Skip to main content
Log in

Recombinant antibodies for the diagnosis and treatment of cancer

  • Review
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

The advent of recombinant antibody technology led to an enormous revival in the use of antibodies as diagnostic and therapeutic tools for fighting cancer. This review provides a brief historical sketch of the development of recombinant antibodies for the diagnosis and immunotherapy of cancer and summarizes the most significant clinical data for the best established reagents to date. It also discusses clinically relevant aspects of the use of recombinant antibodies in cancer patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Köhler, G., and Milstein, C. (1975) Continuous culture of fused cells secreting antibody of predefined specifity. Nature 256, 495–497.

    Article  PubMed  Google Scholar 

  2. Ritz, J., Pesando, J. M., Sallan, S. E., et al. (1981) Serotherapy of acute lymphoblastic leukemia with monoclonal antibody. Blood 58, 141–152.

    PubMed  CAS  Google Scholar 

  3. Miller, R. A., Oseroff, A. R., Stratte, P. T., and Levy, R. (1983) Monoclonal antibody therapeutic trials in seven patients with T-cell lymphoma. Blood 62, 988–995.

    PubMed  CAS  Google Scholar 

  4. Dillman, R. O., Shawler, D. L., Dillman, J. B., and Royston, I. (1984) Therapy of chronic lymphocytic leukemia and cutaneous T-cell lymphoma with T101 monoclonal antibody. J. Clin. Oncoll. 2, 881–891.

    CAS  Google Scholar 

  5. Foon, K. A., Schroff, R. W., Bunn, P. A., Mayer, D., Abrams, P. G., Fer, M., et al. (1984) Effects of monoclonal antibody therapy in patients with chronic lymphocytic leukemia. Blood 64, 1085–1093.

    PubMed  CAS  Google Scholar 

  6. Meeker, T. C., Lowder, J., Maloney, D. G., et al. (1985) A clinical trial of anti-idiotype therapy for B cell malignancy. Blood 65, 1349–1363.

    PubMed  CAS  Google Scholar 

  7. Brown, S. L., Miller, R. A., Horning, S. J., et al. (1989) Treatment of B-cell lymphomas with antiidiotype antibodies alone and in combination with alpha interferon. Blood 73, 651–661.

    PubMed  CAS  Google Scholar 

  8. Davis, T. A., Maloney, D. G., Czerwinski, D. K., Liles, T. M., and Levy, R. (1998) Anti-idiotype antibodies can induce long-term complete remissions in non-Hodgkin’s lymphoma without eradicating the malignant clone. Blood 92, 1184–1190.

    PubMed  CAS  Google Scholar 

  9. Brack, C., and Tonegawa, S. (1977) Variable and constant parts of the immunoglobulin light chain gene of a mouse myeloma cell are 1250 nontranslated bases apart. Proc. Natl. Acad. Sci. USA 74, 5652–5656.

    Article  PubMed  CAS  Google Scholar 

  10. Tonegawa, S., Brack, C., Hozumi, N., and Schuller, R. (1977) Cloning of an immunoglobulin variable region gene from mouse embryo. Proc. Natl. Acad. Sci. USA 74, 3518–3522.

    Article  PubMed  CAS  Google Scholar 

  11. Meselson, M., and Yuan, R. (1968) DNA restriction enzyme from E. coli. Nature 217, 1110–1114.

    Article  PubMed  CAS  Google Scholar 

  12. Boulianne, G. L., Hozumi, N., and Shulman, M. J. (1984) Production of functional chimaeric mouse/human antibody. Nature 312, 643–646.

    Article  PubMed  CAS  Google Scholar 

  13. Morrison, S. L., Johnson, M. J., Herzenberg, L. A., and Oi, V. T. (1984) Chimeric human antibody molecules: mouse antigen-binding domains with human constant region domains. Proc. Natl. Acad. Sci. USA 81, 6851–6855.

    Article  PubMed  CAS  Google Scholar 

  14. Neuberger, M. S., Williams, G. T., and Fox, R. O. (1984) Recombinant antibodies possessing novel effector functions. Nature 312, 604–608.

    Article  PubMed  CAS  Google Scholar 

  15. Bruggemann, M., Williams, G. T., Bindon, C. I., et al. (1987) Comparison of the effector functions of human immunoglobulins using a matched set of chimeric antibodies. J. Exp. Med. 166, 1351–1361.

    Article  PubMed  CAS  Google Scholar 

  16. Shaw, D. R., Khazaeli, M. B., and LoBuglio, A. F. (1988) Mouse/human chimeric antibodies to a tumor-associated antigen: biologic activity of the four human IgG subclasses. J. Natl. Cancer. Inst. 80, 1553–1559.

    Article  PubMed  CAS  Google Scholar 

  17. Steplewski, Z., Sun, L. K., Shearman, C. W., et al. (1988) Biological activity of human-mouse IgG1, IgG2, IgG3, and IgG4 chimeric monoclonal antibodies with antitumor specificity. Proc. Natl. Acad. Sci. USA 85, 4852–4856.

    Article  PubMed  CAS  Google Scholar 

  18. LoBuglio, A. F., Wheeler, R. H., Trang, J., et al. (1989) Mouse/human chimeric antibody in man; Kinetics and immune response. Proc. Natl. Acad. Sci. USA 86, 4220–4224.

    Article  PubMed  CAS  Google Scholar 

  19. Khazaeli, M. B., Saleh, M. N., Liu, T. P., et al. (1991) Pharmacokinetics and immune response of 131I-chimeric mouse/human B72.3 (human gamma 4) monoclonal antibody in humans. Cancer Res. 51, 5461–5466.

    PubMed  CAS  Google Scholar 

  20. Maloney, D. G., Liles, T. M., Czerwinski, D. K., et al. (1994) Phase I clinical trial using escalating singledose infusion of chimeric anti-CD20 monoclonal antibody (IDEC-C2B8) in patients with recurrent B-cell lymphoma. Blood 84, 2457–2466.

    PubMed  CAS  Google Scholar 

  21. Stashenko, P., Nadler, L. M., Hardy, R., and Schlossman, S. F. (1980) Characterization of a human B lymphocytespecific antigen. J. Immunol. 125, 1678–1685.

    PubMed  CAS  Google Scholar 

  22. Maloney, D. G., Grillo-Lopez, A. J., White, C. A., et al. (1997) IDEC-C2B8 (Rituximab) anti-CD20 monoclonal antibody therapy in patients with relapsed low-grade non-Hodgkin’s lymphoma. Blood 90, 2188–2195.

    PubMed  CAS  Google Scholar 

  23. McLaughlin, P., Grillo-Lopez, A. J., Link, B. K., et al. (1998) Rituximab chimeric anti-CD20 monoclonal antibody therapy for relapsed indolent lymphoma: half of patients respond to a four-dose treatment program. J. Clin. Oncol. 16, 2825–2833.

    PubMed  CAS  Google Scholar 

  24. Berinstein, N. L., Grillo-Lopez, A. J., White, C. A., et al. (1998) Association of serum Rituximab (IDEC-C2B8) concentration and anti-tumor response in the treatment of recurrent low-grade or follicular non-Hodgkin’s lymphoma. Ann. Oncol. 9, 995–1001.

