Skip to main content

Gene therapy for lung cancer

Abstract

Lung cancer continues to be the largest killer of Americans due to cancer. Although progress has been made, with advances in chemotherapy, the majority of patients diagnosed with lung cancer ultimately succumb to the disease. A better understanding of the molecular pathogenesis of lung cancer is demonstrating how alterations in oncogenes and tumor suppressor genes control lung cancer initiation, growth, and survival. In this article, attempts to target molecular alterations in lung cancer using gene therapy techniques are reviewed. These include introducing suicide genes into tumor cells, replacement of defective tumor suppressor genes, inactivating oncogenes, and immunotherapy-based approaches using gene therapy technology. The major barrier for these techniques continues to be the inability to specifically target tumor cells while sparing normal cells. Nonetheless, these approaches are likely to yield important biologic and clinical data which will further the progress of lung cancer treatment.

This is a preview of subscription content, access via your institution.

References

  1. Albelda, S. M., Wiewrodt, R., and Zuckerman, J. B. (2000) Gene therapy for lung disease: hype or hope? Ann. Intern. Med. 132, 649–660.

    PubMed  CAS  Google Scholar 

  2. Blaese, R. M., Ishii-Morita, H., Mullen, C., Ramsey, J., Ram, Z., Oldfield, E., and Culver, K. (1994) In situ delivery of suicide genes for cancer treatment. Eur. J. Cancer 8, 1190–1193.

    Article  Google Scholar 

  3. Mullen, C. A. (1994) Metabolic suicide genes in gene therapy. Pharmacol. Ther. 63, 199–207.

    PubMed  Article  CAS  Google Scholar 

  4. Singhal, S. and Kaiser, L. R. (1998) Cancer chemotherapy using suicide genes. Surg. Oncol. Clin. North Am. 7, 505–536.

    CAS  Google Scholar 

  5. Reid, R., Mar, E. C., Huang, E. S., and Topal, M. D. (1988) Insertion and extension of acyclic, dideoxy, and ara nucleotides by herpesviridae, human alpha and human beta polymerases. A unique inhibition mechanism for 9-(1,3-dihydroxy-2-propoxymethyl)-guanine triphosphate. J. Biol. Chem. 263, 3898–3904.

    PubMed  CAS  Google Scholar 

  6. Gane, E., Saliba, F., Valdecasas, G. J., O’Grady, J., Pescovitz, M. D., Lyman, S., and Robinson, C. A. (1997) Randomised trial of efficacy and safety of oral ganciclovir in the prevention of cytomegalovirus disease in liver-transplant recipients. The Oral Ganciclovir International Transplantation Study Group [corrected] [see comments] [published erratum appears in Lancet 1998 Feb 7;351(9100):454]. Lancet 350, 1729–1733.

    PubMed  Article  CAS  Google Scholar 

  7. Freeman, S. M., Whartenby, K. A., Freeman, J. L., Abboud, C. N., and Marrogi, A. J. (1996) In situ use of suicide genes for cancer therapy. Semin. Oncol. 23, 31–45.

    PubMed  CAS  Google Scholar 

  8. Pope, I. M., Poston, G. J., and Kinsella, A. R. (1997) The role of the bystander effect in suicide gene therapy. Eur. J. Cancer 33, 1005–1016.

    PubMed  Article  CAS  Google Scholar 

  9. Rubsam, L. Z., Boucher, P. D., Murphy, P. J., KuKuruga, M., and Shewach, D. S. (1999) Cytotoxicity and accumulation of ganciclovir triphosphate in bystander cells cocultured with herpes simplex virus type 1 thymidine kinase- expressing human glioblastoma cells. Cancer Res. 59, 669–675.

    PubMed  CAS  Google Scholar 

  10. Sterman, D. H., Treat, J., Litzky, L. A., Amin, K. M., Coonrod, L., Molnar-Kimber, K., et al. (1998) Adeno-virus-mediated herpes simplex virus thymidine kinase/ganciclovir gene therapy in patients with localized malignancy: results of a phase I clinical trial in malignant mesothelioma. Human Gene Ther. 9, 1083–1092.

    CAS  Google Scholar 

  11. (1999) Human gene marker/ therapy clinical protocols (complete updated listings). Human Gene Ther. 10, 2037–2088.

  12. Nemunaitis, J. (1999) Oncolytic viruses. Invest. New Drugs 17, 375–386.

    PubMed  Article  CAS  Google Scholar 

  13. You, L., Yang, C. T., and Jablons, D. M. (2000) ONYX-015 works synergistically with chemotherapy in lung cancer cell lines and primary cultures freshly made from lung cancer patients. Cancer Res. 60, 1009–1013.

