Genomic imprinting and endosperm development in flowering plants

Abstract

Genomic imprinting, the parent-of-origin-specific expression of genes, plays an important role in the seed development of flowering plants. As different sets of genes are imprinted and hence silenced in maternal and paternal gametophyte genomes, the contributions of the parental genomes to the offspring are not equal. Imbalance between paternally and maternally imprinted genes, for instance as a result of interploidy crosses, or in seeds in which imprinting has been manipulated, results in aberrant seed development. It is predominantly the endosperm, and not or to a far lesser extent the embryo, that is affected by such imbalance. Deviation from the normal 2m:1p ratio in the endosperm genome has a severe effect on endosperm development, and often leads to seed abortion. Molecular expression data for imprinted genes suggest that genomic imprinting takes place only in the endosperm of the developing seed. Although far from complete, a picture of how imprinting operates in flowering plants has begun to emerge. Imprinted genes on either the maternal or paternal side are marked and silenced in a process involving DNA methylation and chromatin condensation. In addition, on the maternal side, imprinted genes are most probably under control of the polycomb FIS genes.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Surani, M. A., Kothary, R., Allen, N. D., et al. (1990) Genome imprinting and development in the mouse. Development Suppl., 89–98.

  2. 2.

    Mertineit, C., Yoder, J.A., Taketo, T., et al. (1998) Sexspecific exons control DNA methyltransferase in mammalian germ cells. Development 125, 889–897.

    PubMed  CAS  Google Scholar 

  3. 3.

    Brannan, C.I. and Bartolomei, M.S. (1999) Mechanisms of genomic imprinting. Currt. Opin. Genet. Dev. 9, 164–170.

    CAS  Article  Google Scholar 

  4. 4.

    Haig, D. and Westoby, M. (1989) Parent-specific gene expression and the triploid endosperm. Am. Naturalist 134, 147–155.

    Article  Google Scholar 

  5. 5.

    Haig, D. and Westoby, M. (1991) Genomic imprinting in endosperm: its effect on seed development in crosses between species, and between different ploidies of the same species, and its implications for the evolution of apomixis. Phil. Trans. R. Soc. Lond. [B] 333, 1–13.

    Article  Google Scholar 

  6. 6.

    Tilghman, S.M. (1999) The sins of the fathers and mothers: genomic imprinting inmammalian development. Cell 96, 185–193.

    PubMed  CAS  Article  Google Scholar 

  7. 7.

    Georgiades, P., Watkins, M., Burton, G.J., and Ferguson-Smith, A.C. (2001) Roles for genomic imprinting and the zygotic genome in placental development. Proc. Natl. Acad. Sci. USA 98, 4522–4527.

    PubMed  CAS  Article  Google Scholar 

  8. 8.

    The Genomic Imprinting Website:http://www.geneimprint.com

  9. 9.

    Li, E., Bestor, T.H. and Jaenisch, R. (1992) Targeted mutation of the DNA methyltranferase gene results in embryonic lethality. Cell 69, 915–926.

    PubMed  CAS  Article  Google Scholar 

  10. 10.

    Li, E., Beard, C. and Jaenisch, R. (1993) Role for DNA methylation in genomic imprinting. Nature 366, 362–365.

    PubMed  CAS  Article  Google Scholar 

  11. 11.

    Adams, S., Vinkenoog, R., Spielman, M., et al. (2000) Parental imprinting in Arabidopsis requires DNA methylation. Development 127, 2493–2502.

    PubMed  CAS  Google Scholar 

  12. 12.

    Bender, J. (2002) Plant epigenetics. Curr. Biol. 12, R412-R414.

    PubMed  CAS  Article  Google Scholar 

  13. 13.

    Köhler, C. and Grossniklaus, U. (2002) Epigenetics: The flowers that come in from the cold. Curr. Biol. 12, R129-R131.

    PubMed  Article  Google Scholar 

  14. 14.

    Grossniklaus, U., Spillane, C., Page, D.R., and Köhler, C. (2001) Genomic imprinting and seed development: Endosperm formation with and without sex. Curr. Opin. Plant Biol. 4, 21–27.

    PubMed  CAS  Article  Google Scholar 

  15. 15.

    Baroux, C.S., Spillane, C., and Grossniklaus, U. (2002) Genomic imprinting during seed development. Adv. Genet. 46, 165–214.

    PubMed  CAS  Google Scholar 

  16. 16.

    Chaudhury, A.M., Koltunow, A., Payne, T., et al. (2001) Control of early seed development. Ann. Rev. Cell Dev. Biol. 17, 677–699.

    CAS  Article  Google Scholar 

  17. 17.

    Lohe, A.R. and Chaudhury, A. (2002) Genetic and epigenetic processes in seed development. Curr. Opin. Plant Biol. 5, 19–25.

    PubMed  Article  Google Scholar 

  18. 18.

    Chaudhury, A.M. and Berger, F. (2001) Maternal control of seed development. Semin. Cell Dev. Biol. 12, 381–386.

    PubMed  CAS  Article  Google Scholar 

  19. 19.

    Kaufman, M.H., Barton, S.C. and Surani, M.A. (1977) Normal postimplantation development of mouse parthenogenetic embryos to the forelimb bud stage. Nature 265, 53–55.

    PubMed  CAS  Article  Google Scholar 

  20. 20.

    Barton, S.C., Surani, M.A., and Norris, M.L. (1984) Role of paternal and maternal genomes in mouse development. Nature 311, 374–376.

    PubMed  CAS  Article  Google Scholar 

  21. 21.

    Surani, M.A.H., Barton, S.C. and Norris, M.L. (1984) Development of reconstituted mouse eggs suggests imprinting of the genome during gametogenesis. Nature 308, 548–550.

    PubMed  CAS  Article  Google Scholar 

  22. 22.

    McGrath, J. and Solter, D. (1984) Completion of mouse embryogenesis requires both the maternal and paternal genomes. Cell 37, 179–183.

    PubMed  CAS  Article  Google Scholar 

  23. 23.

    Surani, M.A.H., Barton, S.C., and Norris, M.L. (1986) Nuclear transplantation in the mouse: heritable differences between maternal and paternal genomes after activation of the embryonic genome. Cell 45, 127–136.

    PubMed  CAS  Article  Google Scholar 

  24. 24.

    Thomson, J.A. and Solter, D. (1988) The developmental fate of androgenetic, parthenogenetic and gynogenetic cells in chimeric gastrulating mouse embryos. Genes Dev. 2, 1344–1351.

    PubMed  CAS  Article  Google Scholar 

  25. 25.

    Surani, M.A.H., Barton, S.C., and Norris, M.L. (1987) Influence of parental chromosomes on spatial specificity in androgenetic vs. parthenogenetic chimaeras in the mouse. Nature 326, 395–397.

    PubMed  CAS  Article  Google Scholar 

  26. 26.

    Nagy, A., Paldi, A., Dezso, L., et al. (1987) Prenatal fate of parthenogenetic cells in mouse aggregation chimeras. Development 101, 67–71.

    PubMed  CAS  Google Scholar 

  27. 27.