    Article  PubMed  CAS  Google Scholar 

  25. Coiffier, B., Haioun, C., Ketterer, N., Engert, Aet al. (1998) Rituximab (anti-CD20 monoclonal antibody) for the treatment of patients with relapsing or refractory aggressive lymphoma: a multicenter phase II study. Blood 92, 1927–1932.

    PubMed  CAS  Google Scholar 

  26. Coiffier, B., Lepage, E., Briere, J., et al. (2002) CHOP chemotherapy plus rituximab compared with CHOP alone in elderly patients with diffuse large-B-cell lymphoma. N. Engl. J. Med. 346, 235–242.

    Article  PubMed  CAS  Google Scholar 

  27. Czuczman, M. S., Grillo-Lopez, A. J., White, C. A., et al. (1999) Treatment of patients with low-grade B-cell lymphoma with the combination of chimeric anti-CD20 monoclonal antibody and CHOP chemotherapy. J. Clin. Oncol. 17, 268–276.

    PubMed  CAS  Google Scholar 

  28. Colombat, P., Salles, G., Brousse, N., et al. (2001) Rituximab (anti-CD20 monoclonal antibody) as single first-line therapy for patients with follicular lymphoma with a low tumor burden: clinical and molecular evaluation. Blood 97, 101–106.

    Article  PubMed  CAS  Google Scholar 

  29. Behr, T. M., Wormann, B., Gramatzki, M., et al. (1999) Low-versus high-dose radioimmunotherapy with humanized anti-CD22 or chimeric anti-CD20 antibodies in a broad spectrum of B cell-associated malignancies. Clin. Cancer Res. 5, 3304s-3314s.

    PubMed  CAS  Google Scholar 

  30. Buckstein, R., Imrie, K., Spaner, D., et al. (1999) Stem cell function and engraftment is not affected by “in vivo purging” with rituximab for autologous stem cell treatment for patients with low- grade non-Hodgkin’s lymphoma. Semin. Oncol. 26, 115–122.

    PubMed  CAS  Google Scholar 

  31. Mangel, J., Buckstein, R., Imrie, K., et al. (2002) Immunotherapy with rituximab following high-dose therapy and autologous stem-cell transplantation for mantle cell lymphoma. Semin. Oncol. 29, 56–69.

    Article  PubMed  CAS  Google Scholar 

  32. Cheson, B. D. (2002) Rituximab: clinical development and future directions. Expert Opin. Biol. Ther. 2, 97–110.

    Article  PubMed  CAS  Google Scholar 

  33. Prewett, M., Rockwell, P., Rockwell, R. F., et al. (1996) The biologic effects of C225, a chimeric monoclonal antibody to the EGFR, on human prostate carcinoma. J. Immunother. Emphasis Tumor Immunol. 19, 419–427.

    PubMed  CAS  Google Scholar 

  34. Baselga, J., Pfister, D., Cooper, M. R., et al. (2000) Phase I studies of anti-epidermal growth factor receptor chimeric antibody C225 alone and in combination with cisplatin. J. Clin. Oncol. 18, 904–914.

    PubMed  CAS  Google Scholar 

  35. Shin, D. M., Donato, N. J., Perez-Soler, R., et al. (2001) Epidermal growth factor receptor-targeted therapy with C225 and cisplatin in patients with head and neck cancer. Clin. Cancer Res. 7, 1204–1213.

    PubMed  CAS  Google Scholar 

  36. Jones, P. T., Dear, P. H., Foote, J., et al. (1986) Replacing the complementarity-determining regions in a human antibody with those from a mouse. Nature 321, 522–525.

    Article  PubMed  CAS  Google Scholar 

  37. Chothia, C. and Lesk, A. M. (1987) Canonical structures for the hypervariable regions of immunoglobulins. J. Mol. Biol. 196, 901–917.

    Article  PubMed  CAS  Google Scholar 

  38. Chothia, C., Lesk, A. M., Tramontano, A., et al. (1989) Conformations of immunoglobulin hypervariable regions. Nature 342, 877–883.

    Article  PubMed  CAS  Google Scholar 

  39. Riechmann, L., Clark, M., Waldmann, H., and Winter, G. (1988) Reshaping human antibodies for therapy. Nature 332, 323–327.

    Article  PubMed  CAS  Google Scholar 

  40. Queen, C., Schneider, W. P., Selick, H. E., et al. (1989) A humanized antibody that binds to the interleukin 2 receptor. Proc. Natl. Acad. Sci USA 86, 10029–10033.

    Article  PubMed  CAS  Google Scholar 

  41. Kettelborough, C. A., Saldanha, J., Heath, V. J., et al. (1991) Humanization of a mouse monoclonal antibody by CDR-grafting: the importance of framework residues on loop conformation. Protein Eng. 4, 773–783.

    Article  Google Scholar 

  42. Co, M. S., Avdalovic, N. M., Caron, P. C., et al. (1992) Chimeric and humanized antibodies with specificity for the CD33 antigen. J. Immunol 148, 1149–1154.

    PubMed  CAS  Google Scholar 

  43. Padlan, E. A. (1991) A possible procedure for reducing the immunogenicity of antibody variable domains while preserving their ligand-binding properties. Mol. Immunol. 28, 489–498.

    Article  PubMed  CAS  Google Scholar 

  44. Roguska, M. A., Pedersen, J. T., Keddy, C. A., et al. (1994) Humanization of murine monoclonal antibodies through variable domain resurfacing. Proc. Natl. Acad. Sci. USA 91, 969–973.

    Article  PubMed  CAS  Google Scholar 

  45. Caldas, C., Coelho, V. P., Rigden, D. J., et al. (2000) Design and synthesis of germline-based hemi-humanized single-chain Fv against the CD18 surface antigen. Protein Eng. 13, 353–360.

    Article  PubMed  CAS  Google Scholar 

  46. Tan, P., Mitchell, D. A., Buss, T. N., et al. (2002) “Superhumanized” Antibodies: Reduction of Immunogenic Potential by Complementarity-Determining Region Grafting with Human Germline Sequences: Application to an Anti-CD28. J. Immunol. 169, 1119–1125.

    PubMed  CAS  Google Scholar 

  47. Iwahashi, M., Milenic, D. E., Padlan, E. A et al. (1999) CDR substitutions of a humanized monoclonal antibody (CC49): contributions of individual CDRs to antigen binding and immunogenicity. Mol. Immunol. 36, 1079–1091.

    Article  PubMed  CAS  Google Scholar 

  48. Tamura, M., Milenic, D. E., Iwahashi, M., et al. (2000) Structural correlates of an anticarcinoma antibody: identification of specificity-determining residues (SDRs) and development of a minimally immunogenic antibody variant by retention of SDRs only. J. Immunol. 164, 1432–1441.

    PubMed  CAS  Google Scholar 

  49. Carter, P., Presta, L., Gorman, C. M., et al. (1992) Humanization of an anti-p185HER2 antibody for human cancer therapy. Proc. Natl. Acad. Sci. USA 89, 4285–4289.