    PubMed  CAS  Google Scholar 

  14. Nemunaitis, J., Ganly, I., Khuri, F., Arseneau, J., Kuhn, J., McCarty, T., et al. (2000) Selective replication and oncolysis in p53 mutant tumors with ONYX-015, an E1B-55kD gene-deleted adenovirus, in patients with advanced head and neck cancer: a phase II trial. Cancer Res. 60, 6359–6366.

    PubMed  CAS  Google Scholar 

  15. Takahashi, T., Nau, M. M., Chiba, I., Birrer, M. J., Rosenberg, R. K., Vinocour, M., et al. (1989) p53: a frequent target for genetic abnormalities in lung cancer. Science 246, 491–494.

    PubMed  Article  CAS  Google Scholar 

  16. Levine, A. J. (1997) p53, the cellular gatekeeper for growth and division. Cell 88, 323–331.

    PubMed  Article  CAS  Google Scholar 

  17. Roth, J. A., Nguyen, D., Lawrence, D. D., Kemp, B. L., Carrasco, C. H., Ferson, D. Z., et al. (1996) Retrovirus-mediated wild-type p53 gene transfer to tumors of patients with lung cancer [see comments]. Nat. Med. 2, 985–991.

    PubMed  Article  CAS  Google Scholar 

  18. Swisher, S. G., Roth, J. A., Nemunaitis, J., Lawrence, D. D., Kemp, B. L., Carrasco, C. H., et al. (1999) Adenovirus-mediated p53 gene transfer in advanced non-small-cell lung cancer. J. Natl. Cancer Inst. 91, 763–771.

    PubMed  Article  CAS  Google Scholar 

  19. Roth, J. A., Swisher, S. G., Merritt, J. A., Lawrence, D. D., Kemp, B. L., Carrasco, C. H., et al. (1998) Gene therapy for non-small cell lung cancer: a preliminary report of a phase I trial of adenoviral p53 gene replacement. Semin. Oncol. 25, 33–37.

    PubMed  CAS  Google Scholar 

  20. Inoue, A., Narumi, K., Matsubara, N., Sugawara, S., Saijo, Y., Satoh, K., and Nukiwa, T. (2000) Administration of wild-type p53 adenoviral vector synergistically enhances the cytotoxicity of anti-cancer drugs in human lung cancer cells irrespective of the status of p53 gene. Cancer Lett. 157, 105–112.

    PubMed  Article  CAS  Google Scholar 

  21. Nemunaitis, J., Swisher, S. G., Timmons, T., Connors, D., Mack, M., Doerksen, L., et al. (2000) Adenovirus-mediated p53 gene transfer in sequence with cisplatin to tumors of patients with non-small-cell lung cancer. J. Clin. Oncol. 18, 609–622.

    PubMed  CAS  Google Scholar 

  22. Schuler, M., Rochlitz, C., Horowitz, J. A., Schlegel, J., Perruchoud, A. P., Kommoss, F., et al. (1998) A phase I study of adenovirus-mediated wild-type p53 gene transfer in patients with advanced non-small cell lung cancer. Human Gene Ther. 9, 2075–2082.

    CAS  Google Scholar 

  23. Kubba, S., Adak, S., Schiller, J., Slovis, B., Coffee, K., Worrel, J., et al. (2000) Phase I trial of adenovirus p53 in bronchioloalveolar cell lung carcinoma (BAC) administered by bronchoalveolar lavage. Proc. Am. Soc. Clin. Oncol. Abstract #1904.

  24. Xu, M., Kumar, D., Srinivas, S., Detolla, L. J., Yu, S. F., Stass, S. A., and Mixson, A. J. (1997) Parenteral gene therapy with p53 inhibits human breast tumors in vivo through a bystander mechanism without evidence of toxicity. Human Gene Ther. 8, 177–185.

    CAS  Google Scholar 

  25. Bouvet, M., Ellis, L. M., Nishizaki, M., Fujiwara, T., Liu, W., Bucana, C. D., et al. (1998) Adenovirus-mediated wild-type p53 gene transfer down-regulates vascular endothelial growth factor expression and inhibits angiogenesis in human colon cancer. Cancer Res. 58, 2288–2292.

    PubMed  CAS  Google Scholar 

  26. Nishizaki, M., Fujiwara, T., Tanida, T., Hizuta, A., Nishimori, H., Tokino, T., et al. (1999) Recombinant adenovirus expressing wild-type p53 is antiangiogenic: a proposed mechanism for bystander effect. Clin. Cancer Res. 5, 1015–1023.