    Schwere, S. (1896) Zur Entwicklungsgeschichte der Frucht von Taraxacum officinale Web.; ein Beitrag zur Embryologie der Compositen. Flora Bildung, Marburg, Germany 82, 32–66, Taf. II–V.

    Google Scholar 

  28. 28.

    Raunkiær, C. (1903) Kimdannelse uden Befrugtning hos Mælkebøtte (Taraxacum). Bot. Tidsskr. 25, 110–140.

    Google Scholar 

  29. 29.

    Murbeck, S. (1904) Parthenogenese bei den Gattungen Taraxacum und Hieracium. Bot. Not. 6, 285–296.

    Google Scholar 

  30. 30.

    Rutishauser, A. (1954) Entwicklungserregung der Eizelle bei pseudogamen Arten der Gattung Ranunculus. [German, with English, Italian and French summary]. Bull. Schweiz.Akad. Med. Wissensch. 10, 491–512.

    CAS  Google Scholar 

  31. 31.

    Rutishauser, A. (1967) Fortpflanzungsmodus und Meiose apomiktischer Blütenpflanzen. Protoplasmatologia 6/3, 3–243.

    Google Scholar 

  32. 32.

    Richards, A.J. (1970) Eutriploid facultative agamospermy in Taraxacum. New Phytol. 69, 761–774.

    Article  Google Scholar 

  33. 33.

    Richards, A.J. (1973) The origin of Taraxacum agamospecies. Bot. J. Linn. Soc. 66, 189–211.

    Google Scholar 

  34. 34.

    Pogan, E. and Wcislo, H. (1995) Embryological analysis of Hieracium pilosella L. from Poland. Acta Biol. Cracov. Series Botanica 37, 53–61.

    Google Scholar 

  35. 35.

    Bruun, L. (1991) Histological and semiquantitative approaches to in vitro cellular-responses of ovule, embryo and endosperm in sugar beet, Beta vulgaris L. Sex. Plant Reprod. 4, 64–7.2

    Article  Google Scholar 

  36. 36.

    Ferrant, V. and Bouharmont, J. (1994) Origin of gynogenetic embryos of Beta vulgaris L. Sex. Plant Reprod. 7, 12–16.

    Article  Google Scholar 

  37. 37.

    Hansen, A.L., Gertz, A. and Joersbo, M. (1995) Short-duration colchicine treatment for in vitro chromosome doubling during ovule culture of Beta vulgaris L. Plant Breed. 114, 515–519.

    CAS  Article  Google Scholar 

  38. 38.

    Miyoshi, K. and Asakura, N. (1996) Callus induction, regeneration of haploid plants and chromosome doubling in ovule cultures of pot gerbera (Gerbera jamesonii). Plant Cell Rep. 16, 1–5.

    CAS  Article  Google Scholar 

  39. 39.

    Mdarhri-Alaoui, M., Saidi, N., et al. (1998) Green haploid plant formation in durum wheat through in vitro gynogenesis. CR Acad. Sci. III (Sciences de la V.) (Paris) 321, 25–30.

    Google Scholar 

  40. 40.

    Michalik, B., Adamus, A. and Nowak, E. (2000) Gynogenesis in Polish onion cultivars. J. Plant Physiol. 156, 211–216.

    CAS  Google Scholar 

  41. 41.

    Clapham, D. (1971) In vitro development of callus from the pollen of Lolium and Hordeum. Z. Pflanzenzüchtg 65, 285–292.

    Google Scholar 

  42. 42.

    Ouyang, K.H., Hu, H., Chuang, C.C. and Tseng, C.-C. (1973) Induction of pollen plants from anthers of Triticum aestivum L. cultured in vitro. Scient. Sinica. 16, 79–95.

    Google Scholar 

  43. 43.

    Pretova, A., de Ruijter, N.C.A., van Lammeren, A.A.M. and Schel, J.H.N. (1993) Structural observations during androgenic microspore culture of the 4C1 genotype of Zea mays L. Euphytica 65, 61–69.

    Article  Google Scholar 

  44. 44.

    Bulk, R.W. van den, de Vries van Hulten, H.P.J., Custers, J.B.M. and Dons, J.J.M. (1994) Induction of embryogenesis in isolated microspores of tulip. Plant Sci. 104, 101–111.

    Article  Google Scholar 

  45. 45.

    Binarova, P., Hause, G., Genklova, V., et al. (1997) A short severe heat shock is required to induce embryogenesis in late bicellular pollen of Brassica napus L. Sex. Plant Reprod. 10, 200–208.

    Article  Google Scholar 

  46. 46.

    Atanassov, A., Zagorska, N, Boyadjiev, P. and Djilianov, D. (1995) In-vitro production of haploid plants. World J. Microbiol. Biotechnol. 11, 400–408.

    Article  Google Scholar 

  47. 47.

    Raghavan, V. (1976) Role of the generative cell in androgenesis in henbane. Science 191, 388–389.

    Article  PubMed  CAS  Google Scholar 

  48. 48.

    Tyukavin, G.B., Shmykova, N.A. and Monakhova, M.A. (1999) Cytological study of embryogenesis in cultured carrot anthers. Russ. J. Plant Physiol. 46, 767–773.

    CAS  Google Scholar 

  49. 49.

    Richards, A.J. (1986) Plant Breeding Systems. George Allen and Unwin, London.

    Google Scholar 

  50. 50.

    Sterk, A.A., Hommels, C.H., Jenniskens, M.J.P.J., et al. (1987) Paardebloemen-Planten Zonder Vader. Koninklijke Nederlandse Natuurhistorische Vereniging, Utrecht, The Netherlands.

    Google Scholar 

  51. 51.

    Friedman, W.E. (1995) Organismal duplication, inclusive fitness theory, and altruism—understanding the evolution of endosperm and the angiosperm reproductive syndrome. Proc. Natl. Acad. Sci. USA 92, 3913–3917.

    PubMed  CAS  Article  Google Scholar 

  52. 52.

    Friedman, W.E. (1998) The evolution of double fertilization and endosperm: an “historical” perspective. Sex. Plant Reprod. 11, 6–16.

    Article  Google Scholar 

  53. 53.

    Friedman, W.E. (2001) Developmental and evolutionary hypotheses for the origin of double fertilization and endosperm. CR Acad. Sci. Sciences De La V.) (Paris) 324, 559–567.

    CAS  Google Scholar 

  54. 54.

    Chaw, S.M., Parkinson, C.L., Cheng, Y., et al. (2000) Seed plant phylogeny inferred from all three plant genomes: Monophyly of extant gymnosperms and origin of Gnetales from conifers. Proc. Natl. Acad. Sci. USA 97, 4086–4091.

    PubMed  CAS  Article  Google Scholar 

  55. 55.

    Bowe, L.M., Coat, G., and dePamphilis, C.W. (2000) Phylogeny of seed plants based on all three genomic compartments: Extant gymnosperms are monophyletic and Gnetales’ closest relatives are conifers. Proc. Natl. Acad. Sci. USA 7, 4092–4097.

    Article  Google Scholar 

  56. 56.

    Baroux, C., Spillane, C., and Grossniklaus, U. (2002) Evolutionary origins of the endosperm in flowering plants. Genome Biol. 3, 1026.1–1026.5

    Article  Google Scholar 

  57. 57.

