Skip to main content

Structural aspects of the metzincin clan of metalloendopeptidases

Abstract

Metalloendopeptidases are present across all kingdoms of living organisms; they are ubiquitous and widely involved in metabolism regulation through their ability either to extensively degrade proteins or to selectively hydrolyze specific peptide bonds. They must be subjected to exquisite spatial and temporal control to prevent this vast potential from becoming destructive. These enzymes are mostly zinc-dependent and the majority of them, named zincins, possess a short consensus sequence, HEXXH, with the two histidines acting as ligands of the catalytic zinc and the glutamate as the general base. A subclass of the zincins is characterized by a C-terminally elongated motif, HEXXHXXGXXH/D, with an additional strictly conserved glycine and a third zinc-binding histidine or aspartate. Currently, representative three-dimensional structures of six different proteinase families bearing this motif show, despite low sequence similarity, comparable overall topology. This includes a substrate-binding crevice, which subdivides the enzyme moiety into an upper and a lower subdomain. A common five-stranded β-sheet and two α-helices are always found in the upper subdomain. The second of these helices encompasses the first half of the elongated consensus sequence and is therefore termed the active-site helix. Other shared characteristics are an invariant methionine-containing Met-turn beneath the catalytic metal and a further C-terminal helix in the lower subdomain. All these structural features identify the metzincin clan of metalloendopeptidases. This clan is reviewed from a structural point of view, based on the reported structures of representative members of the astacins, adamalysins, serralysins, matrixins, snapalysins, and leishmanolysins, and of inhibited forms, either by specific endogenous protein inhibitors or by zymogenic pro-domains. Moreover, newly available genomic sequences have unveiled novel putative metzincin families and new hypothetical members of existing ones.

This is a preview of subscription content, access via your institution.

Abbreviations

ABC:

ATP-binding cassette

ADAM:

a disintegrin and metalloprotease

ADAMTS:

ADAM with thrombospondin-like repeats

BFT:

Bacteroides fragilis enterotoxin

BMP:

bone morphogenetic protein

CUB:

protein domain present in complement Clr/Cls, Uegf, and BMP-1

ECM:

extracellular matrix

EGF:

epidermal growth factor

GLE:

gamete lytic enzyme

GPI:

glycosyl phosphatidylinositol

HIV:

human immunodeficiency virus

HYBD:

hydrogenase-maturating endopeptidase B

LSG2:

late somatic gene 2

MATH:

meprin and TRAF homology domain

MAM:

domain present in meprin, A-5 protein and tyrosine phosphatase μ

MDC:

metalloprotease-like, disintegrin-like, and cysteine-rich proteins

MEP:

metalloendopeptidase

MMP:

matrix metalloproteinase alias vertebrate collagenase and matrixin

MP:

metalloprotease

MT-MMP:

membrane-type MMP

ORF:

open-reading frame

PAPP:

pregnancy-associated plasma protein

PDB:

Protein Data Bank access code for three-dimensional structure coordinates

RECK:

reversion-inducing cysteine-rich protein with Kazal motifs

S1, S2, and P1, P2 :

denote protease activesite cleft and substrate subsites, respectively, N-terminally of the scissile peptide bond, S1′, S2′, and P1′, P2′, at the C-terminus of the scission, in accordance with ref. 27

ScNP:

S. caespitosus neutral protease

SVMP:

snake venom metalloproteinase

TACE:

tumor-necrosis factor αconverting enzyme

TGF:

transforming growth factor

TIMP:

tissue inhibitor of metalloproteinases

VMP:

Volvox metalloproteinase

References

  1. http://www.chem.qmw.ac.uk/iubmb/enzyme/EC3/4/24/.

  2. Kheradmand, F. and Werb, Z. (2002) Shedding light on sheddases: role in growth and development. Bioessays 24, 8–12.

    PubMed  Article  CAS  Google Scholar 

  3. Zhang, H. Z., Hackbarth, C. J., Chansky, K. M., and Chambers, H. F. (2001) A proteolytic transmembrane signaling pathway and resistance to beta-lactams in staphylococci. Science 291, 1962–1965.

    PubMed  Article  CAS  Google Scholar 

  4. Murphy, G., Stanton, H., Cowell, S., et al. (1999) Mechanisms for pro-matrix metalloproteinase activation. APMIS 107, 38–44.

    PubMed  CAS  Article  Google Scholar 

  5. Marie-Claire, C., Roques, B. P., and Beaumont, A. (1998) Intramolecular processing of prothermolysin. J. Biol. Chem. 273, 5697–5701.

    PubMed  Article  CAS  Google Scholar 

  6. Skidgel, R. A. (1988) Basic carboxypeptidases: regulators of peptide hormone activity. Trends Pharmacol. Sci. 9, 299–304.

    PubMed  Article  CAS  Google Scholar 

  7. Barrett, A. J. and McDonald, J. K. (1986) Nomenclature: protease, proteinase and peptidase. Biochem. J. 237, 935–935.

    PubMed  CAS  Google Scholar 

  8. Neurath, H. and Walsh, K. A. (1976) Role of proteolytic enzymes in biological regulation. Proc. Natl. Acad. Sci. USA 73, 3825–3832.

    PubMed  Article  CAS  Google Scholar 

  9. Neurath, H. (1975) Limited proteolysis and zymogen activation, in Proteases and Biological control. (Reich, E., Rifkins, D. B., and Shaw, E., eds.), Cold Spring Harbor Laboratory Press, NY, Vol. 2, pp. 51–64.

    Google Scholar 

  10. Beck, I. T. (1973) The role of pancreatic enzymes in digestion. Am. J. Clin. Nutr. 26, 311–325.

    PubMed  CAS  Google Scholar 

  11. López-Otín, C. and Overall, C. M. (2002) Protease degradomics: a new challenge for proteomics. Nat. Rev. Mol. Cell Biol. 3, 509–519.

    PubMed  Article  CAS  Google Scholar 

  12. Leppert, D., Lindberg, R. L., Kappos, L., and Leib, S. L. (2001) Matrix metalloproteinases: multifunctional effectors of inflammation in multiple sclerosis and bacterial meningitis. Brain Res. Rev. 36, 249–257.

    PubMed  Article  CAS  Google Scholar 

  13. Miyoshi, S. and Shinoda, S. (2000) Microbial metalloproteases and pathogenesis. Microbes Infect. 2, 91–98.

    PubMed  Article  CAS  Google Scholar 

  14. Bergers, G. and Coussens, L. M. (2000) Extrinsic regulators of epithelial tumor progression: metalloproteinases. Curr. Opin. Genet. Dev. 10, 120–127.

    PubMed  Article  CAS  Google Scholar 

  15. Woessner J. F. Jr., (1998) The matrix metalloproteinase family. In Matrix Metalloproteinases (Parks, W. C. and Mecham, R. P., eds.) Academic Press, San Diego, CA, pp. 1–14.

    Google Scholar 

  16. Cockett, M. I., Murphy, G., Birch, M. L., et al. (1998) Matrix metalloproteinases and metastatic cancer. Biochem. Soc. Symp. 63, 295–313.

    PubMed  CAS  Google Scholar 

  17. Cawston, T. (1998) Matrix metalloproteinases and TIMPs: properties and implications for the rheumatic diseases. Mol. Med. Today 4, 130–137.

    PubMed  Article  CAS  Google Scholar 

  18. Tonello, F., Morante, S., Rossetto, O., Schiavo, G., and Montecucco, C. (1996) Tetanus and botulism neurotoxins: a novel group of zinc-endopeptidases. Adv. Exp. Med. Biol. 389, 251–260.

    PubMed  CAS  Google Scholar 

  19. Bjarnason, J. B. and Fox, J. B. (1994) Hemorrhagic metalloproteinases from snake venoms. Pharmac. Ther. 62, 325–372.

    Article  CAS  Google Scholar 

  20. Thunnissen, M. M. G. M., Nordlund, P., and Haeggström, J. Z. (2001) Crystal structure of human leukotriene A4 hydrolase, a bifunctional enzyme in inflammation. Nat. Struct. Biol. 8, 131–135.

    PubMed  Article  CAS  Google Scholar 

  21. Banbula, A., Potempa, J., Travis, J., et al. (1998) Amino-acid sequence and three-dimensional structure of the Staphylococcus aureus metalloproteinase at 1.72 Å resolution. Structure 6, 1185–1193.

    PubMed  Article  CAS  Google Scholar 

  22. Bode, W., Gomis-Rüth, F. X., Huber, R., Zwilling, R., and Stöcker, W. (1992) Structure of astacin and implications for activation of astacins and zinc-ligation of collagenases. Nature 358, 164–167.

    PubMed  Article  CAS  Google Scholar 

  23. Thayer, M. M., Flaherty, K. M., and McKay, D. B. (1991) Three-dimensional structure of the elastase of Pseudomonas aeruginosa at 1.5-Å resolution. J. Biol. Chem. 266, 2864–2871.