    PubMed  CAS  Google Scholar 

  27. Watanabe, T. and Sullenger, B. A. (2000) Induction of wild-type p53 activity in human cancer cells by ribozymes that repair mutant p53 transcripts. Proc. Natl. Acad. Sci. USA 97, 8490–8494.

    PubMed  Article  CAS  Google Scholar 

  28. Parr, M. J., Manome, Y., Tanaka, T., Wen, P., Kufe, D. W., Kaelin, W. G., and Fine, H. A. (1997) Tumor-selective transgene expression in vivo mediated by an E2F-responsive adenoviral vector. Nat. Med. 3, 1145–1149.

    PubMed  Article  CAS  Google Scholar 

  29. Strayer, M. S., Guttentag, S. H., and Ballard, P. L. (1998) Targeting type II and Clara cells for adenovirus-mediated gene transfer using the surfactant protein B promoter. Am. J. Respir. Cell Mol. Biol. 18, 1–11.

    PubMed  CAS  Google Scholar 

  30. Salgia, R. and Skarin, A. T. (1998) Molecular abnormalities in lung cancer. J. Clin. Oncol. 16, 1207–1217.

    PubMed  CAS  Google Scholar 

  31. Kawabe, S., Roth, J. A., Wilson, D. R., and Meyn, R. E. (2000) Adenovirus-mediated p16INK4a gene expression radiosensitizes non-small cell lung cancer cells in a p53-dependent manner. Oncogene 19, 5359–5366.

    PubMed  Article  CAS  Google Scholar 

  32. Naruse, I., Hoshino, H., Dobashi, K., Minato, K., Saito, R., and Mori, M. (2000) Over-expression of p27kip1 induces growth arrest and apoptosis mediated by changes of pRb expression in lung cancer cell lines. Int. J. Cancer 88, 377–383.

    PubMed  Article  CAS  Google Scholar 

  33. Ishizaki, J., Nevins, J. R., and Sullenger, B. A. (1996) Inhibition of cell proliferation by an RNA ligand that selectively blocks E2F function. Nat. Med. 2, 1386–1389.

    PubMed  Article  CAS  Google Scholar 

  34. Haber, D. A. and Fearon, E. R. (1998) The promise of cancer genetics. Lancet 351(Suppl. 2), SII1–8.

    PubMed  Article  Google Scholar 

  35. Stass, S. A. and Mixson, J. (1997) Oncogenes and tumor suppressor genes: therapeutic implications. Clin. Cancer Res. 3, 2687–2695.

    PubMed  CAS  Google Scholar 

  36. Tanner, N. K. (1999) Ribozymes: the characteristics and properties of catalytic RNAs. FEMS Microbiol. Rev. 23, 257–275.

    PubMed  Article  CAS  Google Scholar 

  37. Arndt, G. M. and Rank, G. H. (1997) Colocalization of antisense RNAs and ribozymes with their target mRNAs. Genome 40, 785–797.

    PubMed  CAS  Google Scholar 

  38. Cochet, O., Kenigsberg, M., Delumeau, I., Duchesne, M., Schweighoffer, F., Tocque, B., and Teillaud, J. L. (1998) Intracellular expression and functional properties of an anti-p21Ras scFv derived from a rat hybridoma containing specific lambda and irrelevant kappa light chains. Mol. Immunol. 35, 1097–1110.

    PubMed  Article  CAS  Google Scholar 

  39. Cochet, O., Kenigsberg, M., Delumeau, I., Virone-Oddos, A., Multon, M. C., Fridman, W. H., et al. (1998) Intracellular expression of an antibody fragment-neutralizing p21 ras promotes tumor regression. Cancer Res. 58, 1170–1176.

    PubMed  CAS  Google Scholar 

  40. Jannot, C. B., Beerli, R. R., Mason, S., Gullick, W. J., and Hynes, N. E. (1996) Intracellular expression of a single-chain antibody directed to the EGFR leads to growth inhibition of tumor cells. Oncogene 13, 275–282.

    PubMed  CAS  Google Scholar 

  41. Roth, J. A. (1996) Modification of mutant K-ras gene expression in non-small cell lung cancer (NSCLC). Human Gene Ther. 7, 875–889.

    CAS  Google Scholar 

  42. Zhang, Y., Nemunaitis, J., Scanlon, K. J., and Tong, A. W. (2000) Anti-tumorigenic effect of a K-ras ribozyme against human lung cancer cell line heterotransplants in nude mice. Gene Ther. 7, 2041–2050.