    Schulz, P. and Jensen, W.A. (1974) Capsella embryogenesis: The development of the free nuclear endosperm. Protoplasma 80, 183–205.

    Article  Google Scholar 

  58. 58.

    Bhatnagar, S.P. and Sawhney, V. (1981) Endosperm—its morphology, ultrastructure, and histochemistry. Int. Rev. Cytol. 73, 55–102.

    Google Scholar 

  59. 59.

    Lopes, M. A. and Larkins, B. A. (1993) Endosperm origin, development, and function. Plant Cell 5, 1383–1399.

    PubMed  CAS  Article  Google Scholar 

  60. 60.

    Berger, F. (1999) Endosperm development. Curr. Opin. Plant Biol. 2, 28–32.

    PubMed  CAS  Article  Google Scholar 

  61. 61.

    Schulz, P. and Jensen, W.A. (1971). Capsella embryogenesis: the chalazal proliferating tissue. J. Cell Sci. 8, 201–227.

    PubMed  CAS  Google Scholar 

  62. 62.

    Mansfield, S.G. and Briarty, L.G. (1990) Development of the free-nuclear endosperm in Arabidopsis thaliana (L.). Arabidopsis Inf. Serv. 27.

  63. 63.

    Mansfield, S.G. (1994) Endosperm development. In: Arabidopsis, An Atlas of Morphology and Development. (Bowman, J., ed.), Springer Verlag, Berlin-Heidelberg, New York. pp. 385–397.

    Google Scholar 

  64. 64.

    Håkansson, A. (1956) Seed development of Brassica oleracea and B. rapa after certain reciprocal pollinations. Hereditas 42, 373–396.

    Article  Google Scholar 

  65. 65.

    Mansfield, S.G., Briarty, L.G. and Erni, S. (1991) Early embryogenesis in Arabidopsis thaliana. I. The mature embryo sac. Can. J. Bot. 69, 447–460.

    Google Scholar 

  66. 66.

    Chamberlin, M.A., Horner, H.T., and Palmer, R.G. (1993) Nutrition of the ovule, embryo sac, and young embryo in soybean: An anatomical and autoradiographic study. Can. J. Bot. 71, 1152–1168.

    Google Scholar 

  67. 67.

    Brink, R.A. and Cooper, D.C. (1947) The endosperm in seed development. Bot. Rev. 13, 423–541.

    Google Scholar 

  68. 68.

    Maheswari, P. (1950) An Introduction to the Embryology of the Angiosperms. NY: McGraw-Hill, New York, pp. 221–267.

    Google Scholar 

  69. 69.

    Vijayaraghavan, M.R. and Prabhakar, K. (1984) The endosperm. In: Embryology of Angiosperms. (Johri, B.M., ed.), Springer Verlag, Berlin, pp. 319–376.

    Google Scholar 

  70. 70.

    Boisnard-Lorig, C., Colon-Carmona, A., Bauch, M., et al. (2001) Dynamic analyses of the expression of the HISTONE:: YFP fusion protein in Arabidopsis show that syncytial endosperm is divided in mitotic domains. Plant Cell 13, 495–509.

    PubMed  CAS  Article  Google Scholar 

  71. 71.

    Mansfield, S.G. and Briarty, L.G. (1990) Endosperm cellularization in Arabidopsis thaliana L. Arabidopsis Inf. Serv. 27. Available at http://stein.ashl.org/atir/general/book/eais/aisvols.html.

  72. 72.

    Brown, R. C., Lemmon, B. E., Nguyen, H., and Olsen, O.-A. (1999) Development of endosperm in Arabidopsis thaliana. Sex. Plant Reprod. 12, 32–42.

    Article  Google Scholar 

  73. 73.

    Marinos, N.G. (1970) Embryogenesis of the pea (Pisum sativum). I. The cytological environment of the developing embryo. Protoplasma 70, 261–279.

    Article  Google Scholar 

  74. 74.

    Müntzing, A. (1930) Über Chromosomenvermehrung in Galeopsis-Kreuzungen und ihre phylogenetische Bedeutung. Hereditas (Lund) 14, 153–172.

    Article  Google Scholar 

  75. 75.

    Müntzing, A. (1933) Hybrid incompatibility and the origin of polyploidy. Hereditas (Lund) 18, 33–55.

    Article  Google Scholar 

  76. 76.

    Watkins, A.E. (1932) Hybrid sterility and incompatibility. J. Genet. 25, 125–162.

    Google Scholar 

  77. 77.

    Howard, H.W. (1939) The size of seeds in diploid and autotetraploid Brassica oleracea L. J. Genet. 38, 325–340.

    Google Scholar 

  78. 78.

    Cooper, D.C. and Brink, R.A. (1945) Seed collpase following matings between diploid and tetraploid races of Lycopersicon pimpinellifolium. Genetics 30, 376–401.

    PubMed  CAS  Google Scholar 

  79. 79.

    Cooper, D.C. (1951) Caryopsis development following matings between diploid and tetraploid strains in Zea mays. Am. J. Bot. 38, 702–708.

    Article  Google Scholar 

  80. 80.

    Håkansson, A. (1952) Seed development after 2x, 4x crosses in Galeopsis pubescens. Hereditas 38, 425–448.

    Article  Google Scholar 

  81. 81.

    Håkansson, A. (1953) Endosperm formation after 2x, 4x crosses in certaincereals, especially in Hordeum vulgare. Hereditas 39, 57–64.

    Article  Google Scholar 

  82. 82.

    Håkansson, A. and Ellerström, S. (1950) Seed development after reciprocal crosses between diploid and tetraploid rye. Hereditas 36, 256–296.

    Article  Google Scholar 

  83. 83.

    Fagerlind, F. (1937) Embryologische, zytologische und bestäubungsexperimentelle Studien in der Familie Rubiaceae nebst Bemerkungen über einige Polyploiditätsprobleme. Acta Horti Bergiana 11, 195–470.

    Google Scholar 

  84. 84.

    Boyes, J.W. and Thompson, W.P. (1937) The development of the endosperm and embryo in reciprocal interspecific crosses in cereals. J. Genet. 34, 203–207.

    Google Scholar 

  85. 85.

    Kihara, H. and Nishiyama, I. (1932) Different compatibility in reciprocal crosses of Avena with special reference to tetraploid hybrids between hexaploid and diploid species. Jpn. J. Bot. 6, 245–305.

    Google Scholar 

  86. 86.

    von Wangenheim, K.-H. (1962) Zur Ursache der Abortion von Samenanlagen in Diploid-Polyploid-Kreuzungen. II. Unterschiedliche Differenzierung von Endospermen mit gleichem Genom. Zeitschr. Vererbungsehre 93, 319–334.

    Article  Google Scholar 

  87. 87.

    Nishiyama, I. and Inomata, N. (1966) Embryological studies on cross-incompatibility between 2x and 4x in Brassica. Jpn. Genet. 41, 27–42.

    Google Scholar 

  88. 88.

    Sarkar, K.R. and Coe, E.H., Jr. (1971) Anomalous fertilisation in diploid-tetraploid crosses in maize. Crop Sci. 11, 539–542.