    PubMed  CAS  Google Scholar 

  24. Pauptit, R. A., Karlsson, R., Picot, D., Jenkins, J. A., Niklaus-Reimer, A. S., and Jansonius, J. N. (1988) Crystal structure of neutral protease from Bacillus cereus refined at 3.0 Å resolution and comparison with the homologous but more thermostable enzyme thermolysin. J. Mol. Biol. 199, 525–537.

    PubMed  Article  CAS  Google Scholar 

  25. Matthews, B. W., Jansonius, J. N., Colman, P. M., Schoenborn, B. P., and Dupourque, D. (1972) Three-dimensional structure of thermolysin. Nature 238, 37–41.

    Article  CAS  Google Scholar 

  26. Lipscomb, W. N., Harstuck, J. A., Reeke G. N., Jr., et al. (1968) The structure of carboxypeptidase A. VII. The 2.0-Å resolution studies of the enzyme and of its complex with glycyltyrosine, and mechanistic deductions. Brookhaven Symp. Biol. 21, 24–90.

    PubMed  CAS  Google Scholar 

  27. Schechter, I. and Berger, A. (1967) On the size of active site in proteases. I. Papain. Biochem. Biophys. Res. Commun. 27, 157–162.

    PubMed  Article  CAS  Google Scholar 

  28. Bode, W. and Maskos, K. (2001) Structural studies on MMPs and TIMPs. Meth. Mol. Biol. 151, 145–177.

    Google Scholar 

  29. Gomis-Rüth, F. X., Kress, L. F., and Bode, W. (1993) First structure of a snake venom metalloproteinase: a prototype for matrix metalloproteinases/ collagenases. EMBO J. 12, 4151–4157.

    PubMed  Google Scholar 

  30. Hege, T. and Baumann, U. (2001) Protease C of Erwinia chrysanthemi: the crystal structure and role of amino acids Y228 and E189. J. Mol. Biol. 314, 187–193.

    PubMed  Article  CAS  Google Scholar 

  31. Auld, D. S. (2001) Zinc coordination sphere in biochemical zinc sites. Biometals 14, 271–313.

    PubMed  Article  CAS  Google Scholar 

  32. Yiallouros, I., Grosse-Berkhoff, E., and Stöcker, W. (2000) The roles of Glu93 and Tyr149 in astacin-like zinc peptidases. FEBS Lett. 484, 224–228.

    PubMed  Article  CAS  Google Scholar 

  33. Christianson, D. W. and Cox, J. D. (1999) Catalysis by metal-activated hydroxide in zinc and manganese metalloenzymes. Annu. Rev. Biochem. 68, 33–57.

    PubMed  Article  CAS  Google Scholar 

  34. Grams, F., Dive, V., Yiotakis, A., et al. (1996) Structure of astacin with a transition-state analogue inhibitor. Nature Struc. Biol. 3, 671–675.

    Article  CAS  Google Scholar 

  35. Rawlings, N. D. and Barrett, A. J. (1995) Evolutionary families of metallopeptidases. Meth. Enzymol. 248, 183–228.

    PubMed  CAS  Google Scholar 

  36. Vallee, B. L. and Auld, D. S. (1989) Short and long spacer sequences and other structural features of zinc binding sites in zinc enzymes. FEBS Lett. 257, 138–140.

    PubMed  Article  CAS  Google Scholar 

  37. Matthews, B. W. (1988) Structural basis of the action of thermolysin and related zinc peptidases. Acc. Chem. Res. 21, 333–340.

    Article  CAS  Google Scholar 

  38. McKerrow, J. H. (1987) Human fibroblast collagenase contains an amino acid sequence homologous to the zinc-binding site of Serratia protease. J. Biol. Chem. 262, 5943–5943.

    PubMed  CAS  Google Scholar 

  39. Kester, W. R. and Matthews, B. W. (1977) Crystallographic study of dipeptide inhibitors to thermolysin: implications for the mechanism of catalysis. Biochemistry 16, 2506–2516.

    PubMed  Article  CAS  Google Scholar 

  40. http://www-hasylab.desy.de/science/annual_reports/1998/part2/contrib/49/1021.pdf.

  41. http://www.merops.ac.uk.

  42. Rawlings, N. D., O’Brien, E., and Barrett, A. J. (2002) MEROPS: the protease database. Nucleic Acids Res. 30, 343–346.

    PubMed  Article  CAS  Google Scholar 

  43. Taylor, A. B., Smith, B. S., Kitada, S., et al. (2001) Crystal structures of mitochondrial processing peptidase reveal the mode for specific cleavage of import signal sequences. Structure 9, 615–625.

    PubMed  Article  CAS  Google Scholar 

  44. Barrett, A. J., Rawlings, N. D., and Woessner, J. F. (1998) Handbook of Proteolytic Enzymes., Academic Press, London.

    Google Scholar 

  45. Rawlings, N. D. and Barrett, A. J. (1991) Homologues of insulinase, a new superfamily of metalloendopeptidases. Biochem. J. 275, 389–391.

    PubMed  CAS  Google Scholar 

  46. McAuley, K. E., Jia-Xing, Y., Dodson, E. J., Lehmbeck, J., Ostergaard, P. R. and Wilson, K. S. (2001) A quick solution: ab initio structure determination of a 19 kDa metalloproteinase using ACORN. Acta Cryst. sect. D 57, 1571–1578.

    Article  CAS  Google Scholar 

  47. Hori, T., Kumasaka, T., Yamamoto, M., et al. (2001) Structure of a new “aspzincin” metalloendopeptidase from Grifola frondosa: implications for the catalytic mechanism and substrate specificity based on several different crystal forms. Acta Cryst. sect. D 57, 361–368.

    Article  CAS  Google Scholar 

  48. Pannifer, A. D., Wong, T. Y., Schwarzenbacher, R., et al. (2001) Crystal structure of the anthrax lethal factor. Nature 414, 229–233.

    PubMed  Article  CAS  Google Scholar 

  49. Brown, C. K., Madauss, K., Lian, W., Beck, M. R., Tolbert, W. D., and Rodgers, D. W. (2001) Structure of neurolysin reveals a deep channel that limits substrate access. Proc. Natl. Acad. Sci. USA 98, 127–132.

    Google Scholar 

  50. Swaminathan, S. and Eswaramoorthy, S. (2000) Structural analysis of the catalytic and binding sites of Clostridium botulinum neurotoxin B. Nat. Struct. Biol. 7, 693–699.

    PubMed  Article  CAS  Google Scholar 

  51. Oefner, C., D’Arcy, A., Hennig, M., Winkler, F. K., and Dale, G. E. (2000) Structure of human neutral endopeptidase (Neprilysin) complexed with phosphoramidon. J. Mol. Biol. 296, 341–349.

    PubMed  Article  CAS  Google Scholar 

  52. Fushimi, N., Ee, C. E., Nakajima, T., and Ichishima, E. (1999) Aspzincin, a family of metalloendopeptidases with a new zinc-binding motif. Identification of new zinc-binding sites (His(128), His(132), and Asp(164)) and three catalytically crucial residues (Glu(129), Asp(143), and Tyr(106)) of deuterolysin from Aspergillus oryzae by site-directed mutagenesis. J. Biol. Chem. 274, 24195–24201.

    PubMed  Article  CAS  Google Scholar 

  53. Lacy, D. B., Tepp, W., Cohen, A. C., DasGupta, B. R., and Stevens, R. C. (1998) Crystal structure of botulinum neurotoxin type A and implications for toxicity. Nat. Struct. Biol. 5, 898–902.

    PubMed  Article  CAS  Google Scholar 

  54. Stöcker, W., Grams, F., Baumann, U., et al. (1995). The metzincins — Topological and sequential relations between the astacins, adamalysins, serralysins, and matrixins (collagenases) define a superfamily of zinc-peptidases. Prot. Sci. 4, 823–840.

    Article  Google Scholar 

  55. Hooper, N. M. (1994) Families of zinc metalloproteases. FEBS Lett. 354, 1–6.

    PubMed  Article  CAS  Google Scholar 

  56. Bode, W., Gomis-Rüth, F. X., and Stöcker, W. (1993) Astacins, serralysins, snake venom and matrix metalloproteinases exhibit identical zinc-binding environments (HEXXHXXGXXH and Met-turn) and topologies and should be grouped into a common family, the “metzincins”. FEBS Lett. 331, 134–140.

    PubMed  Article  CAS  Google Scholar 

  57. Weinmaster, G. (1998) Reprolysins and astacins… alive, alive-o. Science 279, 336–337.

    PubMed  Article  CAS  Google Scholar 

  58. Zwilling, R. and Stöcker, W. (1997) Structure and Function of a New Protein Family. Verlag Dr. Kovac, Hamburg.

    Google Scholar 

  59. Kessler, E., Takahara, K., Biniaminov, L., Brusel, M., and Greenspan, D. S. (1996) Bone morphogenetic protein-1: the type I procollagen C-proteinase. Science 271, 360–362.