    PubMed  Article  CAS  Google Scholar 

  43. Zhang, Y. A., Nemunaitis, J., and Tong, A. W. (2000) Generation of a ribozyme-adenoviral vector against K-ras mutant human lung cancer cells. Mol. Biotechnol. 15, 39–49.

    PubMed  Article  CAS  Google Scholar 

  44. Nemunaitis, J., Holmlund, J. T., Kraynak, M., Richards, D., Bruce, J., Ognoskie, N., et al. (1999) Phase I evaluation of ISIS 3521, an antisense oligodeoxynucleotide to protein kinase C-alpha, in patients with advanced cancer. J. Clin. Oncol. 17, 3586–3595.

    PubMed  CAS  Google Scholar 

  45. Cunningham, C. C., Holmlund, J. T., Schiller, J. H., Geary, R. S., Kwoh, T. J., Dorr, A., and Nemunaitis, J. (2000) A phase I trial of c-Raf kinase antisense oligonucleotide ISIS 5132 administered as a continuous intravenous infusion in patients with advanced cancer. Clin. Cancer Res. 6, 1626–1631.

    PubMed  CAS  Google Scholar 

  46. Fuchs, E. J., Bedi, A., Jones, R. J., and Hess, A. D. (1995) Cytotoxic T cells overcome BCR-ABL-mediated resistance to apoptosis. Cancer Res. 55, 463–466.

    PubMed  CAS  Google Scholar 

  47. Shtil, A. A., Turner, J. G., Durfee, J., Dalton, W. S., and Yu, H. (1999) Cytokine-basedtumor cell vaccine is equally effective against parental and isogenic multidrug-resistant myeloma cells: the role of cytotoxic T lymphocytes. Blood 93, 1831–1837.

    PubMed  CAS  Google Scholar 

  48. Boon, T. and van der Bruggen, P. (1996) Human tumor antigens recognized byT lymphocytes. J. Exp. Med. 183, 725–729.

    PubMed  Article  CAS  Google Scholar 

  49. Boon, T. and Old, L. J. (1997) Cancer tumor antigens. Curr. Opin. Immunol. 9, 681–683.

    Article  CAS  Google Scholar 

  50. van der Bruggen, P., Traversari, C., Chomez, P., Lurquin, C., De Plaen, E., Van den Eynde, B., et al. (1991) A gene encoding an antigen recognized by cytolyticT lymphocytes on a human melanoma. Science 254, 1643–1647.

    PubMed  Article  Google Scholar 

  51. Pieper, R., Christian, R. E., Gonzales, M. I., Nishimura, M. I., Gupta, G., Settlage, R. E., et al. (1999) Biochemical identification of a mutated human melanoma antigen recognized by CD4(+) T cells [see comments]. J. Exp. Med. 189, 757–766.

    PubMed  Article  CAS  Google Scholar 

  52. Wang, R. F., Wang, X., Atwood, A. C., Topalian, S. L., and Rosenberg, S. A. (1999) Cloning genes encoding MHC class II-restricted antigens: mutated CDC27 as a tumor antigen. Science 284, 1351–1354.

    PubMed  Article  CAS  Google Scholar 

  53. Pardoll, D. M., Golumbek, P., Levitsky, H., and Jaffee, L. (1992) Molecular engineering of the antitumor immune response. Bone Marrow Transplant. 9, 182–186.

    PubMed  Google Scholar 

  54. Leach, D. R., Krummel, M. F., and Allison, J. P. (1996) Enhancement of antitumor immunity by CTLA-4 blockade [see comments]. Science 271, 1734–1736.

    PubMed  Article  CAS  Google Scholar 

  55. Vincent, R. G., Chu, T. M., Lane, W. W., Gutierrez, A. C., Stegemann, P. J., and Madajewicz, S. (1978) Carcinoembryonic antigen as a monitor of successful surgical resection in 130 patients with carcinoma of the lung. J. Thorac. Cardiovasc. Surg. 75, 734–739.

    PubMed  CAS  Google Scholar 

  56. Kantor, J., Irvine, K., Abrams, S., Kaufman, H., DiPietro, J., and Schlom, J. (1992) Antitumor activity and immune responses induced by a recombinant carcinoembryonic antigen-vaccinia virus vaccine [see comments]. J. Natl. Cancer Inst. 84, 1084–1091.