    Article  Google Scholar 

  89. 89.

    Kermicle J.L. (1971) Pleiotropic effects on seed development of the indeterminate gametophyte gene in maize. Science 166, 1422–1424.

    Article  Google Scholar 

  90. 90.

    Lin, B.-Y. (1984) Ploidy barrier to endosperm development in maize. Genetics 107, 103–115.

    PubMed  CAS  Google Scholar 

  91. 91.

    Ehlenfeldt, M.K. and Ortiz, R. (1995) Evidence on the nature and origins of endosperm dosage requirements in Solanum and other angiosperm genera. Sex. Plant Reprod. 8, 189–196.

    Article  Google Scholar 

  92. 92.

    Thompson, W.P. (1930) Causes of difference in success of reciprocal interspecific crosses. Am. Naturalist 64, 407–421.

    Article  Google Scholar 

  93. 93.

    Woodell, S.R.J. and Valentine, D.H. (1961) Studies in British primulas. IX. Seed incompatibility in diploid-autotetraploid crosses. New Phytol. 60, 282–294.

    Article  Google Scholar 

  94. 94.

    Rédei, G. (1964) Crossing experiments with polyploids. Arabidopsis Electronic Information Service 1. Available at httt://stein.cshl.org/atir/general/book/eais/aisvols.html.

  95. 95.

    Scott, R.J., Spielman, M, Bailey, J., and Dickinson, H.G. (1998) Parent-of-origin effects on seed development in Arabidopsis thaliana. Development 125, 3329–3341.

    PubMed  CAS  Google Scholar 

  96. 96.

    Kermicle, J. L. (1970) Dependence of the R-mottled aleurone phenotype in maize on mode of sexual transmission. Genetics 66, 69–85.

    PubMed  CAS  Google Scholar 

  97. 97.

    Lin, B.-Y. (1982) Association of endosperm reduction with parental imprinting in maize. Genetics 100, 475–486.

    PubMed  CAS  Google Scholar 

  98. 98.

    Kermicle, J. L. and Alleman, M. (1990) Gametic imprinting in maize in relation to the angiosperm life cycle. Development Suppl. S. 9–14.

  99. 99.

    Lund, G., Ciceri, P., and Viotti, A. (1995) Maternal-specific demethylation and expression of specific alleles of zein genes in the endosperm of Zea mays L. Plant J. 8, 571–581.

    PubMed  CAS  Article  Google Scholar 

  100. 100.

    Lund, G., Messing, J., and Viotti, A. (1995) Endosperm-specific demethylation and activation of specific alleles of alphatubulin genes of Zea mays L. Mol. Gen. Genet. 246, 716–722.

    PubMed  CAS  Article  Google Scholar 

  101. 101.

    Abbot, R.J. and Gomes, M.F. (1989) Population genetic structure andoutcrossing rate in Arabidopsis thaliana (L.) Heynh. Heredity 62, 411–418.

    Google Scholar 

  102. 102.

    Stebbins, G.L. (1974) Flowering Plants: Evolution Above the Species Level. Edward Arnold, London.

    Google Scholar 

  103. 103.

    Finnegan, E.J., Peacock, W.J. and Dennis, E.S. (1998) Reduced DNA methylation in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 49, 223–247.

    PubMed  CAS  Article  Google Scholar 

  104. 104.

    Finnegan, E.J., Peacock, W.J., and Dennis, E.S. (1996) Reduced DNA methylation in Arabidopsis thaliana results in abnormal plant development. Proc. Natl. Acad. Sci. USA 93, 8449–8454.

    PubMed  CAS  Article  Google Scholar 

  105. 105.

    Blokland, R. van, ten Lohuis, M., and Meyer, P. (1997) Condensation of chromatin in transcriptional regions of an inactivated plant transgene: Evidence for an active role of transcription in gene silencing. Mol. Gen. Genet. 257, 1–13.

    PubMed  Article  Google Scholar 

  106. 106.

    Assaad, F.F. and Signer, E.R. (1992) Somatic and germinal recombination of a direct repeat in Arabidopsis. Genetics 132, 553–566.

    PubMed  CAS  Google Scholar 

  107. 107.

    Ye, F. and Signer, E.R. (1996) RIGS (repeat-induced gene silencing) in Arabidopsis is transcriptional and alters chromatin configuration. Proc. Natl. Acad. Sci. USA 93, 10,881–10,886.

    CAS  Article  Google Scholar 

  108. 108.

    Razin, A. (1998) CpG methylation, chromatin structure and gene silencing — a three way connection. EMBO J. 17, 4905–4908.

    PubMed  CAS  Article  Google Scholar 

  109. 109.

    Richards, E.J. and Elgin, S.C.R. (2002) Epigenetic codes for heterochromatin formation and silencing: Rounding up the usual suspects. Cell 108, 489–500.

    PubMed  CAS  Article  Google Scholar 

  110. 110.

    Nan, X.S., Ng, H. H., Johnson, C. A., et al. (1998) Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. Nature 393, 386–389.

    PubMed  CAS  Article  Google Scholar 

  111. 111.

    Jones, P.L., Veenstra, G. J. C., Wade, P. A., et al. (1998) Methylated DNA and MeCP2 recruit histone deacetylase to repress transcription. Nat. Genet. 19, 187–191.

    PubMed  CAS  Article  Google Scholar 

  112. 112.

    Ng, H.H., Zhang, Y., Hendrich, B., et al. (1999) MBD2 is a transcriptional repressor belonging to the MeCP1 histone deacetylase complex. Nat. Genet. 23, 58–61.

    PubMed  CAS  Google Scholar 

  113. 113.

    Robertson, K.D., Ait-Si-Ali, S., Yokochi, T., et al. (2000) DNMT1 forms a complex with Rb, E2F1 and HDAC1 and represses transcription from E2F-responsive promoters. Nat. Genet. 25, 338–342.

    PubMed  CAS  Article  Google Scholar 

  114. 114.

    Taunton, J., Hassig, C.A. and Schreiber, S.L. (1996) A mammalian histone deacetylase related to the yeast transcriptional regulator Rpd3p. Science 272, 408–411.

    PubMed  CAS  Article  Google Scholar 

  115. 115.

    Verreault, A., Kaufman, P.D., Kobayashi, R., and Stillman, B. (1996) Nucleosome assembly by a complex of CAF-1 and acetylated histones H3/H4. Cell 87, 95–104.

    PubMed  CAS  Article  Google Scholar 

  116. 116.

    Ura, K., Kurumizaka, H., Dimitrov, S., et al. (1997) Histone acetylation: Influence on transcription, nucleosome mobility and positioning, and linker histone-dependent transcriptional repression. EMBO J. 16, 2096–2107.

    PubMed  CAS  Article  Google Scholar 

  117. 117.

    Pazin, M.J. and Kadonaga, J.T. (1997) What’s up and down with histone deacetylation and transcription? Cell 89, 325–328.

    PubMed  CAS  Article  Google Scholar 

  118. 118.