    PubMed  Article  CAS  Google Scholar 

  60. Bond, J. S. and Beynon, R. J. (1995) The astacin family of metalloendopeptidases. Prot. Sci. 4, 1247–1261.

    CAS  Google Scholar 

  61. Stöcker, W., Gomis-Rüth, F. X., Bode, W., and Zwilling, R. (1993) Implications of the three-dimensional structure of astacin for the structure and function of the astacin-family of zinc-endopeptidases. Eur. J. Biochem. 214, 215–231.

    PubMed  Article  Google Scholar 

  62. Dumermuth, E., Sterchi, E. E., Jiang, W. P., et al. (1991) The astacin family of metalloendopeptidases. J. Biol. Chem. 266, 21381–21385.

    PubMed  CAS  Google Scholar 

  63. Stöcker, W., Ng, M., and Auld, D. S. (1990) Fluorescent oligopeptide substrates for kinetic characterization of the specificity of Astacus protease. Biochemistry 29, 10418–10425.

    PubMed  Article  Google Scholar 

  64. Möhrlen, F., Baus, S., Gruber, A., et al. (2001) Activation of pro-astacin. Immunological and model peptide studies on the processing of immature astacin, a zinc-endopeptidase from the crayfish Astacus astacus. Eur. J. Biochem. 268, 2540–2546.

    PubMed  Article  Google Scholar 

  65. Ventura, S., Gomis-Ruth, F. X., Puigserver, A., Aviles, F. X., and Vendrell, J. (1997) Pancreatic procarboxypeptidases: oligomeric structures and activation processes revisited. Biological Chemistry 378(3–4), 161–5.

    PubMed  CAS  Google Scholar 

  66. Johnson, G. D. and Bond, J. S. (1997) Activation mechanism of meprins, members of the astacin metalloendopeptidase family. J. Biol. Chem. 272, 28126–28132.

    PubMed  Article  CAS  Google Scholar 

  67. Springman, E. B., Angleton, E. L., Birkedal-Hansen, H., and Van Wart, H. E. (1990) Multiple modes of activation of latent human fibroblast collagenase: evidence for the role of a Cys73 active-site zinc complex in latency and a “cysteine switch” mechanism for activation. Proc. Natl. Acad. Sci. USA 87, 364–368.

    PubMed  Article  CAS  Google Scholar 

  68. Van Wart, H. E. and Birkedal-Hansen, H. (1990) The cysteine switch: a principle of regulation of metalloproteinase activity with potential applicability to the entire matrix metalloproteinase gene family. Proc. Natl. Acad. Sci. USA 87, 5578–5582.

    PubMed  Article  Google Scholar 

  69. Werb, Z., Burleigh, M. C., Barrett, A. J., and Starkey, P. M. (1974) The interaction of α2-macroglobulin with proteinases. Binding and inhibition of mammalian collagenases and other metal proteinases. Biochem. J. 139, 359–368.

    PubMed  CAS  Google Scholar 

  70. Hege, T., Feltzer, R. E., Gray, R. D., and Baumann, U. (2001) Crystal structure of a complex between Pseudomonas aeruginosa alkaline protease and its cognate inhibitor. Inhibition by a zinc-NH2 coordinative bond. J. Biol. Chem. 276, 35087–35092.

    PubMed  Article  CAS  Google Scholar 

  71. Tan, M.-W. and Ausubel, F. M. (2000) Caenorhabditis elegans: a model genetic host to study Pseudomonas aeruginosa pathogenesis. Curr. Op. Microbiol. 3, 29–34.

    Article  CAS  Google Scholar 

  72. Baumann, U. (1998) Serralysin, in Handbook of Proteolytic Enzymes. (Barrett, A. J., Rawlings, N. D., and Woessner, J. F., eds.), Academic Press, London, pp. 1147–1150.

    Google Scholar 

  73. Hejazi, A. and Falkiner, F. R. (1997) Serratia marcescens. J. Med. Microbiol. 46, 903–912.

    PubMed  CAS  Google Scholar 

  74. Vollmer, P., Walev, I., Rose-John, S., and Bhakdi, S. (1996) Novel pathogenic mechanism of microbial metalloproteinases: liberation of membrane-anchored molecules in biologically active form exemplified by studies with the human interleukin-6 receptor. Infect. Immun. 64, 3646–3651.

    PubMed  CAS  Google Scholar 

  75. Maeda, H. and Morihara, K. (1995) Serralysin and related bacterial proteinases. Meth. Enzymol. 248, 395–413.

    PubMed  CAS  Google Scholar 

  76. Shibuya, Y., Yamamoto, T., Morimoto, T., Nishino, N., Kambara, T., and Okabe, H. (1991) Pseudomonas aeruginosa alkaline proteinase might share a biological function with plasmin. Biochim. Biophys. Acta 1077, 316–324.

    PubMed  CAS  Google Scholar 

  77. Loomes, L. M., Senior, B. W., and Kerr, M. A. (1990) A proteolytic enzyme secreted by Proteus mirabilis degrades immunoglobulins of the immunoglobulin A1 (IgA1), IgA2, and IgG isotypes. Infect. Immun. 58, 1979–1985.

    PubMed  CAS  Google Scholar 

  78. Morihara, K. (1974) Comparative specificity of microbial proteinases. Adv. Enzymol. Relat. Areas Mol. Biol. 41, 179–243.

    PubMed  Article  CAS  Google Scholar 

  79. Duong, F., Bonnet, E., Geli, V., Lazdunski, A., Murgier, M., and Filloux, A. (2001) The AprX protein of Pseudomonas aeruginosa: a new substrate for the Apr type I secretion system. Gene 262, 147–153.

    PubMed  Article  CAS  Google Scholar 

  80. Baumann, U., Wu, S., Flaherty, K. M., and McKay, D. B. (1993) Three-dimensional structure of the alkaline protease of Pseudomonas aeruginosa: a two-domain protein with a calcium binding parallel beta roll motif. EMBO J. 12, 3357–3364.

    PubMed  CAS  Google Scholar 

  81. Wandersman, C. (1992) Secretion across the bacterial outer membrane. Trends Genet. 8, 317–322.

    PubMed  CAS  Google Scholar 

  82. Morihara, K. (1957) Studies on the protease of Pseudomonas. II. Crystallization of the protease and its physicochemical and general properties. Bull. Agric. Chem. Soc. Jpn. 21, 11–17.

    Google Scholar 

  83. Schlondorff, J. and Blobel, C. P. (1999) Metalloprotease-disintegrins: modular proteins capable of promoting cell-cell interactions and triggering signals by protein-ectodomain shedding. J. Cell Sci. 112, 3603–3617.

    PubMed  CAS  Google Scholar 

  84. Wolfsberg, T. G., Straight, P. D., Gerena, R. L., et al. (1995) ADAM, a widely distributed and developmentally regulated gene family encoding membrane proteins with A Disintegrin And Metalloprotease domain. Dev. Biol. 169, 378–383.

    PubMed  Article  CAS  Google Scholar 

  85. Fox, J. W. and Bjarnasson, J. B. (1995) Snake venom metalloendopeptidases: reprolysins. Meth. Enzymol. 248, 345–368.

    PubMed  Google Scholar 

  86. Baramova, E. N., Shannon, J. B., Bjarnason, J. B., and Fox, J. W. (1989) Degradation of extracellular matrix proteins by hemorrhagic metalloproteinases. Arch. Biophys. Biochem. 275, 63–71.

    Article  CAS  Google Scholar 

  87. Jia, L. G., Shimokawa, K., Bjarnason, J. B., and Fox, J. W. (1996) Snake venom metalloproteinases: structure, function and relationship to the ADAMs family of proteins. Toxicon 34, 1269–1276.

    PubMed  Article  CAS  Google Scholar 

  88. Gomis-Rüth, F. X., Kress, L. F., Kellermann, J., et al. (1994) Refined 2.0 Å X-ray crystal structure of the zinc-endopeptidase adamalysin II. Primary and tertiary structure determination, refinement, molecular structure and comparison with astacin, collagenase and thermolysin. J. Mol. Biol. 239, 513–544.

    PubMed  Article  Google Scholar 

  89. Kini, R. M. and Evans, H. J. (1992) Structural domains in venom proteins: evidence that metalloproteinases and nonenzymatic platelet aggregation inhibitors (disintegrins) from snake venom are derived by proteolysis from a common precursor. Toxicon 30, 265–293.

    PubMed  Article  CAS  Google Scholar 

  90. Neves-Ferreira, A. G. C., Perales, J., Fox, J. W., et al. (2002) Structural and functional analyses of DM43, a snake venom metalloproteinase inhibitor from Didelphis marsupialis serum. J. Biol. Chem. 277, 13129–13137.

    PubMed  Article  CAS  Google Scholar 

  91. Valente, R. H., Dragulev, B., Perales, J., Fox, J. W., and Domont, G. B. (2001) BJ46a, a snake venom metalloproteinase inhibitor. Isolation, characterization, cloning and insights into its mechanism of action. Eur. J. Biochem. 268, 3042–3052.