    Article  PubMed  CAS  Google Scholar 

  50. Coussens, L., Yang-Feng, T. L., Liao, Y. C., et al. (1985) Tyrosine kinase receptor with extensive homology to EGF receptor shares chromosomal location with neu oncogene. Science 230, 1132–1139.

    Article  PubMed  CAS  Google Scholar 

  51. Slamon, D. J., Clark, G. M., Wong, S. G., et al. (1987) Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science 235, 177–182.

    Article  PubMed  CAS  Google Scholar 

  52. Borg, A., Tandon, A. K., Sigurdsson, H., et al. (1990) HER-2/neu amplification predicts poor survival in nodepositive breast cancer. Cancer Res 50, 4332–4337.

    PubMed  CAS  Google Scholar 

  53. Baselga, J., Tripathy, D., Mendelsohn, J., et al. (1996) Phase II study of weekly intravenous recombinant humanized anti- p185HER2 monoclonal antibody in patients with HER2/neu-overexpressing metastatic breast cancer. J. Clin. Oncol. 14, 737–744.

    PubMed  CAS  Google Scholar 

  54. Cobleigh, M. A., Vogel, C. L., Tripathy, D., et al. (1999) Multinational study of the efficacy and safety of humanized anti-HER2 monoclonal antibody in women who have HER2-overexpressing metastatic breast cancer that has progressed after chemotherapy for metastatic disease. J. Clin. Oncol. 17, 2639–2648.

    PubMed  CAS  Google Scholar 

  55. Vici, P., Belli, F., Di Lauro, L., et al. (2001) Docetaxel in patients with anthracycline-resistant advanced breast cancer. Oncology 60, 60–65.

    Article  PubMed  CAS  Google Scholar 

  56. Baselga, J., Norton, L., Albanell, J., et al. (1998) Recombinant humanized anti-HER2 antibody (Herceptin) enhances the antitumor activity of paclitaxel and doxorubicin against HER2/neu overexpressing human breast cancer xenografts. Cancer Res. 58, 2825–2831.

    PubMed  CAS  Google Scholar 

  57. Pietras, R. J., Pegram, M. D., Finn, R. S., et al. (1998) Remission of human breast cancer xenografts on therapy with humanized monoclonal antibody to HER-2 receptor and DNA-reactive drugs. Oncogene 17, 2235–2249.

    Article  PubMed  CAS  Google Scholar 

  58. Slamon, D. J., Leyland-Jones, B., Shak, S., et al. (2001) Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N. Engl. J. Med. 344, 783–792.

    Article  PubMed  CAS  Google Scholar 

  59. Seidman, A., Hudis, C., Pierri, M. Ket al. (2002) Cardiac dysfunction in the trastuzumab clinical trials experience. J. Clin. Oncol. 20, 1215–1221.

    Article  PubMed  CAS  Google Scholar 

  60. Pegram, M. D., Lipton, A., Hayes, D. F., et al. (1998) Phase II study of receptor-enhanced chemosensitivity using recombinant humanized anti-p185HER2/neu monoclonal antibody plus cisplatin in patients with HER2/neu-overexpressing metastatic breast cancer refractory to chemotherapy treatment. J. Clin. Oncol. 16, 2659–2671.

    PubMed  CAS  Google Scholar 

  61. Burstein, H. J., Kuter, I., Campos, S. M., et al. (2001) Clinical activity of trastuzumab and vinorelbine in women with HER2- overexpressing metastatic breast cancer. J. Clin. Oncol. 19, 2722–2730.

    PubMed  CAS  Google Scholar 

  62. Jahanzeb, M., Mortimer, J. E., Yunus, Fet al. (2002) Phase II trial of weekly vinorelbine and trastuzumab as first-line therapy in patients with HER2(+) metastatic breast cancer. Oncologist 7, 410–417.

    Article  PubMed  CAS  Google Scholar 

  63. Slamon, D., and Pegram, M. (2001) Rationale for trastuzumab (Herceptin) in adjuvant breast cancer trials. Semin. Oncol. 28, 13–19.

    Article  PubMed  CAS  Google Scholar 

  64. Lundin, J., Kimby, E., Bjorkholm, M., et al. (2002) Phase II trial of subcutaneous anti-CD52 monoclonal antibody alemtuzumab (Campath-1H) as first-line treatment for patients with B- cell chronic lymphocytic leukemia (B-CLL). Blood 100, 768–773.

    Article  PubMed  CAS  Google Scholar 

  65. Rai, K. R., Freter, C. E., Mercier, R. J., et al. (2002) Alemtuzumab in previously treated chronic lymphocytic leukemia patients who also had received fludarabine. J. Clin. Oncol. 20, 3891–3897.

    Article  PubMed  CAS  Google Scholar 

  66. Hale, G., Slavin, S., Goldman, J. M., Mackinnon, S., et al. (2002) Alemtuzumab (Campath-1H) for treatment of lymphoid malignancies in the age of nonmyeloablative conditioning? Bone Marrow Transplant 30, 797–804.

    Article  PubMed  CAS  Google Scholar 

  67. Lundin, J., Hagberg, H., Repp, R., et al. (2003) Phase II study of alemtuzumab (anti-CD52 monoclonal antibody, Campath- 1H) in patients with advanced mycosis fungoides/Sezary syndrome. Blood 23, 23.

    Google Scholar 

  68. Lundin, J., Osterborg, A., Brittinger, G., et al. (1998) CAMPATH-1H monoclonal antibody in therapy for previously treated low- grade non-Hodgkin’s lymphomas: a phase II multicenter study. European Study Group of CAMPATH-1H Treatment in Low-Grade Non-Hodgkin’s Lymphoma. J. Clin. Oncol. 16, 3257–3263.

    PubMed  CAS  Google Scholar 

  69. Miller, J. L. (2000) FDA approves antibody-directed cytotoxic agent for acute myeloid leukemia. Am. J. Health Syst. Pharm. 57, 1202, 1204.

    Google Scholar 

  70. Better, M., Chang, C. P., Robinson, R. R., and Horwitz, A. H. (1988) Escherichia coli secretion of an active chimeric antibody fragment. Science 240, 1041–1043.

    Article  PubMed  CAS  Google Scholar 

  71. Skerra, A., and Pluckthun, A. (1988) Assembly of a functional immunoglobulin Fv fragment in Escherichia coli. Science 240, 1038–1041.

    Article  PubMed  CAS  Google Scholar 

  72. Glockshuber, R., Malia, M., Pfitzinger, I., and Pluckthun, A. (1990) A comparison of strategies to stabilize immunoglobulin Fv-fragments. Biochemistry 29, 1362–1367.

    Article  PubMed  CAS  Google Scholar 

  73. Bird, R. E., Hardman, K. D., Jacobson, J. W., et al. (1988) Single-chain antigen-binding proteins. Science 242, 423–426.

    Article  PubMed  CAS  Google Scholar 

  74. Huston, J. S., Levinson, D., Mudgett-Hunter, M., et al. (1988) Protein engineering of antibody binding sites: recovery of specific activity in an anti-digoxin single-chain Fv analogue produced in Escherichia coli. Proc. Natl. Acad. Sci. USA 85, 5879–5883.

