisms in the mouse. Nat. Genet. 24, 381–386.

    Article  PubMed  CAS  Google Scholar 

  15. Henegariu, O., Heerema, N. A., Dlouhy, S. R., Vance, G. H., and Vogt, P. H. (1997) Multiplex PCR: critical parameters and step-by-step protocol. Biotechniques 23, 504–511.

    PubMed  CAS  Google Scholar 

  16. Makridakis, N. M. and Reichardt, J. K. (2001) Multiplex automated primer extension analysis: simultaneous genotyping of several polymorphisms. Biotechniques 31 1374–1380.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bart J. Jungerius.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jungerius, B.J. Typing single-nucleotide polymorphisms using a gel-based sequencer. Mol Biotechnol 25, 283–287 (2003). https://doi.org/10.1385/MB:25:3:283

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/MB:25:3:283

Index Entries

Navigation