    PubMed  Article  CAS  Google Scholar 

  92. Qi, Z.-Q., Yonaha, K., Tomihara, Y., and Toyama, S. (1995) Isolation of peptides homologous to domains of human α1β-glycoprotein from a mongoose antihemorrhagic factor. Toxicon 33, 241–245.

    PubMed  Article  CAS  Google Scholar 

  93. Grams, F., Huber, R., Kress, L. F., Moroder, L., and Bode, W. (1993) Activation of snake venom metalloproteinases by a cysteine switch-like mechanism. FEBS Lett. 335, 76–80.

    PubMed  Article  CAS  Google Scholar 

  94. Catanese, J. J. and Kress, L. F. (1992) Isolation from opossum serum of a metalloproteinase inhibitor homologous to human α1β-glycoprotein. Biochemistry 31, 410–418.

    PubMed  Article  CAS  Google Scholar 

  95. Hite, L. A., Shannon, J. D., Bjarnason, J. B., and Fox, J. W. (1992) Sequence of a cDNA clone encoding the zinc metalloproteinase hemorrhagic toxin e from Crotalus atrox: evidence for signal, zymogen, and disintegrin-like structures. Biochemistry 31, 6203–6211.

    PubMed  Article  CAS  Google Scholar 

  96. Yamakawa, Y. and Omori-Satoh, T. (1992) Primary structure of the antihemorrhagic factor in serum of the Japanese Habu: a snake venom metalloproteinase inhibitor with a double-headed cystatin domain. J. Biochem. (Tokyo) 112, 583–589.

    CAS  Google Scholar 

  97. Primakoff, P. and Myles, D. G. (2000) The ADAM gene family: surface proteins with adhesion and protease activity. Trends Genet. 16, 83–87.

    PubMed  Article  CAS  Google Scholar 

  98. Amour, A., Knight, C. G., Webster, A., et al. (2000) The in vitro activity of ADAM-10 is inhibited by TIMP-1 and TIMP-3. FEBS Lett. 473, 275–279.

    PubMed  Article  CAS  Google Scholar 

  99. Blobel, C. P. (2000) Remarkable roles of proteolysis on and beyond the cell surface. Curr. Opin. Cell Biol. 12, 606–612.

    PubMed  Article  CAS  Google Scholar 

  100. Roghani, M., Becherer, J. D., Moss, M. L., et al. (1999) Metalloprotease-disintegrin MDC9: intracellular maturation and catalytic activity. J. Biol. Chem. 274, 3531–3540.

    PubMed  Article  CAS  Google Scholar 

  101. Loechel, F., Overgaard, M. T., Oxvig, C., Albrechtsen, R., and Wewer, U. M. (1999) Regulation of human ADAM 12 protease by the prodomain. Evidence for a functional cysteine switch. J. Biol. Chem. 274, 13427–13433.

    PubMed  Article  CAS  Google Scholar 

  102. Wolfsberg, T. G., and White, J. M. (1996) ADAMs in fertilization and development. Dev. Biol. 180, 389–401.

    PubMed  Article  CAS  Google Scholar 

  103. Cho, C., Bunch, D. O., Faure, J. E., et al. (1998) Fertilization defects in sperm from mice lacking fertilin β. Science 218, 1857–1859.

    Article  Google Scholar 

  104. Amour, A., Slocombe, P. M., Webster, A., et al. (1998) TNF-α converting enzyme (TACE) is inhibited by TIMP-3. FEBS Lett. 435, 39–44.

    PubMed  Article  CAS  Google Scholar 

  105. Cal, S., Obaya, A. J., Llamazares, M., Garabaya, C., Quesada, V., and López-Otín, C. (2002) Cloning, expression analysis, and structural characterization of seven novel human ADAMTSs, a family of metalloproteinases with disintegrin and thrombospondin-1 domains. Gene 283, 49–62.

    PubMed  Article  CAS  Google Scholar 

  106. Van Eerdewegh, P., Little, R. D., Dupuis, J., et al. (2002) Association of the ADAM33 gene with asthma and bronchial hyperresponsiveness. Nature 418, 426–430.

    PubMed  Article  CAS  Google Scholar 

  107. Liao, J. K. (2002) Shedding growth factors in cardiac hypertrophy. Nat. Med. 8, 20–21.

    PubMed  Article  CAS  Google Scholar 

  108. Kawaguchi, N., Xu, X., Tajima, R., et al. (2002) ADAM 12 protease induces adipogenesis in transgenic mice. Am. J. Pathol. 160, 1895–1903.

    PubMed  CAS  Google Scholar 

  109. Primakoff, P. and Myles, D. G. (2002) Penetration, adhesion, and fusion in mammalian sperm-egg interaction. Science 296, 2183–2185.

    PubMed  Article  CAS  Google Scholar 

  110. Slack, B. E., Ma, L. K., and Seah, C. C. (2001) Constitutive shedding of the amyloid precursor protein ectodomain is up-regulated by tumour necrosis factor-alpha converting enzyme. Biochem. J. 357, 787–794.

    PubMed  Article  CAS  Google Scholar 

  111. Zhang, Y., Jiang, J., Black, R. A., Baumann, G., and Frank, S. J. (2000) Tumor necrosis factor-alpha converting enzyme (TACE) is a growth hormone binding protein (GHBP) sheddase: the metalloprotease TACE/ADAM-17 is critical for (PMA-induced) GH receptor proteolysis and GHBP generation. Endocrinology 141, 4342–4348.

    PubMed  Article  CAS  Google Scholar 

  112. Phelps, B. M., Primakoff, P., Koppel, D. E., Low, M. G., and Myles, D. G. (1988) Restricted lateral diffusion of PH-20, a PI-anchored sperm membrane protein. Science 240, 1780–1782.

    PubMed  Article  CAS  Google Scholar 

  113. Blobel, C. P. (1997) Metalloprotease-disintegrins: links to cell adhesion and cleavage of TNF alpha and Notch. Cell 90, 589–592.

    PubMed  Article  CAS  Google Scholar 

  114. Blobel, C. P., Wolfsberg, T. G., Turck, C. W., Myles, D. G., Primakoff, P., and White, J. M. (1992) A potential fusion peptide and an integrin ligand domain in a protein active in sperm-egg fusion. Nature 356, 248–252.

    PubMed  Article  CAS  Google Scholar 

  115. Blobel, C. P. (2002) Functional and biochemical characterization of ADAMs and their predicted role in protein ectodomain shedding. Inflamm. Res. 51, 83–84.

    PubMed  Article  CAS  Google Scholar 

  116. Qi, H., Rand, M. D., Wu, X., et al. (1999) Processing of the notch ligand delta by the metalloprotease Kuzbanian. Science 283, 91–94.

    PubMed  Article  CAS  Google Scholar 

  117. Prenzel, N., Zwick, E., Daub, H., et al. (1999) EGF receptor transactivation by G-protein-coupled receptors requires metalloproteinase cleavage of proHB-EGF. Nature 402, 884–888.

    PubMed  CAS  Google Scholar 

  118. Turner, A. J. and Hooper, N. M. (1999) Role for ADAM-family proteinases as membrane protein secretases. Biochem. Soc. Trans. 27, 255–259.

    PubMed  CAS  Google Scholar 

  119. Hooper, N. M., Parvathy, S., Karran, E. H., and Turner, A. J. (1999) Angiotensin-converting enzyme and the amyloid precursor protein secretases. Biochem. Soc. Trans. 27, 229–234.

    PubMed  CAS  Google Scholar 

  120. Black, R. A., Rauch, C. T., Kozlosky, C. J., et al. (1997) A metalloproteinase disintegrin that releases tumour-necrosis factor-α from cells. Nature 385, 729–733.

    PubMed  Article  CAS  Google Scholar 

  121. Bates, E. E., Fridman, W. H., and Mueller, C. G. (2002) The ADAMDEC1 (decysin) gene structure: evolution by duplication in a metalloprotease gene cluster on chromosome 8p12. Immunogenetics 54, 96–105.

    PubMed  Article  CAS  Google Scholar 

  122. Hirohata, S., Wang, L. W., Miyagi, M., et al. (2002) Punctin, a novel ADAMTS-like molecule, ADAMTSL-1, in extracellular matrix. J. Biol. Chem. 277, 12182–12189.

    PubMed  Article  CAS  Google Scholar 

  123. Tang, B. L. (2001) ADAMTS: a novel family of extracellular matrix proteases. Int. J. Biochem. Cell Biol. 33, 33–44.

    PubMed  Article  CAS  Google Scholar 

  124. Brachvogel, B., Reichenberg, D., Beyer, S., Jehn, B., von der Mark, K., and Bielke, W. (2002) Molecular cloning and expression analysis of a novel member of the disintegrin and metalloprotease-domain (ADAM) family. Gene 288, 203–210.