    Article  PubMed  CAS  Google Scholar 

  75. Brinkmann, U., Reiter, Y., Jung, S. H., et al. (1993) A recombinant immunotoxin containing a disulfide-stabilized Fv fragment. Proc. Natl. Acad. Sci. USA. 90, 7538–7542.

    Article  PubMed  CAS  Google Scholar 

  76. Reiter, Y., Brinkmann, U., Jung, S. H., et al. (1994) Improved binding and antitumor activity of a recombinant anti-erbB2 immunotoxin by disulfide stabilization of the Fv fragment. J. Biol. Chem. 269, 18327–18331.

    PubMed  CAS  Google Scholar 

  77. Chaudhary, V. K., Queen, C., Junghans, R. P., et al. (1989) A recombinant immunotoxin consisting of two antibody variable domains fused to Pseudomonas exotoxin. Nature 339, 394–397.

    Article  PubMed  CAS  Google Scholar 

  78. Batra, J. K., Fitzgerald, D. J., Chaudhary, V. K., and Pastan, I. (1991) Single-chain immunotoxins directed at the human transferrin receptor containing Pseudomonas exotoxin A or diphtheria toxin: anti-TFR(Fv)-PE40 and DT388-anti-TFR(Fv). Mol. Cell Biol. 11, 2200–2205.

    PubMed  CAS  Google Scholar 

  79. Brinkmann, U., Pai, L. H., FitzGerald, D. J., et al. (1991) B3(Fv)-PE38KDEL, a single-chain immunotoxin that causes complete regression of a human carcinoma in mice. Proc. Natl. Acad. Sci. USA 88, 8616–8620.

    Article  Google Scholar 

  80. Newton, D. L., Nicholls, P. J., Rybak, S. M., and Youle, R. J. (1994) Expression and characterization of recombinant human eosinophil-derived neurotoxin and eosinophil-derived neurotoxin-anti-transferrin receptor sFv. J. Biol. Chem. 269, 26739–26745.

    PubMed  CAS  Google Scholar 

  81. Newton, D. L., Xue, Y., Olson, K. A., et al. (1996) Angiogenin single-chain immunofusions: influence of peptide linkers and spacers between fusion protein domains. Biochemistry 35, 545–553.

    Article  PubMed  CAS  Google Scholar 

  82. Zewe, M., Rybak, S. M., Dubel, S., et al. (1997) Cloning and cytotoxicity of a human pancreatic RNase immunofusion. Immunotechnology 3, 127–136.

    Article  PubMed  CAS  Google Scholar 

  83. Bosslet, K., Czech, J., Lorenz, P., et al. (1992) Molecular and functional characterisation of a fusion protein suited for tumour specific prodrug activiation. Br. J. Cancer. 65, 234–238.

    PubMed  CAS  Google Scholar 

  84. Rodrigues, M. L., Presta, L. G., Kotts, C. E., et al. (1995) Development of a humanized disulfide-stabilized anti-p185HER2 Fv-beta- lactamase fusion protein for activation of a cephalosporin doxorubicin prodrug. Cancer Res. 55, 63–70.

    PubMed  CAS  Google Scholar 

  85. Haisma, H. J., Sernee, M. F., Hooijberg, E., et al. (1998) Construction and characterization of a fusion protein of single-chain anti-CD20 antibody and human beta-glucuronidase for antibody-directed enzyme prodrug therapy. Blood 92, 184–190.

    PubMed  CAS  Google Scholar 

  86. Colcher, D., Pavlinkova, G., Beresford, G., et al. (1999) Single-chain antibodies in pancreatic cancer. Ann. NY Acad. Sci. 880, 263–280.

    Article  PubMed  CAS  Google Scholar 

  87. Rosenblum, M. G., Horn, S. A., and Cheung, L. H. (2000) A novel recombinant fusion toxin targeting HER-2/NEU-over-expressing cells and containing human tumor necrosis factor. Int. J. Cancer 88, 267–273.

    Article  PubMed  CAS  Google Scholar 

  88. Xu, X., Clarke, P., Szalai, G., et al. (2000) Targeting and therapy of carcinoembryonic antigen-expressing tumors in transgenic mice with an antibody-interleukin 2 fusion protein. Cancer Res. 60, 4475–4484.

    PubMed  CAS  Google Scholar 

  89. Biragyn, A., Tani, K., Grimm, M. C., et al. (1999) Genetic fusion of chemokines to a self tumor antigen induces protective, T-cell dependent antitumor immunity. Nat. Biotechnol. 17, 253–258.

    Article  PubMed  CAS  Google Scholar 

  90. Kostelny, S. A., Cole, M. S., and Tso, J. Y. (1992) Formation of a bispecific antibody by the use of leucine zippers. J. Immunol. 148, 1547–1553.

    PubMed  CAS  Google Scholar 

  91. Gruber, M., Schodin, B. A., Wilson, E. R., and Kranz, D. M. (1994) Efficient tumor cell lysis mediated by a bispecific single chain antibody expressed in Escherichia coli. J. Immunol. 152, 5368–5374.

    PubMed  CAS  Google Scholar 

  92. Holliger, P., Brissinck, J., Williams, R. L., et al. (1996) Specific killing of lymphoma cells by cytotoxic T-cells mediated by a bispecific diabody. Prot. Eng. 9, 299–305.

    Article  CAS  Google Scholar 

  93. Zhu, Z., Zapata, G., Shalaby, R., et al. (1996) High-Level secretion of a humanized bispecific diabody from Escherichia coli. Biotechnology 14, 192–196.

    Article  PubMed  CAS  Google Scholar 

  94. Kipriyanov, S. M., Moldenhauer, G., Srauss, G., and Little, M. (1998) Bispecific CD3 x CD19 diabody for T cell-mediated lysis of malignant human B cells. Int. J. Cancer 77, 763–772.

    Article  PubMed  CAS  Google Scholar 

  95. Manzke, O., Fitzgerald, K. J., Holliger, P., et al. (1999) CD3X anti-nitrophenyl bispecific diabodies: universal immunotherapeutic tools for retargeting T cells to tumors. Int. J. Cancer 82, 700–708.

    Article  PubMed  CAS  Google Scholar 

  96. Arndt, M. A., Krauss, J., Kipriyanov, S. M., Pfreundschuh, M., and Little, M. (1999) A bispecific diabody that mediates natural killer cell cytotoxicity against xenotransplantated human Hodgkin’s tumors. Blood 94, 2562–2568.

    PubMed  CAS  Google Scholar 

  97. Coloma, M. J., and Morrison, S. L. (1997) Design and production of novel tetravalent bispecific antibodies. Nat. Biotechnol. 15, 159–163.

    Article  PubMed  CAS  Google Scholar 

  98. Alt, M., Muller, R., and Kontermann, R. E. (1999) Novel tetravalent and bispecific IgG-like antibody molecules combining single-chain diabodies with the immunoglobulin gammal Fc or CH3 region. FEBS Lett. 454, 90–94.

    Article  PubMed  CAS  Google Scholar 

  99. Kipriyanov, S. M., Moldenhauer, G., Schuhmacher, J., et al. (1999) Bispecific tandem diabody for tumor therapy with improved antigen binding and pharmacokinetics. J. Mol. Biol. 293, 41–56.