    PubMed  Article  CAS  Google Scholar 

  57. Kantor, J., Irvine, K., Abrams, S., Snoy, P., Olsen, R., Greiner, J., et al. (1992) Immunogenicity and safety of a recombinant vaccinia virus vaccine expressing the carcinoembryonic antigen gene in a nonhuman primate. Cancer Res. 52, 6917–6925.

    PubMed  CAS  Google Scholar 

  58. Cole, D. J., Wilson, M. C., Baron, P. L., O’Brien, P., Reed, C., Tsang, K. Y., and Schlom, J. (1996) Phase I study of recombinant CEA vaccinia virus vaccine with post vaccination CEA peptide challenge. Human Gene Ther. 7, 1381–1394.

    CAS  Google Scholar 

  59. Dickler, M. N., Ragupathi, G., Liu, N. X., Musselli, C., Martino, D. J., Miller, V. A., et al. (1999) Immunogenicity of a fucosyl-GM1-keyhole limpet hemocyanin conjugate vaccine in patients with small cell lung cancer. Clin. Cancer Res. 5, 2773–2779.

    PubMed  CAS  Google Scholar 

  60. Lee, L., Wang, R. F., Wang, X., Mixon, A., Johnson, B. E., Rosenberg, S. A., and Schrump, D. S. (1999) NY-ESO-1 may be a potential target for lung cancer immunotherapy. Cancer J. Sci. Am. 5, 20–25.

    PubMed  CAS  Google Scholar 

  61. Rowse, G. J., Tempero, R. M., VanLith, M. L., Hollingsworth, M. A., and Gendler, S. J. (1998) Tolerance and immunity to MUC1 in a human MUC1 transgenic murine model. Cancer Res. 58, 315–321.

    PubMed  CAS  Google Scholar 

  62. Pardoll, D. M. (1993) Genetically engineered tumor vaccines. Ann. NY Acad. Sci. 690, 301–310.

    PubMed  Article  CAS  Google Scholar 

  63. Dranoff, G., Jaffee, E., Lazenby, A., Golumbek, P., Levitsky, H., Brose, K., et al. (1993) Vaccination with irradiated tumor cells engineered to secrete murine granulocyte-macrophage colony-stimulating factor stimulates potent, specific, and long-lasting anti-tumor immunity. Proc. Natl. Acad. Sci. USA 90, 3539–3543.

    PubMed  Article  CAS  Google Scholar 

  64. Huang, A. Y., Golumbek, P., Ahmadzadeh, M., Jaffee, E., Pardoll, D., and Levitsky, H. (1994) Role of bone marrow-derived cells in presenting MHC class I-restricted tumor antigens. Science 264, 961–965.

    PubMed  Article  CAS  Google Scholar 

  65. Simons, J. W., Jaffee, E. M., Weber, C. E., Levitsky, H. I., Nelson, W. G., Carducci, M. A., et al. (1997) Bioactivity of autologous irradiated renal cell carcinoma vaccines generated by ex vivo granulocytemacrophage colony-stimulating factor gene transfer. Cancer Res. 57, 1537–1546.

    PubMed  CAS  Google Scholar 

  66. Sanda, M. G., Ayyagari, S. R., Jaffee, E. M., Epstein, J. I., Clift, S. L., Cohen, L. K., et al. (1994) Demonstration of a rational strategy for human prostate cancer gene therapy. J. Urol. 151, 622–628.

    PubMed  CAS  Google Scholar 

  67. Simons, J. W., Mikhak, B., Chang, J. F., DeMarzo, A. M., Carducci, M. A., Lim, M., et al. (1999) Induction of immunity to prostate cancer antigens: results of a clinical trial of vaccination with irradiated autologous prostate tumor cells engineered to secrete granulocyte-macrophage colony-stimulating factor using ex vivo gene transfer. Cancer Res. 59, 5160–5168.

    PubMed  CAS  Google Scholar 

  68. Jaffee, E. M., et al. (2001) Novel Allogeneic Granulocyte-Macrophase Colony-stimulating factor-secreting tumor vaccine for Pancreatic Cancer: A Phase I trial of safety and immune activation. J. Clin. Oncol. 19(1), 145–156.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric B. Haura.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Haura, E.B., Sotomayor, E. & Antonia, S.J. Gene therapy for lung cancer. Mol Biotechnol 25, 139–148 (2003). https://doi.org/10.1385/MB:25:2:139

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/MB:25:2:139

Index Entries

  • Lung cancer
  • gene therapy
  • adenovirus
  • tunor suppressor genes, oncogenes, immunotherapy