    PubMed  Article  CAS  Google Scholar 

  125. Kashiwagi, M., Tortorella, M., Nagase, H., and Brew, K. (2001) TIMP-3 is a potent inhibitor of aggrecanase 1 (ADAM-TS4) and aggrecanase 2 (ADAM-TS5) J. Biol. Chem. 276, 12501–12504.

    PubMed  Article  CAS  Google Scholar 

  126. Loechel, F., Fox, J. W., Murphy, G., Albrechtsen, R., and Wewer, U. M. (2000) ADAM 12-S cleaves IGFBP-3 and IGFBP-5 and is inhibited by TIMP-3. Biochem. Biophys. Res. Commun. 278, 511–515.

    PubMed  Article  CAS  Google Scholar 

  127. Overall, C. M. and López-Otín, C. (2002) Strategies for MMP inhibition in cancer: innovations for the post-trial era. Nature Rev. Cancer 2, 657–672.

    Article  CAS  Google Scholar 

  128. Brinckerhoff, C. E. and Matrisian, L. M. (2002) Matrix metalloproteinases: a tail of a frog that became a prince. Nature Rev. Mol. Cell Biol. 3, 207–214.

    Article  CAS  Google Scholar 

  129. Woessner J. F. Jr., and Nagase, H. (2000) Matrix Metalloproteinases and TIMPs. Protein Profile (Sheterline, P., Ed.), Oxford University Press, New York.

    Google Scholar 

  130. Uría, J. A. and López-Otín, C. (2000) Matrilysin-2, a new matrix metalloproteinase expressed in human tumors and showing the minimal domain organization required for secretion, latency, and activity. Cancer Res. 60, 4745–4751.

    PubMed  Google Scholar 

  131. Blundell, T. L. (1994) Metalloproteinase superfamilies and drug design. Nat. Struct. Biol. 1, 73–75.

    PubMed  Article  CAS  Google Scholar 

  132. Gross, J. and Nagai, Y. (1965) Specific degradation of the collagen molecule by tadpole collagenolytic enzyme. Proc. Natl. Acad. Sci. USA 54, 1197–1204.

    PubMed  Article  CAS  Google Scholar 

  133. Johnson, T. S., Haylor, J. L., Thomas, G. L., Fisher, M., and El Nahas, A. M. (2002) Matrix metalloproteinases and their inhibitions in experimental renal scarring. Exp. Nephrol. 10, 182–195.

    PubMed  Article  CAS  Google Scholar 

  134. John, A. and Tuszynski, G. (2001) The role of matrix metalloproteinases in tumor angiogenesis and tumor metastasis. Pathol. Oncol. Res. 7, 14–23.

    PubMed  CAS  Article  Google Scholar 

  135. McCawley, L. J. and Matrisian, L. M. (2001) Matrix metalloproteinases: they’re not just for matrix anymore! Curr. Opin. Cell Biol. 13, 534–540.

    PubMed  Article  CAS  Google Scholar 

  136. Li, Y. Y. and Feldman, A. M. (2001) Matrix metalloproteinases in the progression of heart failure: potential therapeutic implications. Drugs 61, 1239–1252.

    PubMed  Article  CAS  Google Scholar 

  137. Brew, K., Dinakarpandian, D., and Nagase, H. (2000) Tissue inhibitors of metalloproteinases: evolution, structure and function. Biochim. Biophys. Acta. 1477, 267–283.

    PubMed  CAS  Google Scholar 

  138. Parks, W. C. and Mecham, R. P. (1998) Matrix metalloproteinases. Academic Press, San Diego, CA.

    Google Scholar 

  139. Gu, Z., Kaul, M., Yan, B., et al. (2002) S-Nitrosylation of matrix metalloproteinases: signaling pathway to neuronal cell death. Science 297, 1186–1190.

    PubMed  Article  CAS  Google Scholar 

  140. Yong, V. W., Power, C., Forsyth, P., and Edwards, D. R. (2001) Metalloproteinases in biology and pathology of the nervous system. Nat. Rev. Neurosci. 2, 502–511.

    PubMed  Article  CAS  Google Scholar 

  141. Suzuki, M., Raab, G., Moses, M. A., Fernández, C. A., and Klagsbrun, M. (1997) Matrix metalloproteinase-3 releases active heparin-binding EGF-like growth factor by cleavage at a specific juxtamembrane site. J. Biol. Chem. 272, 31730–31737.

    PubMed  Article  CAS  Google Scholar 

  142. Wilson, C. L., Ouellette, A. J., Satchell, D. P., et al. (1999) Regulation of intestinal alpha-defensin activation by the metalloproteinase matrilysin in innate host defense. Science 286, 113–117.

    PubMed  Article  CAS  Google Scholar 

  143. Marchenko, G. N. and Strongin, A. Y. (2001) MMP-28, a new human matrix metalloproteinase with an unusual cysteine-switch sequence is widely expressed in tumors. Gene 265, 87–93.

    PubMed  Article  CAS  Google Scholar 

  144. Velasco, G., Cal, S., Merlos-Suárez, A., Ferrando, A. A., et al. (2000) Human MT6-matrix metalloproteinase: identification, progelatinase A activation, and expression in brain tumors. Cancer Res. 60, 877–882.

    PubMed  CAS  Google Scholar 

  145. Murphy, G., Knäuper, V., Cowell, S., et al. (1999) Evaluation of some newer matrix metalloproteinases. Ann. N. Y. Acad. Sci. 878, 25–39.

    PubMed  Article  CAS  Google Scholar 

  146. Nagase, H. and Woessner J. F. Jr., (1999) Matrix metalloproteinases. J. Biol. Chem. 274, 21491–21494.

    PubMed  Article  CAS  Google Scholar 

  147. Birkedal-Hansen, H., Moore, W. G., Bodden, M. K., et al. (1993) Matrix metalloproteinases: a review. Crit. Rev. Oral. Biol. Med. 4, 197–205.

    PubMed  CAS  Google Scholar 

  148. Matrisian, L. M. (1992) The matrix-degrading metalloproteinases. Bioessays 14, 455–463.

    PubMed  Article  CAS  Google Scholar 

  149. Birkedal-Hansen, B., Werb, Z., Welgus, H. G., and Van Wart, H. E. (1992) Matrix Metalloproteinases and Inhibitors., Gustav Fischer Verlag, Stuttgart.

    Google Scholar 

  150. Nagase, H., Barrett, A. J., and Woessner J. F. Jr., (1992) Nomenclature and glossary of the matrix metalloproteinases. Matrix Suppl. 1, 421–424.

    PubMed  CAS  Google Scholar 

  151. Vallee, B. L. and Auld, D. S. (1990) Zinc coordination, function, and structure of zinc enzymes and other proteins. Biochemistry 29, 5647–5659.

    PubMed  Article  CAS  Google Scholar 

  152. Docherty, A. J. P. and Murphy, G. (1990) The tissue metalloproteinase family and the inhibitor TIMP: a study using cDNAs and recombinant proteins. Ann. Rheum. Dis. 49, 469–479.

    PubMed  CAS  Google Scholar 

  153. Alexander, C. M. and Werb, Z. (1989) Proteinases and extracellular matrix remodelling. Curr. Opin. Cell. Biol. 1, 974–982.

    PubMed  Article  CAS  Google Scholar 

  154. Nagase, H. (2000) Substrate specificity of MMPs, in Matrix Metalloproteinase Inhibitors in Cancer Therapy. (Clendeninn, N. J. and Appelt, K., eds.), Humana Press, Totowa, NJ, pp. 39.

    Chapter  Google Scholar 

  155. Nagase, H. (1997) Activation mechanisms of matrix metalloproteinases. Biol. Chem. 378, 151–160.

    PubMed  CAS  Google Scholar 

  156. Ries, C. and Petrides, P. E. (1995) Cytokine regulation of matrix metalloproteinase activity and its regulatory dysfunction in disease. Biol. Chem. Hoppe-Seyler 376, 345–355.

    PubMed  CAS  Google Scholar 

  157. Harper, E., Bloch, K. J., and Gross, J. (1971) The zymogen of tadpole collagenase. Biochemistry 10, 3035–3041.

    PubMed  Article  CAS  Google Scholar 

  158. Zhan, B., Badamchian, M., Meihua, B., et al. (2002) Molecular cloning and purification of Ac-TMP, a developmentally regulated putative tissue inhibitor of metalloprotease released in relative abundance by adult Ancylostoma hookworms. Am. J. Trop. Med. Hyg. 66, 238–244.

    PubMed  CAS  Google Scholar 

  159. Mannello, F. and Gazzanelli, G. (2001) Tissue inhibitors ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~:~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ conundrums, controversies and potential implications. Apoptosis 6, 479–482.

    PubMed  Article  CAS  Google Scholar 

  160. Fernández-Catalán, C., Bode, W., Huber, R., et al. (1998) Crystal structure of the complex formed by the membrane type 1-matrix metalloproteinase with the tissue inhibitor of metalloproteinases-2, the soluble progelatinase A receptor. EMBO J. 17, 5238–5248.