    Article  PubMed  CAS  Google Scholar 

  100. Gross, G., and Eshhar, Z. (1992) Endowing T cells with antibody specificity using chimeric T cell receptors. Faseb J. 6, 3370–3378.

    PubMed  CAS  Google Scholar 

  101. Eshhar, Z., Waks, T., Gross, G., and Schindler, D. G. (1993) Specific activation and targeting of cytotoxic lymphocytes through chimeric single chains consisting of antibody-binding domains and the gamma or zeta subunits of the immunoglobulin and T-cell receptors. Proc. Natl. Acad. Sci. USA 90, 720–724.

    Article  PubMed  CAS  Google Scholar 

  102. Hombach, A., Heuser, C., Sircar, R., et al. (1997) T cell targeting of TAG72+ tumor cells by a chimeric receptor with antibody-like specificity for a carbohydrate epitope. Gastroenterology 113, 1163–1170.

    Article  PubMed  CAS  Google Scholar 

  103. Hombach, A., Schneider, C., Sent, D., et al. (2000) An entirely humanized CD3 zeta-chain signaling receptor that directs peripheral blood t cells to specific lysis of carcinoembryonic antigen- positive tumor cells. Int. J. Cancer 88, 115–120.

    Article  PubMed  CAS  Google Scholar 

  104. Kreitman, R. J., Wilson, W. H., Bergeron, K., et al. (2001) Efficacy of the anti-CD22 recombinant immunotoxin BL22 in chemotherapy- resistant hairy-cell leukemia. N. Engl. J. Med. 345, 241–247.

    Article  PubMed  CAS  Google Scholar 

  105. Smith, G. P. (1985) Filamentous fusion phage: Novel expression vectors that display cloned antigens on the virion surface. Science 228, 1315–1317.

    Article  PubMed  CAS  Google Scholar 

  106. McCafferty, J., Griffiths, A. D., Winter, G., and Chiswell, D. J. (1990) Phage antibodies: filamentous phage displaying antibody variable domains. Nature 348, 552–554.

    Article  PubMed  CAS  Google Scholar 

  107. Saiki, R. K., Scharf, S., Faloona, F., et al. (1985) Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science 230, 1350–1354.

    Article  PubMed  CAS  Google Scholar 

  108. Barbas, C. F., III, Kang, A. S., Lerner, R. A., and Benkovic, S. J. (1991) Assembly of combinatorial antibody libraries on phage surfaces: the gene III site. Proc. Natl. Acad. Sci. USA 88, 7978–7982.

    Article  PubMed  CAS  Google Scholar 

  109. Breitling, F., Dubel, S., Seehaus, T., et al. (1991) A surface expression vector for antibody screening. Gene 104, 147–153.

    Article  PubMed  CAS  Google Scholar 

  110. Hoogenboom, H. R., Griffiths, A. D., Johnson, K. S., et al. (1991) Multi-subunit proteins on the surface of filamentous phage: methodologies for displaying antibody (Fab) heavy and light chains. Nucleic Acids Res. 19, 4133–4137.

    Article  PubMed  CAS  Google Scholar 

  111. Winter, G., Griffiths, A. D., Hawkins, R. E., and Hoogenboom, H. R. (1994) Making antibodies by phage display technology. Annu. Rev. Immunol. 12, 433–455.

    Article  PubMed  CAS  Google Scholar 

  112. Cai, X., and Garen, A. (1995) Anti-melanoma antibodies from melanoma patients immunized with genetically modified autologous tumor cells: selection of specific antibodies from single-chain Fv fusion phage libraries. Proc. Natl. Acad. Sci. USA 92, 6537–6541.

    Article  PubMed  CAS  Google Scholar 

  113. Welschof, M., Terness, P., Kipriyanov, S. M., et al. (1997) The antigen-binding domain of a human IgG-anti-F(ab)2 autoantibody. Proc. Natl. Acad. Sci. USA 94, 1902–1907.

    Article  PubMed  CAS  Google Scholar 

  114. Clackson, T., Hoogenboom, H. R., Griffiths, A. D., and Winter, G. (1991) Making antibody fragments using phage display libraries. Nature 352, 624–628.

    Article  PubMed  CAS  Google Scholar 

  115. Chester, K. A., Begent, R. H. J., Robson, L., et al. (1994) Phage libraries for generation of clinically useful antibodies. Lancet 343, 455–456.

    Article  PubMed  CAS  Google Scholar 

  116. Kettleborough, C. A., Ansell, K. H., Allen, R. W., et al. (1994) Isolation of tumor cell-specific single-chain Fv from immunized mice using phage-antibody libraries and the re-construction of whole antibodies from these antibody fragments. Eur. J. Immunol. 24, 952–958.

    Article  PubMed  CAS  Google Scholar 

  117. Marks, J. D., Hoogenboom, H. R., Bonnert, T. P et al. (1991) By-passing immunization. Human antibodies from V-gene libraries displayed on phage. J. Mol. Biol. 222, 581–597.

    Article  PubMed  CAS  Google Scholar 

  118. Sheets, M. D., Amersdorfer, P., Finnern, R., et al. (1998) Efficient construction of a large nonimmune phage antibody library: the production of high-affinity human single-chain antibodies to protein antigens. Proc. Natl. Acad. Sci. USA 95, 6157–6162.

    Article  PubMed  CAS  Google Scholar 

  119. de Haard, H. J., van Neer, N., Reurs, A., et al. (1999) A large non-immunized human Fab fragment phage library that permits rapid isolation and kinetic analysis of high affinity antibodies. J. Biol. Chem. 274, 18218–18230.

    Article  PubMed  Google Scholar 

  120. Little, M., Welschof, M., Braunagel, M., et al. (1999) Generation of a large complex antibody library from multiple donors. J. Immunol. Methods. 231, 3–9.

    Article  PubMed  CAS  Google Scholar 

  121. Barbas, C. F., III, Bain, J. D., Hoekstra, D. M., and Lerner, R. A. (1992) Semisynthetic combinatorial antibody libraries: Achemical solution to the diversity problem. Proc. Natl. Acad. Sci. USA 89, 4457–4461.

    Article  PubMed  CAS  Google Scholar 

  122. Hoogenboom, H. R., and Winter, G. (1992) By-passing immunisation. Human antibodies from synthetic repertoires of germline VH gene segments rearranged in vitro. J. Mol. Biol. 227, 381–388.

    Article  PubMed  CAS  Google Scholar 

  123. Griffiths, A. D., Williams, S. C., Hartley, O., et al. (1994) Isolation of high affinity human antibodies directly from large synthetic repertoires. Embo J. 13, 3245–3260.

    PubMed  CAS  Google Scholar 

  124. Braunagel, M., and Little, M. (1997) Construction of a semisynthetic antibody library using trinucleotide oligos. Nucleic Acids Res. 25, 4690–4691.

    Article  PubMed  CAS  Google Scholar 

  125. Knappik, A., Ge, L., Honegger, A., et al. (2000) Fully synthetic human combinatorial antibody libraries (HuCAL) based on modular consensus frameworks and CDRs randomized with trinucleotides. J. Mol. Biol. 296, 57–86.