    Buschhausen, G., Wittig, B., Graesmann, M., and Graesmann, A. (1987) Chromatin structure is required to block transcription of the methylated herpes-simplex virus thymidine kinase gene. Proc. Natl. Acad. Sci. USA 84, 1177–1181.

    PubMed  CAS  Article  Google Scholar 

  119. 119.

    Kass, S.U., Landsberger, N., and Wolffe, A.P. (1997) DNA methylation directs a time dependent repression of transcription initiation. Curr. Biol. 7, 157–165.

    PubMed  CAS  Article  Google Scholar 

  120. 120.

    Sheridan, P.L., Sheridan, P. L., Mayall, T. P., et al. (1997) Histone acetyltransferases regulate HIV-1 enhancer activity in vitro. Genes Dev. 11, 3327–3340.

    PubMed  CAS  Google Scholar 

  121. 121.

    Zitnik, G., Stamatoyannopoulos, G., and Papayannopoulou, T. (1995) Effects of butyrate and glucocorticoids on gamma-globin to beta-globin gene switching in somatic-cell hybrids. Mol. Cell. Biol. 15, 790–795.

    PubMed  CAS  Google Scholar 

  122. 122.

    Chen, Z.J. and Pikaard, C.S. (1997) Epigenetic silencing of RNA polymerase I transcription: A role for DNA methylation and histone modification in nucleolar dominance. Genes Dev. 11, 2124–2136.

    PubMed  CAS  Google Scholar 

  123. 123.

    Pikaart, M.I., Recillas-Targa, F., and Felsenfeld, G. (1998) Loss of transcriptional activity of a transgene is accompanied by DNA methylation and histone deacetylation and is prevented by insulators. Genes Dev. 12, 2852–2862.

    PubMed  CAS  Google Scholar 

  124. 124.

    Rountree, M.R., Bachman, K.E., and Baylin, S.B. (2000) DNMT1 binds HDAC2 and a new co-repressor, DMAP1, to form a complex at replication foci. Nat. Genet. 25, 269–277.

    PubMed  CAS  Article  Google Scholar 

  125. 125.

    Habu, Y., Kakutani, T. and Paszkowski, J. (2001) Epigenetic developmental mechanisms in plants: Molecules and targets of plant epigenetic regulation. Curr. Opin. Genet. Dev. 11, 215–220.

    PubMed  CAS  Article  Google Scholar 

  126. 126.

    Jeddeloh, J.A., Stokes, T.L., and Richards, E.J. (1999) Maintenance of genomic methylation requires a SWI2/SNF2-like protein. Nat. Genet. 22, 94–97.

    PubMed  CAS  Article  Google Scholar 

  127. 127.

    Amedeo, P., Habu, Y., Afsar, K., et al. (2000) Disruption of the plant gene MOM releases transcriptional silencing of methylated genes. Nature 405, 203–206.

    PubMed  CAS  Article  Google Scholar 

  128. 128.

    Murfett, J., Wang, X.G., Hagen, G., and Guilfoyle, T.J. (2001) Identification of Arabidopsis histone deacetylase HDA6 mutants that affect transgene expression. Plant Cell 13, 1047–1061.

    PubMed  CAS  Article  Google Scholar 

  129. 129.

    Tian, L. and Chen, Z.J. (2001) Blocking histone deacetylation in Arabidopsis induces pleiotropic effects on plant gene regulation and development. Proc. Natl. Acad. Sci. USA 98, 200–205.

    PubMed  CAS  Article  Google Scholar 

  130. 130.

    Görz, A., Schafer, W., Hirasawa, E., and Kahl, G. (1988) Constitutive and light-induced Dnase I hypersensitive sites in the rbcS-genes of pea (Pisum sativum). Plant Mol. Biol. 11, 561–573.

    Article  Google Scholar 

  131. 131.

    Jaenisch, R. (1997) DNA methylation and imprinting: Why bother? Trends Genet. 13, 323–329.

    PubMed  CAS  Article  Google Scholar 

  132. 132.

    Genger, R.K., Kovac, K.A., Dennis, E.S., et al. (1999) Multiple DNA methyltransferase genes in Arabidopsis thaliana. Plant Mol. Biol. 41, 269–278.

    PubMed  CAS  Article  Google Scholar 

  133. 133.

    Finnegan, E.J., Peacock, W.J. and Dennis, E.S. (2000) DNA methylation, a key regulator of plant development and other processes. Curr. Opin. Genet. Dev. 10, 217–223.

    PubMed  CAS  Article  Google Scholar 

  134. 134.

    Jacobsen, S.E. and Meyerowitz, E.M. (1997) Hypermethylated SUPERMAN epigenetic alleles in Arabidopsis. Science 277, 1100–1103.

    PubMed  CAS  Article  Google Scholar 

  135. 135.

    Chaudhuri, S. and Messing, J. (1994) Allele-specific parental imprinting of dzr1, a posttranscriptional regulator of zein accumulation. Proc. Natl. Acad. Sci. USA 91, 4867–4871.

    PubMed  CAS  Article  Google Scholar 

  136. 136.

    Matzke, M. and Matzke, A.J.M. (1993) Genomic imprinting in plants: parental effects and trans-inactivation phenomena. Annu. Rev. Plant Physiol. Plant Mol. Biol. 44, 53–76.

    CAS  Article  Google Scholar 

  137. 137.

    Martienssen, R. (1998) Chromosomal imprinting in plants. Curr. Opin. Genet. Dev. 8, 240–244.

    PubMed  CAS  Article  Google Scholar 

  138. 138.

    Castle, L. A., Errampalli, D., Atherton, T. L., et al. (1993) Genetic and molecular characterization of embryonic mutants identified following seed transformation in Arabidopsis. Mol. Gen. Genet. 241, 504–514.

    PubMed  CAS  Article  Google Scholar 

  139. 139.

    Ohad, N., Margossian, L., Hsu, Y.-C., et al. (1996) A mutation that allows endosperm development without fertilization. Proc. Natl. Acad. Sci. USA 93, 5319–5324.

    PubMed  CAS  Article  Google Scholar 

  140. 140.

    Ohad, N., Yadegari, R., Margossian, L., et al. (1999) Mutations in FIE, a WD polycomb group gene, allow endosperm development without fertilization. Plant Cell 11, 407–415.

    PubMed  CAS  Article  Google Scholar 

  141. 141.

    Chaudhury, A. M., Ming, L., Miller, C., et al. (1997) Fertilization-independent seed development in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 94, 4223–4228.

    PubMed  CAS  Article  Google Scholar 

  142. 142.

    Grossniklaus, U., Vielle-Calzada, J.-P., Hoeppner, M. A., and Gagliano, W. (1998) Maternal control of embryogenesis by MEDEA, a polycomb group gene in Arabidopsis. Science 280, 446–450.

    PubMed  CAS  Article  Google Scholar 

  143. 143.

    Kiyosue, T., Ohad, N., Yadegari, R., et al. (1999) Control of fertilization-independent endosperm development by the MEDEA polycomb gene in Arabidopsis. Proc. Natl. Acad. Sci. USA 96, 4186–4191.

    PubMed  CAS  Article  Google Scholar 

  144. 144.