    PubMed  Article  Google Scholar 

  161. Gomis-Rüth, F. X., Maskos, K., Betz, M., et al. (1997) Mechanism of inhibition of the human matrix metalloproteinase stromelysin-1 by TIMP-1. Nature (389), 77–81.

    PubMed  Article  Google Scholar 

  162. Willenbrock, F. and Murphy, G. (1994) Structure-function relationships in the tissue inhibitors of metalloproteinases. Am. J. Respir. Crit. Care Med. 150, S165-S170.

    PubMed  CAS  Google Scholar 

  163. Greenwald, R. A. and Golub, L. M. (eds.) (1994) Inhibition of Matrix Metalloproteinases: Therapeutic Potential. Vol. 732. Annals of the New York Academy of Sciences. New York Academy of Sciences, NY.

    Google Scholar 

  164. http://www.centerwatch.com/patient/drugs/dru677.html.

  165. Coussens, L. M., Fingleton, B., and Matrisian, L. M. (2002) Matrix metalloproteinase inhibitors and cancer: trials and tribulations. Science 295, 2387–2392.

    PubMed  Article  CAS  Google Scholar 

  166. Bramhall, S. R., Hallissey, M. T., Whiting, J., et al. (2002) Marimastat as maintenance therapy for patients with advanced gastric cancer: a randomised trial. Br. J. Cancer 86, 1864–1870.

    PubMed  Article  CAS  Google Scholar 

  167. McCawley, L. J. and Matrisian, L. M. (2000) Matrix metalloproteinases: multifunctional contributors to tumor progression. Mol. Med. Today 6, 149–156.

    PubMed  Article  CAS  Google Scholar 

  168. Borkakoti, N. (2000) Structural studies of matrix metalloproteinases. J. Mol. Med. 78, 261–268.

    PubMed  Article  CAS  Google Scholar 

  169. Baker, A. H., Ahonen, M., and Kahari, V. M. (2000) Potential applications of tissue inhibitor of metalloproteinase (TIMP) overexpression for cancer gene therapy. Adv. Exp. Med. Biol. 465, 469–483.

    PubMed  CAS  Google Scholar 

  170. Belotti, D., Paganoni, P., and Giavazzi, R. (1999) MMP inhibitors: experimental and clinical studies. Int. J. Biol. Markers 14, 232–238.

    PubMed  CAS  Google Scholar 

  171. Basset, P., Bellocq, J. P., Wolf, C., et al. (1990) A novel metalloproteinase gene specifically expressed in stromal cells of breast carcinomas. Nature 348, 699–704.

    PubMed  Article  CAS  Google Scholar 

  172. http://www.streptomyces.u-psud.fr/index_english.htm (Introduction).

  173. Butler, M. J. (1998) Snapalysin, in Handbook of Proteolytic Enzymes. (Barrett, A. J., Rawlings, N. D. and Woessner J. F., Jr., eds.), Academic Press, London, pp. 1134–1135.

    Google Scholar 

  174. Kurisu, G., Kinoshita, T., Sugimoto, A., et al. (1997) Structure of the zinc endoprotease from Streptomyces caespitosus. J. Biochem. 121, 304–308.

    PubMed  CAS  Google Scholar 

  175. Dammann, T. and Wohlleben, W. (1992) A metalloprotease gene from Streptomyces coelicolor “Muller” and its transcriptional activator, a member of the LysR family. Mol. Microbiol. 6, 2267–2278.

    PubMed  Article  CAS  Google Scholar 

  176. Lichenstein, H. S., Busse, L. A., Smith, G. A., et al. (1992) Cloning and characterization of a gene encoding extracellular metalloprotease from Streptomyces lividans. Gene 111, 125–130.

    PubMed  Article  CAS  Google Scholar 

  177. Lampel, J. S., Aphale, J. S., Lampel, K. A., and Strohl, W. R. (1992) Cloning and sequencing of a gene encoding a novel extracellular neutral proteinase from Streptomyces sp. strain C5 and expression of the gene in Streptomyces lividans 1326. J. Bacteriol. 174, 2797–2808.

    PubMed  CAS  Google Scholar 

  178. Yokote, Y., Kawasaki, K., Nakajima, J., and Noguchi, Y. (1969) Studies on enzymes produced Streptomyces caespitosus. Part I. Production conditions and some properties of neutral protease. Nippon Nogeikagaku Kaishi 43, 125–131.

    CAS  Google Scholar 

  179. Hiraga, K., Suzuki, T., and Oda, K. (2000) A novel double-headed proteinaceous inhibitor for metalloproteinase and serine proteinase. J. Biol. Chem. 275, 25173–25179.

    PubMed  Article  CAS  Google Scholar 

  180. http://www.mzcp-zoonoses.gr/chania/Lectures/Leismaniasis/LEISHMANIASIS.htm.

  181. Harder, A., Greif, G., and Haberkorn, A. (2001) Chemotherapeutic approaches to protozoa: kinetoplastida — current level of knowledge and outlook. Parasitol. Res. 87, 778–780.

    PubMed  CAS  Google Scholar 

  182. Schlagenhauf, E., Etges, R., and Metcalf, P. (1998) The crystal structure of the Leishmania major surface proteinase leishmanolysin (gp63) Structure 6, 1035–1046.

    PubMed  Article  CAS  Google Scholar 

  183. Brittingham, A., Morrison, C. J., McMaster, W. R., et al. (1995) Role of the Leishmania surface protease gp63 in complement fixation, cell adhesion, and resistance to complement-mediated lysis. J. Immunol. 155, 3102–3111.

    PubMed  CAS  Google Scholar 

  184. Bouvier, J., Schneider, P., and Etges, R. (1995) Leishmanolysin: surface metalloproteinase of Leishmania. Meth. Enzymol. 248, 614–633.

    PubMed  CAS  Google Scholar 

  185. Hey, A. S., Theander, T. G., Hviid, L., Hazrati, S. M., Kemp, M., and Kharazmi, A. (1994) The major surface glycoprotein (gp63) from Leishmania major and Leishmania donovani cleaves CD4 molecules on human T cells. J. Immunol. 152, 4542–4548.

    PubMed  CAS  Google Scholar 

  186. Etges, R. (1992) Identification of a surface metalloproteinase on 13 species of Leishmania isolated from humans, Crithidia fasciculata, and Herpetomonas samuelpessoai. Acta Trop. 50, 205–217.

    PubMed  Article  CAS  Google Scholar 

  187. Bouvier, J. (1998) Leishmanolysin, in Handbook of Proteolytic Enzymes. (Barrett, A. J., Rawlings, N. D. and Woessner J. F., Jr., eds.), Academic Press, London. pp. 1135–1140.

    Google Scholar 

  188. Bode, W., Reinemer, P., Huber, R., Kleine, T., Schnierer, S., and Tschesche, H. (1994) The X-ray crystal structure of the catalytic domain of human neutrophil collagenase inhibited by a substrate analogue reveals the essentials for catalysis and specificity. EMBO J. 13, 1263–1269.

    PubMed  CAS  Google Scholar 

  189. Hege, T. and Baumann, U. (2001) The conserved methionine residue of the metzincins: a site-directed mutagenesis study. J. Mol. Biol. 314, 181–186.

    PubMed  Article  CAS  Google Scholar 

  190. Pieper, M., Betz, M., Budísa, N., Gomis-Rüth, F. X., Bode, W., and Tschesche, H. (1997) Expression, purification, characterization, and X-ray analysis of selenomethionine 215 variant of leukocyte collagenase. J. Protein Chem. 16, 637–650.

    PubMed  Article  CAS  Google Scholar 

  191. Bukrinsky, J. T., Bjerrum, M. J., and Kadziola, A. (1998) Native carboxypeptidase A in a new crystal environment reveals a different conformation of the important tyrosine 248. Biochemistry 37, 16555–16564.

    PubMed  Article  CAS  Google Scholar 

  192. Park, H. I. and Ming, L.-J. (1998) The mechanistic role of the coordinated tyrosine in astacin. J. Inorg. Biochem. 72, 57–62.

    Article  CAS  Google Scholar 

  193. Bianchetti, L., Oudet, C., and Poch, O. (2002) M13 endopeptidases: New conserved motifs correlated with structure, and simultaneous phylogenetic occurrence of PHEX and the bony fish. Proteins 47, 481–488.

    PubMed  Article  CAS  Google Scholar 

  194. Gomis-Rüth, F. X., Nar, H., Grams, F., et al. (1994) Crystal structures, spectroscopic features and catalytic properties of cobalt(II)-, copper(II)-, nickel(II)-, and mercury(II)-derivatives of the zinc-endopeptidase astacin. A correlation of structure and proteolytic activity. J. Biol. Chem. 269, 17111–17117.