    Article  PubMed  CAS  Google Scholar 

  126. Hanes, J., and Pluckthun, A. (1997) In vitro selection and evolution of functional proteins by using ribosome display. Proc. Natl. Acad. Sci. USA 94, 4937–4942.

    Article  PubMed  CAS  Google Scholar 

  127. He, M., and Taussig, M. J. (1997) Antibody-ribosome-mRNA (ARM) complexes as efficient selection particles for in vitro display and evolution of antibody combining sites. Nucleic Acids Res. 25, 5132–5134.

    Article  PubMed  CAS  Google Scholar 

  128. Hamers-Casterman, C., Atarhouch, T., Muyldermans, S., et al. (1993) Naturally occurring antibodies devoid of light chains. Nature 363, 446–448.

    Article  PubMed  CAS  Google Scholar 

  129. Arbabi Ghahroudi, M., Desmyter, A., Wyns, L., et al. (1997) Selection and identification of single domain antibody fragments from camel heavy-chain antibodies. FEBS Lett 414, 521–526.

    Article  PubMed  CAS  Google Scholar 

  130. Muyldermans, S., and Lauwereys, M. (1999) Unique single-domain antigen binding fragments derived from naturally occurring camel heavy-chain antibodies. J. Mol. Recognit. 12, 131–140.

    Article  PubMed  CAS  Google Scholar 

  131. Reiter, Y., Schuck, P., Boyd, L. F., and Plaksin, D. (1999) An antibody single-domain phage display library of a native heavy chain variable region: Isolation of functional single-domain VH molecules with a unique interface. J. Mol. Biol. 290, 685–698.

    Article  PubMed  CAS  Google Scholar 

  132. Begent, R. H., Verhaar, M. J., Chester, K. A., et al. (1996) Clinical evidence of efficient tumor targeting based on single-chain Fv antibody selected from a combinatorial library. Nat. Med. 2, 979–984.

    Article  PubMed  CAS  Google Scholar 

  133. Mayer, A., Tsiompanou, E., O’Malley, D., et al. (2000) Radioimmunoguided surgery in colorectal cancer using a genetically engineered anti-CEA single-chain Fv antibody. Clin. Cancer Res. 6, 1711–1719.

    PubMed  CAS  Google Scholar 

  134. Carson, D. A., and Freimark, B. D. (1986) Human lymphocyte hybridomas and monoclonal antibodies. Adv. Immunol. 38, 275–311.

    PubMed  CAS  Google Scholar 

  135. Bruggemann, M., Spicer, C., Buluwela, L., et al. (1991) Human antibody production in transgenic mice: expression from 100 kb of the human IgH locus. Eur. J. Immunol. 21, 1323–1326.

    Article  PubMed  CAS  Google Scholar 

  136. Taylor, L. D., Carmack, C. E., Schramm, S. R., et al. (1992) A transgenic mouse that expresses a diversity of human sequence heavy and light chain immunoglobulins. Nucleic Acids Res. 20, 6287–6295.

    Article  PubMed  CAS  Google Scholar 

  137. Lonberg, N., Taylor, L. D., Harding, F. A., et al. (1994) Antigen-specific human antibodies from mice comprising four distinct genetic modifications. Nature 368, 856–859.

    Article  PubMed  CAS  Google Scholar 

  138. Nicholson, I. C., Zou, X., Popov, A. V., et al. (1999) Antibody repertoires of four- and five-feature translocus mice carrying human immunoglobulin heavy chain and kappa and lambda light chain yeast artificial chromosomes. J. Immunol. 163, 6898–6906.

    PubMed  CAS  Google Scholar 

  139. Tomizuka, K., Shinohara, T., Yoshida, H., et al. (2000) Double trans-chromosomic mice: maintenance of two individual human chromosome fragments containing Ig heavy and kappa loci and expression of fully human antibodies. Proc. Natl. Acad. Sci. USA 97, 722–727.

    Article  PubMed  CAS  Google Scholar 

  140. Koprowski, H., Herlyn, D., Lubeck, M., et al. (1984) Human anti-idiotype antibodies in cancer patients: Is the modulation of the immune response beneficial for the patient? Proc. Natl. Acad. Sci. USA 81, 216–219.

    Article  PubMed  CAS  Google Scholar 

  141. LoBuglio, A. F., Saleh, M. N., Lee, J., et al. (1988) Phase I trial of multiple large doses of murine monoclonal antibody CO17-1A. I. Clinical aspects. J. Natl. Cancer Inst. 80, 932–936.

    Article  PubMed  CAS  Google Scholar 

  142. Riethmuller, G., Schneider-Gadicke, E., Schlimok, G., et al. (1994) Randomised trial of monoclonal antibody for adjuvant therapy of resected Dukes’ C colorectal carcinoma. German Cancer Aid 17-1A Study Group. Lancet 343, 1177–1183.

    Article  PubMed  CAS  Google Scholar 

  143. Gruber, R., van Haarlem, L. J., Warnaar, S. O., et al. (2000) The human antimouse immunoglobulin response and the anti-idiotypic network have no influence on clinical outcome in patients with minimal residual colorectal cancer treated with monoclonal antibody CO17-1A. Cancer Res. 60, 1921–1926.

    PubMed  CAS  Google Scholar 

  144. Jerne, N. K. (1974) Towards a network theory of the immune system. Ann. Immunol. (Paris) 125C, 373–389.

    CAS  Google Scholar 

  145. Frodin, J. E., Faxas, M. E., Hagstrom, B., et al. (1991) Induction of anti-idiotypic (ab2) and anti-anti-idiotypic (ab3) antibodies in patients treated with the mouse monoclonal antibody 17-1A (ab1). Relation to the clinical outcome—an important antitumoral effector function? Hybridoma 10, 421–431.

    Article  PubMed  CAS  Google Scholar 

  146. Cheung, N. K., Cheung, I. Y., Canete, A., et al. (1994) Antibody response to murine anti-GD2 monoclonal antibodies: correlation with patient survival. Cancer Res. 54, 2228–2233.

    PubMed  CAS  Google Scholar 

  147. Cheung, N. K., Guo, H. F., Heller, G., and Cheung, I. Y. (2000) Induction of Ab3 and Ab3′ antibody was associated with long-term survival after anti-G(D2) antibody therapy of stage 4 neuroblastoma. Clin. Cancer Res. 6, 2653–2660.

    PubMed  CAS  Google Scholar 

  148. Nadler, L. M., Stashenko, P., Hardy, R., et al. (1980) Serotherapy of a patient with a monoclonal antibody directed against a human lymphoma-associated antigen. Cancer Res. 40, 3147–3154.

    PubMed  CAS  Google Scholar 

  149. Miller, R. A., and Levy, R. (1981) Response of cutaneous T cell lymphoma to therapy with hybridoma monoclonal antibody. Lancet 2, 226–230.

    Article  PubMed  CAS  Google Scholar 

  150. Cobbold, S. P., and Waldmann, H. (1984) Therapeutic potential of monovalent monoclonal antibodies. Nature 308, 460–462.

    Article  PubMed  CAS  Google Scholar 

  151. Sahin, U., Tureci, O., Schmitt, H., et al. (1995) Human neoplasms elicit multiple specific immune responses in the autologous host. Proc. Natl. Acad. Sci. USA 92, 11810–11813.