    Luo, M., Bilodeau, P., Koltunow, A., et al. (1999) Genes controlling fertilization-independent seed development in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 96, 296–301.

    PubMed  CAS  Article  Google Scholar 

  145. 145.

    Birve, A., Sengupata, A.K., Beuchle, D., et al. (2001) Su(z)12, a novel Drosophila polycomb group gene that is conserved in vertebrates and plants. Development, 128, 3371–3379.

    PubMed  CAS  Google Scholar 

  146. 146.

    Vinkenoog, R., Spielman, M., Adams, S., et al. (2000) Hypomethylation promotes autonomous endosperm development and rescues post-fertilisation lethality in fie-mutants. Plant Cell 12, 2271–2282.

    PubMed  CAS  Article  Google Scholar 

  147. 147.

    Sørensen, M.B., Chaudhury, A., Robert, H., et al. (2001) Polycomb group genes control pattern formation in plant seed. Curr. Biol. 11, 277–281.

    PubMed  Article  Google Scholar 

  148. 148.

    Vielle-Calzada, J.-P., Thomas, J., Spillane, C., et al. (1999) Maintenance of genomic imprinting at the Arabidopsis medea locus requires zygotic DDM1 activity. Genes Dev. 13, 2971–2982.

    PubMed  CAS  Article  Google Scholar 

  149. 149.

    Vongs, A., Kakutani, T., Martienssen, R. A., and Richards, E. J. (1993) Arabidopsis thaliana DNA methylation mutants. Science 260, 1926–1928.

    PubMed  CAS  Article  Google Scholar 

  150. 150.

    Kakutani, T., Jeddeloh, J.A., and Richards, E.J. (1995) Characterisation of an Arabidopsis thaliana DNA hypomethylation mutant. Nucl. Acids Res. 23, 130–137.

    PubMed  CAS  Article  Google Scholar 

  151. 151.

    Peterson, C.L. and Workman, J.L. (2000) Promoter targeting and chromatin remodeling by the SWI/SNF complex. Curr. Opin. Genet. Dev. 10, 187–192.

    PubMed  CAS  Article  Google Scholar 

  152. 152.

    Yadegari, R., Kinoshita, T., Lotan, O., et al. (2000) Mutations in the FIE and MEA genes that encode interacting polycomb proteins cause parent-of-origin effects on seed development by distinct mechanisms. Plant Cell 12, 2367–2381.

    PubMed  CAS  Article  Google Scholar 

  153. 153.

    Luo, M., Bilodeau, P., Dennis, E.S., et al. (2000) Expression and parent-of-origin effects for FIS2, MEA, and FIE in the endosperm and embryo of developing Arabidopsis seeds. Proc. Natl. Acad. Sci. USA 97, 10637–10642.

    PubMed  CAS  Article  Google Scholar 

  154. 154.

    Spielman, M., Vinkenoog, R., and Scott, R.J. (2001) The epigenetic basis of gender in flowering plants and mammals. Trends Genet. 17, 705–711.

    PubMed  CAS  Article  Google Scholar 

  155. 155.

    Kinoshita, T., Harada, J.J., Goldberg, R.B., and Fischer, R.L. (2001) Polycomb repression of flowering during early plant development. Proc. Natl. Acad. Sci. USA 98, 14156–14161.

    PubMed  CAS  Article  Google Scholar 

  156. 156.

    Campbell, R.B., Sinclair, D.A.R., Couling, M., and Brock, H.W. (1995) Genetic interactions and dosage effects of polycomb group genes of Drosophila. Mol. Gen. Genet. 246, 291–300.

    PubMed  CAS  Article  Google Scholar 

  157. 157.

    Shermoen, A.W. and O’Farrell, P.H. (1991) Progression of the cell cycle through mitosis leads to abortion of nascent transcripts. Cell 67, 303–310.

    PubMed  CAS  Article  Google Scholar 

  158. 158.

    Kinoshita, T., Yadegari, R., Harada, J. J., Goldberg, R. B., and Fischer, R. L. (1999) Imprinting of the MEDEA polycomb gene in the Arabidopsis endosperm. Plant Cell 11, 1945–1952.

    PubMed  CAS  Article  Google Scholar 

  159. 159.

    Russell, S.D. (1984) Ultrastructure of the sperm of Plumbago zeylanica.2. Quantitative cytology and 3-dimensional organization. Planta 162, 385–391.

    Article  Google Scholar 

  160. 160.

    Russell, S.D. (1985) Preferential Fertilization in Plumbago— Ultrastructural evidence for gamete-level rrecognition in an angiosperm. Proc. Natl. Acad. Sci. USA 82, 6129–6132.

    PubMed  CAS  Article  Google Scholar 

  161. 161.

    Roman, H. (1948) Directed fertilization in maize. Proc. Natl. Acad. Sci. USA 34, 36–42.

    PubMed  CAS  Article  Google Scholar 

  162. 162.

    Vielle-Calzada, J-P., Baskar, R., and Grossniklaus, U. (2000) Delayed activation of the paternal genome during seed development. Nature 404, 91–94.

    PubMed  CAS  Article  Google Scholar 

  163. 163.

    Pirotta, V. (1997) PcG complexes and chromatin silencing. Curr. Opin. Genet. Dev. 7, 249–258.

    Article  Google Scholar 

  164. 164.

    Lohuizen, M. van, Tijms, M., Voncken, J. W., Schumacher, A., Magnuson, T., and Wientjens, E. (1998) Interaction of mouse polycomb-group (Pc-G) proteins Enx1 and Enx2 with Eed: Indication for separate Pc-G complexes. Mol. Cell. Biol. 18, 3572–3579.

    PubMed  Google Scholar 

  165. 165.

    Sewalt, R. G. A. B., van der Vlag, J., Gunster, M. J., et al. (1998) Characterization of interactions between the mammalian polycomb-group proteins Enx1/EZH2 and EED suggests the existence of different mammalian polycombgroup protein complexes. Mol. Cell. Biol. 18, 3586–3595.

    PubMed  CAS  Google Scholar 

  166. 166.

    Sondek, J., Boh, A., Lambright, D.G., et al. (1996) Crystal structure of a GA protein βγ dimer at 2.1 Å resolution. Nature 379, 369–374.

    PubMed  CAS  Article  Google Scholar 

  167. 167.

    Ng, J., Li, R.H., Morgan, K., and Simon, J. (1997) Evolutionary conservation and predicted structure of the Drosophila extra sex combs repressor protein. Mol. Cell Biol. 17, 6663–6672.

    PubMed  CAS  Google Scholar 

  168. 168.

    Jenuwein, T., Laible, G., Dorn, R., and Reuter, G. (1998) SET domain proteins modulate chromatin domains in euand heterochromatin. Cell. Mol. Life Sci. 54, 80–93.

    PubMed  CAS  Article  Google Scholar 

  169. 169.

    Jones, C. A., Ng, J., Peterson, A. J., et al. (1998) The Drosophila esc and E(z) proteins are direct partners in Polycomb group-mediated repression. Mol. Cell. Biol. 18, 2825–2834.

    PubMed  CAS  Google Scholar 

  170. 170.

    Ma, H. (1997) Polycomb in plants. Trends Genet. 13, 167.