    PubMed  Google Scholar 

  195. Bode, W. and Huber, R. (1986) Crystal structure of pancreatic serine endopeptidases, in Molecular and Cellular Basis of Digestion. (Desnuelle, P., Sjoström, H., and Norén, O., eds.), Elsevier, Amsterdam, pp. 213–234.

    Google Scholar 

  196. Hamada, K., Hata, Y., Katsuya, Y., Hiramatsu, H., Fujiwara, T., and Katsube, Y. (1996) Crystal structure of Serratia protease, a zinc-dependent proteinase from Serratia sp. E-15, containing a β-sheet coil motif at 2.0 Å resolution. J. Biochem. (Tokyo) 119, 844–851.

    CAS  Google Scholar 

  197. Baumann, U., Bauer, M., Letoffe, S., Delepelaire, P., and Wandersman, C. (1995) Crystal structure of a complex between Serratia marcescens metallo-protease and an inhibitor from Erwinia chrysanthemi. J. Mol. Biol. 248, 653–661.

    PubMed  Article  CAS  Google Scholar 

  198. Miyatake, H., Hata, Y., Fujii, T., Hamada, K., Morihara, K., and Katsube, Y. (1995) Crystal structure of the unliganded alkaline protease from Pseudomonas aeruginosa IFO3080 and its conformational changes on ligand binding. J. Biochem. (Tokyo) 118, 474–479.

    CAS  Google Scholar 

  199. Baumann, U. (1994) Crystal structure of the 50 kDa metallo protease from Serratia marcescens. J. Mol. Biol. 242, 244–251.

    PubMed  Article  CAS  Google Scholar 

  200. Huang, K. F., Chiou, S. H., Ko, T. P., Yuann, J. M., and Wang, A. H. (2002) The 1.35 Å structure of cadmium-substituted TM-3, a snake-venom metalloproteinase from Taiwan habu: elucidation of a TNF alpha-converting enzyme-like active-site structure with a distorted octahedral geometry of cadmium. Acta Cryst. D58, 1118–1128.

    CAS  Google Scholar 

  201. Zhu, X., Teng, M., and Niu, L. (1999) Structure of acutolysin-C, a haemorrhagic toxin from the venom of Agkistrodon acutus, providing further evidence for the mechanism of the pH-dependent proteolytic reaction of zinc metalloproteinases. Acta crystallogr. sect D 55, 1834–1841.

    Article  CAS  Google Scholar 

  202. Gomis-Rüth, F. X., Meyer, E. F., Kress, L. F., and Politi, V. (1998) Structures of adamalysin II with peptidic inhibitors. Implications for the design of tumor necrosis factor alpha convertase inhibitors. Prot. Sci. 7, 283–292.

    Article  Google Scholar 

  203. Gong, W., Zhu, X., Liu, S., Teng, M., and Niu, L. (1998) Crystal structures of acutolysin A, a three-disulfide hemorrhagic zinc metalloproteinase from the snake venom of Agkistrodon acutus. J. Mol. Biol. 283, 657–668.

    PubMed  Article  CAS  Google Scholar 

  204. Cirilli, M., Gallina, C., Gavuzzo, E., et al. (1997) 2 Å X-ray structure of adamalysin II complexed with a peptide phosphonate inhibitor adopting a retro-binding mode. FEBS Lett. 418, 319–322.

    PubMed  Article  CAS  Google Scholar 

  205. Kumasaka, T., Yamamoto, M., Moriyama, H., et al. (1996) Crystal structure of H2-Proteinase from the venom of Trimeresurus flavoviridis. J. Biochem. 119, 49–57.

    PubMed  CAS  Google Scholar 

  206. Zhang, D., Botos, I., Gomis-Rüth, F. X., et al. (1994) Structural interaction of natural and synthetic inhibitors with the venom metalloproteinase, atrolysin C (form d). Proc. Natl. Acad. Sci. USA 91, 8447–8451.

    PubMed  Article  CAS  Google Scholar 

  207. Maskos, K., Fernández-Catalán, C., Huber, R., et al. (1998) Crystal structure of the catalytic domain of human tumor necrosis factor-α-converting enzyme. Proc. Natl. Acad. Sci. USA 95, 3408–3412.

    PubMed  Article  CAS  Google Scholar 

  208. Schröder, J., Henke, A., Wenzel, H., et al. (2001) Structure-based design and synthesis of potent matrix metalloproteinase inhibitors derived from a 6H-1,3,4-thiadiazine scaffold. J. Med. Chem. 44, 3231–3243.

    PubMed  Article  CAS  Google Scholar 

  209. Brandstetter, H., Grams, F., Glitz, D., et al. (2001) The 1.8-Å crystal structure of a matrix metallo-proteinase 8-barbiturate inhibitor complex reveals a previously unobserved mechanism for collagenase substrate recognition. J. Biol. Chem. 276, 17405–17412.

    PubMed  Article  CAS  Google Scholar 

  210. Gavuzzo, E., Pochetti, G., Mazza, F., et al. (2000) Two crystal structures of human neutrophil collagenase, one complexed with a primed- and the other with an unprimed-side inhibitor: implications for drug design. J. Med. Chem. 43, 3377–3385.

    PubMed  Article  CAS  Google Scholar 

  211. Matter, H., Schwab, W., Barbier, D., et al. (1999) Quantitative structure-activity relationship of human neutrophil collagenase (MMP-8) inhibitors using comparative molecular field analysis and X-ray structure analysis. J. Med. Chem. 42, 1908–1920.

    PubMed  Article  CAS  Google Scholar 

  212. Brandstetter, H., Engh, R. A., Von Roedern, E. G., et al. (1998) Structure of malonic acid-based inhibitors bound to human neutrophil collagenase. A new binding mode explains apparently anomalous data. Prot. Sci. 7, 1303–1309.

    CAS  Google Scholar 

  213. Betz, M., Huxley, P., Davies, S. J., et al. (1997) 1.8-Å crystal structure of the catalytic domain of human neutrophil collagenase (matrix metalloproteinase-8) complexed with a peptidomimetic hydroxamate primed-side inhibitor with a distinct selectivity profile. Eur. J. Biochem. 247, 356–363.

    PubMed  Article  CAS  Google Scholar 

  214. Grams, F., Crimmin, M., Hinnes, L., et al. (1995) Structure determination and analysis of human neutrophil collagenase complexed with a hydroxamate inhibitor. Biochemistry 34, 14012–14020.

    PubMed  Article  CAS  Google Scholar 

  215. Grams, F., Reinemer, P., Powers, J. C., et al. (1995) X-ray structures of human neutrophil collagenase complexed with peptide thiol inhibitors. Implications for substrate binding and rational drug design. Eur. J. Biochem. 228, 830–841.

    PubMed  Article  CAS  Google Scholar 

  216. Reinemer, P., Grams, F., Huber, R., et al. (1994) Structural implications for the role of the N terminus in the “superactivation” of collagenases. A crystallographic study. FEBS Lett. 338, 227–233.

    PubMed  Article  CAS  Google Scholar 

  217. Stams, T., Spurlino, J. C., Smith, D. L., et al. (1994) Structure of human neutrophil collagenase reveals large S1′ specificity pocket. Nat. Struct. Biol. 1, 119–123.

    PubMed  Article  CAS  Google Scholar 

  218. Morgunova, E., Tuuttila, A., Bergmann, U., et al. (1999) Structure of human pro-matrix metalloproteinase-2: Activation mechanism revealed. Science 284, 1667–1670.

    PubMed  Article  CAS  Google Scholar 

  219. Kurisu, G., Kai, Y., and Harada, S. (2000) Structure of the zinc-binding site in the crystal structure of a zinc endoprotease from Streptomyces caespitosus at 1 Å resolution. J. Inorg. Biochem. 82, 225–228.

    PubMed  Article  CAS  Google Scholar 

  220. Fritsche, E., Paschos, A., Beisel, H. G., Bock, A., and Huber, R. (1999) Crystal structure of the hydrogenase maturating endopeptidase HYBD from Escherichia coli. J. Mol. Biol. 288, 989–998.

    PubMed  Article  CAS  Google Scholar 

  221. Auld, D. S. (1995) Removal and replacement of metal ions in metallopeptidases. Meth. Enzymol. 248, 228–248.

    PubMed  CAS  Article  Google Scholar 

  222. Ollis, D. L., Cheah, E., Cygler, M., et al. (1992) The α/β hydrolase fold. Prot. Engng. 5, 197–211.

    Article  CAS  Google Scholar 

  223. Baldwin, E. T., Harris, M. S., Yem, A. W., et al. (2002) Crystal structure of type II peptide deformylase from Staphylococcus aureus. J. Biol. Chem. 277, 31163–31171.

    PubMed  Article  CAS  Google Scholar 

  224. Chan, M. K., Gong, W., Rajagopalan, P. T., Hao, B., Tsai, C. M., and Pei, D. (1997) Crystal structure of the Escherichia coli peptide deformylase. Biochemistry 36, 13904–13909.