    Article  PubMed  CAS  Google Scholar 

  152. Barth, S., Weidenmuller, U., Tur, M. K., et al. (2000) Combining phage display and screening of cDNA expression libraries: a new approach for identifying the target antigen of an scFv preselected by phage display. J. Mol. Biol. 301, 751–757.

    Article  PubMed  CAS  Google Scholar 

  153. Chames, P., Hufton, S. E., Coulie, P. G., et al. (2000) Direct selection of a human antibody fragment directed against the tumor T-cell epitope HLA-A1-MAGE-A1 from a nonimmunized phage-Fab library. Proc. Natl. Acad. Sci. USA 97, 7969–7974.

    Article  PubMed  CAS  Google Scholar 

  154. Li, J., Pereira, S., Van Belle, P., et al. (2001) Isolation of the melanoma-associated antigen p23 using antibody phage display. J. Immunol. 166, 432–438.

    PubMed  CAS  Google Scholar 

  155. Herlyn, D. M., Steplewski, Z., Herlyn, M. F., and Koprowski, H. (1980) Inhibition of growth of colorectal carcinoma in nude mice by monoclonal antibody. Cancer Res. 40, 717–721.

    PubMed  CAS  Google Scholar 

  156. Hellstrom, I., Brown, J. P., and Hellstrom, K. E. (1981) Monoclonal antibodies to two determinants of melanoma-antigen p97 act synergistically in complement-dependent cytotoxicity. J. Immunol. 127, 157–160.

    PubMed  CAS  Google Scholar 

  157. Herlyn, D., and Koprowski, H. (1982) IgG2a monoclonal antibodies inhibit human tumor growth through interaction with effector cells. Proc. Natl. Acad. Sci. USA 79, 4761–4765.

    Article  PubMed  CAS  Google Scholar 

  158. Adams, D. O., Hall, T., Steplewski, Z., and Koprowski, H. (1984) Tumors undergoing rejection induced by monoclonal antibodies of the IgG2a isotype contain increased numbers of macrophages activated for a distinctive form of antibody-dependent cytolysis. Proc. Natl. Acad. Sci. USA 81, 3506–3510.

    Article  PubMed  CAS  Google Scholar 

  159. Herlyn, D., Herlyn, M., Ross, A. H., et al. (1984) Efficient selection of human tumor growth-inhibiting monoclonal antibodies. J. Immunol. Methods 73, 157–167.

    Article  PubMed  CAS  Google Scholar 

  160. Hellstrom, I., Beaumier, P. L., and Hellstrom, K. E. (1986) Antitumor effects of L6, an IgG2a antibody that reacts with most human carcinomas. Proc. Natl. Acad. Sci. USA 83, 7059–7063.

    Article  PubMed  CAS  Google Scholar 

  161. Liu, A. Y., Robinson, R. R., Murray, E. D., Jr., et al. (1987) Production of a mouse-human chimeric monoclonal antibody to CD20 with potent Fc-dependent biologic activity. J. Immunol. 139, 3521–3526.

    PubMed  CAS  Google Scholar 

  162. Caron, P. C., Co, M. S., Bull, M. K., et al. (1992) Biological and immunological features of humanized M195 (anti-CD33) monoclonal antibodies. Cancer Res. 52, 6761–6767.

    PubMed  CAS  Google Scholar 

  163. Golay, J., Zaffaroni, L., Vaccari, T., et al. (2000) Biologic response of B lymphoma cells to anti-CD20 monoclonal antibody rituximab in vitro: CD55 and CD59 regulate complement-mediated cell lysis. Blood 95, 3900–3908.

    PubMed  CAS  Google Scholar 

  164. Ravetch, J. V., and Clynes, R. A. (1998) Divergent roles for Fc receptors and complement in vivo. Annu. Rev. Immunol. 16, 421–432.

    Article  PubMed  CAS  Google Scholar 

  165. Bolland, S., and Ravetch, J. V. (1999) Inhibitory pathways triggered by ITIM-containing receptors. Adv. Immunol. 72, 149–177.

    Article  PubMed  CAS  Google Scholar 

  166. Clynes, R. A., Towers, T. L., Presta, L. G., and Ravetch, J. V. (2000) Inhibitory Fc receptors modulate in vivo cytoxicity against tumor targets. Nat. Med. 6, 443–446.

    Article  PubMed  CAS  Google Scholar 

  167. Cragg, M. S., French, R. R., and Glennie, M. J. (1999) Signaling antibodies in cancer therapy. Curr. Opin. Immunol. 11, 541–547.

    Article  PubMed  CAS  Google Scholar 

  168. Shan, D., Ledbetter, J. A., and Press, O. W. (1998) Apoptosis of malignant human B cells by ligation of CD20 with monoclonal antibodies. Blood 91, 1644–1652.

    PubMed  CAS  Google Scholar 

  169. Shan, D., Ledbetter, J. A., and Press, O. W. (2000) Signaling events involved in anti-CD20-induced apoptosis of malignant human B cells. Cancer Immunol. Immunother. 48, 673–683.

    Article  PubMed  CAS  Google Scholar 

  170. Ghetie, M. A., Podar, E. M., Ilgen, A., et al. (1997) Homodimerization of tumor-reactive monoclonal antibodies markedly increases their ability to induce growth arrest or apoptosis of tumor cells. Proc. Natl. Acad. Sci. USA 94, 7509–7514.

    Article  PubMed  CAS  Google Scholar 

  171. Pietras, R. J., Poen, J. C., Gallardo, D., et al. (1999) Monoclonal antibody to HER-2/neureceptor modulates repair of radiation- induced DNA damage and enhances radiosensitivity of human breast cancer cells overexpressing this oncogene. Cancer Res. 59, 1347–1355.

    PubMed  CAS  Google Scholar 

  172. Lee, S., Yang, W., Lan, K. H., et al. (2002) Enhanced sensitization to taxol-induced apoptosis by herceptin pretreatment in ErbB2-overexpressing breast cancer cells. Cancer Res. 62, 5703–5710.

    PubMed  CAS  Google Scholar 

  173. Goldenberg, D. M., Sharkey, R. M., Goldenberg, H., et al. (1990) Monoclonal antibody therapy of cancer. NJ Med. 87, 913–918.

    CAS  Google Scholar 

  174. Chester, K. A., and Hawkins, R. E. (1995) Clinical issues in antibody design. Trends Biotechnol. 13, 294–300.

    Article  PubMed  CAS  Google Scholar 

  175. Adams, G. P., Schier, R., Marshall, K., et al. (1998) Increased affinity leads to improved selective tumor delivery of single- chain Fv antibodies. Cancer Res. 58, 485–490.

    PubMed  CAS  Google Scholar 

  176. Deen, W. M., Bridges, C. R., and Brenner, B. M. (1983) Biophysical basis of glomerular permselectivity. J. Membr. Biol. 71, 1–10.

    Article  PubMed  CAS  Google Scholar 

  177. Maloney, D. G., Grillo-Lopez, A. J., Bodkin, D. J., et al. (1997) IDEC-C2B8: results of a phase I multiple-dose trial in patients with relapsed non-Hodgkin’s lymphoma. J. Clin. Oncol. 15, 3266–3274.