    PubMed  CAS  Article  Google Scholar 

  171. 171.

    Preuss, D. (1999) Chromatin silencing and Arabidopsis development: A role for Polycomb proteins. Plant Cell 11, 765–767.

    PubMed  CAS  Article  Google Scholar 

  172. 172.

    Spillane, C., MacDougall, C., Stock, C., et al. (2000) Interaction of the Arabidopsis polycomb group proteins FIE and MEA mediates their common phenotypes. Curr. Biol. 10, 1535–1538.

    PubMed  CAS  Article  Google Scholar 

  173. 173.

    Gutjahr, T., Frei, E., Spicer, C. et al. (1995) The Polycomb-group gene, extra sex combs, encodes a nuclear member of the WD-40 repeat family. EMBO J. 14, 4296–4306.

    PubMed  CAS  Google Scholar 

  174. 174.

    Choi, Y. H., Gehring, M., Johnson, L., et al. (2002) DEMETER, a DNA glycosylase domain protein, is required for endosperm gene imprinting and seed viability in Arabidopsis. Cell 110, 33–42.

    PubMed  CAS  Article  Google Scholar 

  175. 175.

    Dickinson, H. and Scott, R.J. (2002) DEMETER, goddess of the harvest, activates maternal MEDEA to produce the perfect seed. Mol. Cell 10, 5–7.

    PubMed  CAS  Article  Google Scholar 

  176. 176.

    Lohe, A. and Chaudhury, A. (2002) Demeter: on seeds and goddesses. Plant Cell, 14, 2981–2983.

    PubMed  CAS  Article  Google Scholar 

  177. 177.

    Cassar, G., Mohammed, M., John, T.M., et al. (1998) Differentiating between parthenogenetic and positive development embryos in turkeys by molecular sexing. Poultry Science 77, 1463–1468.

    PubMed  CAS  Google Scholar 

  178. 178.

    Moritz, C., McCallum, H., Donnellan, S., and Roberts, J.D. (1991) Parasite loads in parthenogenetic and sexual lizards (Heteronotia binoei): support for the Red Queen hypothesis. Proc. R. Soc. Lond. [B] 244, 145–149.

    Article  Google Scholar 

  179. 179.

    MacGulloch, R.D., Murphy, R.W., Kupriyanova, L.A., and Darevski, I.S. (1997) The Caucasian rock lizard Lacerta rostombekovi: A monoclonalparthenogenetic vertebrate. Biochem. Syst. Ecol. 25, 33–37.

    Article  Google Scholar 

  180. 180.

    Price, A.H. (1992) Comparative behavior in lizards of the genus Cnemidophorus (Teiidae) with comments on the evolution of parthenogenesis in reptiles. Copeia 2, 323–331.

    Article  Google Scholar 

  181. 181.

    Krotoski, D.M., Reinschmidt, D.C., and Tompkins, R. (1985) Developmental mutants isolated from wild-caught Xenopus laevis by gynogenesis and inbreeding. J. Exp. Zool. 233, 443–449.

    PubMed  CAS  Article  Google Scholar 

  182. 182.

    Yu, H.J., Shi, C.P. and Liang, J.H. (1986) Production of tetraploid and androgenetic diploid adults of Xenopus laevis by suppression of first cleavage. Kexue Tongbao 31, 720–720.

    Google Scholar 

  183. 183.

    Tompkins, R. and Reinschmidt, D. (1991) Experimentally induced homozygosity in Xenopus laevis. Methods Cell Biol. 36, 35–44.

    PubMed  CAS  Article  Google Scholar 

  184. 184.

    Hubbs, C.L. and Hubbs, L.C. (1932) Apparent pathenogenesis in nature, in a form of fish of hybrid origin. Science 76, 628–630.

    Article  PubMed  CAS  Google Scholar 

  185. 185.

    Vrijenhoek, R. (1994) Unisexual fish: model systems for studying ecology and evolution. Annu. Rev. Ecol. Syst. 25, 71–96.

    Article  Google Scholar 

  186. 186.

    Streisinger, G., Walker, C., Dower, N., Knauber, D., and Singer, F. (1981) Production of clones of homozygous diploid zebra fish (Brachyodanio rerio) Nature 291, 293–296.

    PubMed  CAS  Article  Google Scholar 

  187. 187.

    May, B., Henley, K.J., Krueger, C.C. and Gloss, S.P. (1988) Androgenesis as a mechanism for chromosome set manipulation in brook trout (Salvelinus fontinalis). Aquaculture 75, 57–70.

    Article  Google Scholar 

  188. 188.

    Ihssen, P.E., McKay, L.R., McMillan, I., and Phillips, R.B. (1990). Ploidy manipulation and gynogenesis in fishes: cytogenetic and fisheries applications. Trans. Am. Fish. Soc. 119, 698–717.

    Article  Google Scholar 

  189. 189.

    Corley-Smith, G.E., Lin, C.J. and Brandhorst, B.P. (1996) Production of androgenetic zebrafish (Danio rerio). Genetics 142, 1265–1276.

    PubMed  CAS  Google Scholar 

  190. 190.

    Hörstgen-Schwark, G. (1993) Production of homozygous diploid zebra fish (Brachydanio rerio). Aquaculture 112, 25–37.

    Article  Google Scholar 

  191. 191.

    Martin, C.C. and McGowan, R. (1995) Parent-of-origin specific effects on the methylation and expression of a transgene in the zebrafish, Danio rero. Genet. Res. Camb. 65, 21–28.

    CAS  Google Scholar 

  192. 192.

    Drosopoulos, S. (1976) Triploid pseudogamous biotype of the leaf-hopper Muellerianella fairmairei. Nature 263, 499–500.

    PubMed  CAS  Article  Google Scholar 

  193. 193.

    Drosopoulos, S. (1978) Laboratory synthesis of a pseudogamous triploid species of the genus Muellerianella (Homoptera, Delphacidae). Evolution 32, 916–920.

    Article  Google Scholar 

  194. 194.

    Normark, B.B. (2000) Molecular systematics and evolution of the aphid family Lachnidae. Mol. Phylogen. Evol. 14, 131–140.

    CAS  Article  Google Scholar 

  195. 195.

    Gautam, D.C., Crema, R., and Pagliai, A.M.B. (1993) Cytogenetic mechanisms in Aphids. Boll. Zool. 60, 233–244.

    Google Scholar 

  196. 196.

    Tinti, F. and Scali, V. (1993) Chromosomal evidence of hemiclonal and all-paternal offspring production in Bacillus rossius grandii benazzii (Insecta, Phasmatodea). Chromosoma 102, 403–414.

    Article  Google Scholar 

  197. 197.

    Tinti, F. and Scali, V. (1995) Allozymic and cytological evidence for hemiclonal, all paternal, and mosaic off-spring of the hybridogenetic stick insect Bacillus rossius grandii grandii. J. Exp. Zool. 273, 149–159.

    Article  Google Scholar 

  198. 198.

    Komma, D.J. and Endow, S.A. (1995) Haploidy and androgenesis in Drosophila. Proc. Natl. Acad. Sci. USA 92, 11,884–11,888.