    PubMed  Article  CAS  Google Scholar 

  225. Murphy, G., Houbrechts, A., Cockett, M. I., Williamson, R. A., O’Shea, M., and Docherty, A. J. P. (1991) The N-terminal domain of tissue inhibitor of metalloproteinases retains metalloproteinase inhibitory activity. Biochemistry 30, 8097–8102.

    PubMed  Article  CAS  Google Scholar 

  226. Rees, D. C. and Lipscomb, W. N. (1982) Refined crystal structure of the potato inhibitor complex of carboxypeptidase A at 2.5 Å resolution. J. Mol. Biol. 160, 475–498.

    PubMed  Article  CAS  Google Scholar 

  227. Wetmore, D. R. and Hardman, K. D. (1996) Roles of the propeptide and metal ions in the folding and stability of the catalytic domain of stromelysin (matrix metalloproteinase 3). Biochemistry 35, 6549–6558.

    PubMed  Article  CAS  Google Scholar 

  228. Becker, J. W., Marcy, A.I., M., Rokosz, L. L., et al. (1995) Stromelysin-1: three-dimensional structure of the inhibited catalytic domain and of the C-truncated proenzyme. Prot. Sci. 4, 1966–1976.

    CAS  Article  Google Scholar 

  229. Appelt, K. (1994) Crystal structure of human stromleysin in latent and activated form (Lecture; 27.7.1994, evening session). Gordon Research Conference on Proteolytic Enzymes and Their Inhibitors, 24–29.7.1994.

  230. Pei, D. and Weiss, S. J. (1996) Transmembrane-deletion mutants of the membrane-type matrix metalloproteinase-1 process progelatinase A and express intrinsic matrix-degrading activity. J. Biol. Chem. 271, 9135–9140.

    PubMed  Article  CAS  Google Scholar 

  231. Zhang, J., Zhang, Y.-P., and Rosenberg, H. F. (2002) Adaptive evolution of a duplicated pancreatic ribonuclease gene in a leaf-eating monkey. Nature Genetics 30, 411–415.

    PubMed  Article  CAS  Google Scholar 

  232. Obiso, R. J. J. and Wilkins, T. D. (1998) Fragilysin. In Handbook of Proteolytic Enzymes. (Barrett, A. J., Rawlings, N. D., and Woessner, J. F. J., eds.), Academic Press, London, pp. 1211–1213.

    Google Scholar 

  233. Wu, S., Lim, K. C., Huang, J., Saidi, R. F., and Sears, C. L. (1998) Bacteroides fragilis enterotoxin cleaves the zonula adherens protein, E-cadherin. Proc. Natl. Acad. Sci. USA 95, 14979–14984.

    PubMed  Article  CAS  Google Scholar 

  234. Moncrief, J. S., Obiso, R. J., Barroso, L. A., et al. (1995) The enterotoxin of Bacteroides fragilis is a metalloprotease. Infect. Immun. 63, 175–181.

    PubMed  CAS  Google Scholar 

  235. van Tassell, R. L., Lyerly, D. M., and Wilkins, T. D. (1994) Characterization of enterotoxigenic Bacteroides fragilis by a toxin-specific enzyme-linked immunosorbent assay. Clin. Diagn. Lab. Immunol. 1, 578–584.

    PubMed  Google Scholar 

  236. Myers, L. L., Firehammer, B. D., Shoop, D. S., and Border, M. M. (1984) Bacteroides fragilis: a possible cause of acute diarrheal disease in newborn lambs. Infect. Immun. 44, 241–244.

    PubMed  CAS  Google Scholar 

  237. Overgaard, M. T., Haaning, J., Boldt, H. B., et al. (2000) Expression of recombinant human pregnancy-associated plasma protein-A and identification of the proform of eosinophil major basic protein as its physiological inhibitor. J. Biol. Chem. 275, 31128–31133.

    PubMed  Article  CAS  Google Scholar 

  238. Farr, M., Strube, J., Geppert, H. G., Kocourek, A., Mahne, M., and Tschesche, H. (2000) Pregnancy-associated plasma protein-E (PAPP-E). Biochim. Biophys. Acta. 1493, 356–362.

    PubMed  CAS  Google Scholar 

  239. Wald, N. J., George, L., Smith, D., Densem, J. W., and Petterson, K. (1996) Serum screening for Down’s syndrome between 8 and 14 weeks of pregnancy. International Prenatal Screening Research Group. Br. J. Obstet. Gynaecol. 103, 405–412.

    Google Scholar 

  240. Lin, T. M., Galbert, S. P., Kiefer, D., Spellacy, W. N., and Gall, S. (1974) Characterization of four human pregnancy-associated plasma proteins. Am. J. Obstet. Gynecol. 118, 223–236.

    PubMed  CAS  Google Scholar 

  241. Kubo, T., Saito, T., Fukuzawa, H., and Matsuda, Y. (2001) Two tandemly-located matrix metalloprotease genes with different expression patterns in the chlamy-domonas sexual cell cycle. Curr. Genet. 40, 136–143.

    PubMed  Article  CAS  Google Scholar 

  242. Kinoshita, T., Fukuzawa, H., Shimada, T., Saito, T., and Matsuda, Y. (1992) Primary structure and expression of a gamete lytic enzyme in Chlamydomonas reinhardtii: similarity of functional domains to matrix metalloproteases. Proc. Natl. Acad. Sci. USA 89, 4693–4697.

    PubMed  Article  CAS  Google Scholar 

  243. Claes, H. (1971) Autolysis of the cell wall of gametes of Chlamydomonas reinhardii (GERMAN). Arch. Mikrobiol. 78, 180–188.

    PubMed  Article  CAS  Google Scholar 

  244. Shimizu, T., Inoue, T., and Shiraishi, H. (2002) Cloning and characterization of novel extensin-like cDNAs that are expressed during late somatic cell phase in the green alga Volvox carteri. Gene 284, 179–187.

    PubMed  Article  CAS  Google Scholar 

  245. Hallmann, A., Amon, P., Godl, K., Heitzer, M., and Sumper, M. (2001) Transcriptional activation by the sexual pheromone and wounding: a new gene family from Volvox encoding modular proteins with (hydroxy) proline-rich and metalloproteinase homology domains. Plant J. 26, 583–593.

    PubMed  Article  CAS  Google Scholar 

  246. Grandvalet, C., Gominet, M., and Lereclus, D. (2001) Identification of genes involved in the activation of the Bacillus thuringiensis inhA metalloprotease gene at the onset of sporulation. Microbiology 147, 1805–1813.

    PubMed  CAS  Google Scholar 

  247. Dalhammar, G. and Steiner, H. (1984) Characterization of inhibitor A, a protease from Bacillus thuringiensis which degrades attacins and cecropins, two classes of antibacterial proteins in insects. Eur. J. Biochem. 139, 247–252.

    PubMed  Article  CAS  Google Scholar 

  248. Karaolis, D. K. R., Lan, R., Kaper, J. B., and Reeves, P. R. (2001) Comparison of Vibrio cholerae pathogenicity islands in sixth and seventh pandemic strains. Infect. Immun. 69, 1947–1952.

    PubMed  Article  CAS  Google Scholar 

  249. Quillet, L., Bensmail, L., Barray, S., and Guespin-Michel, J. (1997) Cloning and sequencing of two genes, prtA and prtB, from Myxococcus xanthus, encoding PrtA and PrtB proteases, both of which are required for the protease activity. Gene 198, 135–140.

    PubMed  Article  CAS  Google Scholar 

  250. http://www.jinjapan.org/stat/stats/02VIT22.html http://www.smh.com.au/media/2002/06/28/1023864 634397.html http://www.cdc.gov/nccdphp/upo/major_causes.htm http://www.strokecenter.org/education/ais_epidemiology/causes.htm http://www. who.int/whr/1999/en/pdf/mortality.pdf.

  251. Kraulis, P. J. (1991) MOLSCRIPT: a program to produce both detailed and schematic plots of protein structures. J. Appl. Crystallogr. 24, 946–950.

    Article  Google Scholar 

  252. Carranza, C., Inisan, A.-G., Mouthuy-Knoops, E., Cambillau, C., and Roussel, A. (1999) Turbo-Frodo, in AFMB Activity Report 1996–1999, Marseille, France, pp. 89–90. CNRS-UPR 9039.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Xavier Gomis-Rüth.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Gomis-Rüth, F.X. Structural aspects of the metzincin clan of metalloendopeptidases. Mol Biotechnol 24, 157–202 (2003). https://doi.org/10.1385/MB:24:2:157

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/MB:24:2:157

Index Entries

  • Zinc metalloproteinase
  • metzincin
  • ADAM
  • astacin
  • serralysin
  • matrix metalloproteinase
  • MMP
  • vertebrate collagenase
  • leishmanolysin
  • adamalysin
  • reprolysin
  • three-dimensional structure
  • X-ray crystal structure
  • metalloendopeptidase