    PubMed  CAS  Google Scholar 

  178. Vaughn, D. E., Milburn, C. M., Penny, D. M., et al. (1997) Identification of critical IgG binding epitopes on the neonatal Fc receptor. J. Mol. Biol. 274, 597–607.

    Article  PubMed  CAS  Google Scholar 

  179. Junghans, R. P., and Anderson, C. L. (1996) The protection receptor for IgG catabolism is the beta2-microglobulin- containing neonatal intestinal transport receptor. Proc. Natl. Acad. Sci. USA 93, 5512–5516.

    Article  PubMed  CAS  Google Scholar 

  180. Ghetie, V., Popov, S., Borvak, J., et al. (1997) Increasing the serum persistence of an IgG fragment by random mutagenesis. Nat. Biotechnol. 15, 637–640.

    Article  PubMed  CAS  Google Scholar 

  181. Ghetie, V., and Ward, E. S. (1997) FcRn: the MHC class I-related receptor that is more than an IgG transporter. Immunol. Today 18, 529–598.

    Article  Google Scholar 

  182. Zuckier, L. S., Chang, C. J., Scharff, M. D., and Morrison, S. L. (1998) Chimeric human-mouse IgG antibodies with shuffled constant region exons demonstrate that multiple domains contribute to in vivo half-life. Cancer Res. 58, 3905–3908.

    PubMed  CAS  Google Scholar 

  183. Milenic, D. E., Yokota, T., Filpula, D. R., et al. (1991) Construction, binding properties, metabolism, and tumor targeting of a single-chain Fv derived from the pancarcinoma monoclonal antibody CC49. Cancer Res. 51, 6363–6371.

    PubMed  CAS  Google Scholar 

  184. Weiner, L. M., Houston, L. L., Huston, J. S., et al. (1995) Improving the tumor-selective delivery of single-chain Fv molecules. Tumor Targeting 1, 51–60.

    CAS  Google Scholar 

  185. Adams, G. P., Schier, R., McCall, A. M., et al. (1998) Prolonged in vivo tumour retention of a human diabody targeting the extracellular domain of human HER2/neu. Br. J. Cancer 77, 1405–1412.

    PubMed  CAS  Google Scholar 

  186. Nielsen, U. B., Adams, G. P., Weiner, L. M., and Marks, J. D. (2000) Targeting of bivalent anti-ErbB2 diabody antibody fragments to tumor cells is independent of the intrinsic antibody affinity. Cancer Res. 60, 6434–6440.

    PubMed  CAS  Google Scholar 

  187. Yokota, T., Milenic, D. E., Whitlow, M., and Schlom, J. (1992) Rapid tumor penetration of a single-chain Fv and comparison with other immunoglobulin forms. Cancer Res. 52, 3402–3408.

    PubMed  CAS  Google Scholar 

  188. Kitamura, K., Takahashi, T., Yamaguchi, T., et al. (1991) Chemical engineering of the monoclonal antibody A7 by polyethylene glycol for targeting cancer chemotherapy. Cancer Res. 51, 4310–4315.

    PubMed  CAS  Google Scholar 

  189. Pedley, R. B., Boden, J. A., Boden, R., et al. (1994) The potential for enhanced tumour localisation by poly(ethylene glycol) modification of anti-CEA antibody. Br. J. Cancer 70, 1126–1130.

    PubMed  CAS  Google Scholar 

  190. Chapman, A. P., Antoniw, P., Spitali, M., et al. (1999) Therapeutic antibody fragments with prolonged in vivo half-lives. Nat. Biotechnol. 17, 780–783.

    Article  PubMed  CAS  Google Scholar 

  191. Abuchowski, A., McCoy, J. R., Palczuk, N. C., et al. (1977) Effect of covalent attachment of polyethylene glycol on immunogenicity and circulating life of bovine liver catalase. J. Biol. Chem. 252, 3582–3586.

    PubMed  CAS  Google Scholar 

  192. Marks, J. D., Griffiths, A. D., Malmqvist, M., et al. (1992) By-passing immunization: building high affinity human antibodies by chain shuffling. Biotechnology (NY) 10, 779–783.

    Article  CAS  Google Scholar 

  193. Hawkins, R. E., Russell, S. J., and Winter, G. (1992) Selection of phage antibodies by binding affinity. Mimicking affinity maturation. J. Mol. Biol. 226, 889–896.

    Article  PubMed  CAS  Google Scholar 

  194. Schier, R., Marks, J. D., Wolf, E. J., et al. (1995) In vitro and in vivo characterization of a human anti-c-erbB2 single- chain Fv isolated from a filamentous phage antibody library. Immunotechnology 1, 73–81.

    Article  PubMed  CAS  Google Scholar 

  195. Schier, R., Bye, J., Apell, Get al. (1996) Isolation of high-affinity monomeric human anti-c-erbB-2 single chain Fv using affinity-driven selection. J. Mol. Biol. 255, 28–43.

    Article  PubMed  CAS  Google Scholar 

  196. Schier, R., McCall, A., Adams, G. P., et al. (1996) Isolation of picomolar affinity anti-c-erbB-2 single-chain Fv by molecular evolution of the complementarity determining regions in the center of the antibody binding site. J. Mol. Biol. 263, 551–567.

    Article  PubMed  CAS  Google Scholar 

  197. Adams, G. P., Schier, R., McCall, A. M., et al. (2001) High affinity restricts the localization and tumor penetration of single-chain fv antibody molecules. Cancer Res. 61, 4750–4755.

    PubMed  CAS  Google Scholar 

  198. Jackson, H., Bacon, L., Pedley, R. B., et al. (1998) Antigen specificity and tumour targeting efficiency of a human carcinoembryonic antigen-specific scFv and affinity-matured derivatives. Br. J. Cancer 78, 181–188.

    Article  PubMed  CAS  Google Scholar 

  199. Crothers, D. M., and Metzger, H. (1972) The influence of polyvalency on the binding properties of antibodies. Immunochemistry 9, 341–357.

    Article  PubMed  CAS  Google Scholar 

  200. Adams, G. P., McCartney, J. E., Tai, M. S., et al. (1993) Highly specific in vivo tumor targeting by monovalent and divalent forms of 741F8 anti-c-erbB-2 single-chain Fv. Cancer Res. 53, 4026–4034.

    PubMed  CAS  Google Scholar 

  201. Wu, A. M., Chen, W., Raubitschek, A., et al. (1996) Tumor localization of anti-CEA single-chain Fvs: improved targeting by non-covalent dimers. Immunotechnology 2, 21–36.

    Article  PubMed  CAS  Google Scholar 

  202. Goel, A., Colcher, D., Baranowska-Kortylewicz, J., et al. (2000) Genetically engineered tetravalent single-chain Fv of the pancarcinoma monoclonal antibody CC49: improved biodistribution and potential for therapeutic application. Cancer Res. 60, 6964–6971.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jürgen Krauss.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krauss, J. Recombinant antibodies for the diagnosis and treatment of cancer. Mol Biotechnol 25, 1–17 (2003). https://doi.org/10.1385/MB:25:1:1

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/MB:25:1:1

Index Entries

Navigation