    CAS  Article  Google Scholar 

  199. 199.

    Presgraves, D.C. (2000) A genetic test of the mechanism of Wolbachia-induced cytoplasmic incompatibility in Drosophila. Genetics 154, 771–776.

    PubMed  CAS  Google Scholar 

  200. 200.

    Cook, J.M. (1993) Sex determination in the Hymenoptera: A review of models and evidence. Heredity 71, 421–435.

    Google Scholar 

  201. 201.

    Beukeboom, L.W. (1995) Sex determination in Hymenoptera: A need for genetic and molecular studies. BioEssays 17, 813–817.

    PubMed  CAS  Article  Google Scholar 

  202. 202.

    Huigens, M.E., Luck, R.F., Klaassen, R.H.G., et al. (2000) Infectious parthenogenesis. Nature 405, 178–179.

    PubMed  CAS  Article  Google Scholar 

  203. 203.

    Crouse, H.V. (1960) The controlling element in sex chromosome behaviour in Sciara. Genetics 45, 1425–1443.

    Google Scholar 

  204. 204.

    Crouse, H.V. (1966) An inducible change in state on the chromosome inheritance and the problem of “imprinting” in Sciara. (Sciaridae, Diptera). Chromosoma 18, 230–253.

    Article  Google Scholar 

  205. 205.

    Birger, Y., Shemer, R., Perk, J., and Razin, A. (1999) The imprinting box of the mouse Igf2r gene. Nature 397, 84–88.

    PubMed  CAS  Article  Google Scholar 

  206. 206.

    Stephens, S.G. (1942) Colchicine-produced polyploids in Gossypium: An autotetraploid Asiatic cotton and certain of its hybrids with diploid species. J. Genet. 44, 272–295.

    Article  Google Scholar 

  207. 207.

    von Wangenheim, K.-H. (1957) Untersuchungen über den Zusammenhang zwischen Chromosomenzahl und Kreuzbarkeit bei Solanum -Arten. Zeitschr. Indukt. Abstam. Vererbungslehre 88, 21–37.

    Article  Google Scholar 

  208. 208.

    Howard, H.W. (1947) Seed size in crosses between diploid and autotetraploid Nasturtium officinale and allotetraploid N. uniseriatum. J. Genet. 48, 111–118.

    CAS  PubMed  Google Scholar 

  209. 209.

    Johnston, S.A., den Nijs, T.P.M., Peloquin, S.J., and Hanneman, R.E. (1980) The significance of genic balance to endosperm development in interspecific crosses. Theor. Appl. Genet. 57, 5–9.

    Google Scholar 

  210. 210.

    Ortiz, R. and Ehlenfeldt, M.K. (1992) The importance of endosperm balance number in potato breeding and the evolution of tuber-bearing Solanum species. Euphytica 60, 105–113.

    Google Scholar 

  211. 211.

    Johnston, S.A. and Hanneman, R.E. (1982) Manipulations of endosperm balance number overcome crossing barriers between diploid Solanum species. Science 217, 446–448.

    Article  PubMed  CAS  Google Scholar 

  212. 212.

    Quarin, C.L. (1999) Effect of pollen source and pollen ploidy on endosperm formation and seed set in pseudogamous apomictic Paspalum notatum. Sex. Plant Reprod. 11, 331–335.

    Article  Google Scholar 

  213. 213.

    Carputo, D., Monti, L., Werner, J.E., and Frusciante, L. (1999) Uses and usefulness of endosperm balance number. Theor. Appl. Genet. 98, 478–484.

    Article  Google Scholar 

  214. 214.

    Bushell, C., Spielman, M., and Scott, R.J. (in prep.) The basis of natural and artificial post-zygotic hybridisation barriers in Brassica species. Plant Cell, in press.

  215. 215.

    Chen, Z.J., Comai, L., and Pikaard, C.S. (1998) Gene dosage and stochastic effects determine the severity and direction of uniparental ribosomal RNA gene silencing (nucleolar dominance) in Arabidopsis allopolyploids. Proc. Natl. Acad. Sci. USA 95, 14,891–14,896.

    CAS  Google Scholar 

  216. 216.

    Kamm, A., Galasso, I., Schmidt, T., and Heslop-Harrison, J. S. (1995) Analysis of a repetitive DNA family from Arabidopsis-arenosa and relationships between Arabidopsis species. Plant Mol. Biol. 27, 853–862.

    PubMed  CAS  Article  Google Scholar 

  217. 217.

    Okane, S.L., Schaal, B.A., and AlShenbaz, I.A. (1996) The origins of Arabidopsis suecica (Brassicaceae) as indicated by nuclear rDNA sequences. Sys. Bot. 21, 559–566.

    Article  Google Scholar 

  218. 218.

    van Dijk, P. and van Damme, J. (2000) Apomixis technology and the paradox of sex. Trends Plant Sci. 5, 81–84.

    PubMed  Article  Google Scholar 

  219. 219.

    Grossniklaus, U., Nogler, G.A., and van Dijk, P.J. (2001) How to avoid sex: The genetic control of gametophytic apomixis. Plant Cell 13, 1491–1497.

    PubMed  CAS  Article  Google Scholar 

  220. 220.

    Vinkenoog, R. and Scott, R.J. (2001) Autonomous endosperm development in flowering plants: How to overcome the imprinting problem? Sex. Plant Rep. 14, 189–194.

    Article  Google Scholar 

  221. 221.

    Spielman, M., Vinkenoog, R., and Scott, R.J.(2003) Genetic mechanisms of Apomixis. Trans. R. Soc. London, in press.

  222. 222.

    Cooper, D.C. and Brink, R.A. (1949) The endosperm-embryo relationship in an autonomous apomict, Taraxacum officinale. Bot. Gaz. 111, 139–153.

    Article  Google Scholar 

  223. 223.

    Tas, I.C.Q. and van Dijk, P.J. (1999) Crosses between sexual and apomictic dandelions (Taraxacum). I. The inheritance of apomixis. Heredity 83, 707–714.

    PubMed  Article  Google Scholar 

  224. 224.

    van Dijk, P.J., Tas, I.C.Q., Falque, M., and Bakx-Schotman, T. (1999) Crosses between sexual and apomictic dandelions (Taraxacum). II. The breakdown of apomixis. Heredity 83, 715–721.

    PubMed  Article  Google Scholar 

  225. 225.

    Danilevskaya, O.N., Hermon, P., Hantke, S., et al. (2003) Duplicated fie genes in maize: Expression pattern and imprinting suggest distinct functions. Plant Cell, in press.

  226. 226.

    Bestor, T.H. (2000) The DNA methyltransferases of mammals. Hum. Mol. Genet. 9, 2395–2402.

    PubMed  CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Rod J. Scott.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Vinkenoog, R., Bushell, C., Spielman, M. et al. Genomic imprinting and endosperm development in flowering plants. Mol Biotechnol 25, 149–184 (2003). https://doi.org/10.1385/MB:25:2:149

Download citation

Index Entries

  • Genomic imprinting
  • epigenetics
  • endosperm
  • seed development
  • apomixis
  • FIS
  • polycomb
  • interploidy crosses
  • interspecific hybridization