Skip to main content
Log in

Specific mutations within the α4–α5 loop of the bacillus thuringiensis Cry4B toxin reveal a crucial role for Asn-166 and Tyr-170

  • Research
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

The widely accepted model for toxicity mechanisms of the Bacillus thuringiensis Cry δ-endotoxins suggests that helices α4 and α5 form a helix-loop-helix hairpin structure to initiate membrane insertion and pore formation. In this report, alanine substitutions of two polar amino acids (Asn-166 and Tyr-170) and one charged residue (Glu-171) within the α4–α5 loop of the 130-kDa Cry4B mosquito-larvicidal protein were initially made via polymerase chain reaction-based directed mutagenesis. As with the wild-type toxin, all of the mutant proteins were highly expressed in Escherichia coli as inclusion bodies upon isopropyl-β-d-thiogalactopyranoside induction. When E. coli cells expressing each mutant toxin were assayed against Aedes aegypti mosquito larvae, the activity was almost completely abolished for N166A and Y170A mutations, whereas E171A showed only a small reduction in toxicity. Further analysis of these two critical residues by induction of specific mutations revealed that polarity at position 166 and highly conserved aromaticity at position 170 within the α4–α5 loop play a crucial role in the larvicidal activity of the Cry4B toxin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Schnepf, E., Crickmore, N., Van Rie, J., Lereclus, D., Baum, J., Feitelson, J., et al. (1998). Bacillus thuringiensis and its pesticidal crystal proteins. Microbiol. Mol. Biol. Rev. 62, 775–806.

    Google Scholar 

  2. de Maagd, R. A., Bravo, A., and Crickmore, N. (2001). How Bacillus thuringiensis has evolved specific toxins to colonize the insect world. Trends Genet. 17, 193–199.

    Article  PubMed  Google Scholar 

  3. Hofte, H. and Whiteley, H. R. (1989). Insecticidal crystal proteins of Bacillus thuringiensis. Microbiol. Rev. 53, 242–255.

    PubMed  CAS  Google Scholar 

  4. Crickmore, N., Zeigler, D. R., Feitelson, J., Schnepf, E., Van Rie, J., Lereclus, D., et al. (1998). Revision of the nomenclature for the Bacillus thuringiensis pesticidal crystal proteins. Microbiol. Mol. Biol. Rev. 62, 807–813.

    PubMed  CAS  Google Scholar 

  5. Knowles, B. H. and Ellar, D. J. (1987). Colloid-osmotic lysis is a general feature of the mechanism of action of Bacillus thuringiensis delta endotoxin with difference insect specificity. Biochim. Biophys. Acta. 924, 509–518.

    CAS  Google Scholar 

  6. Grochulski, P., Masson, L., Borisova, S., Pusztai-Carey, M., Schwartz, J. L., Brousseau, R, et al. (1995). Bacillus thuringiensis CryIA(a) insecticidal toxin: crystal structure and channel formation. J. Mol. Biol. 254, 447–464.

    Article  PubMed  CAS  Google Scholar 

  7. Morse, R. J., Yamamoto, T., and Stroud, R. M. (2001). Structure of Cry2Aa suggests an unexpected receptor binding epitope. Structure (Camb.). 9, 409–417.

    Article  CAS  Google Scholar 

  8. Li, J. D., Carroll, J., and Ellar, D. J. (1991). Crystal structure of insecticidal delta-endotoxin from Bacillus thuringiensis at 2.5 Å resolution. Nature. 353, 815–821.

    Article  PubMed  CAS  Google Scholar 

  9. Galitsky, N., Cody, V., Wojtczak, A., Ghosh, D., Luft, J. R., et al. (2001). Structure of the insecticidal bacterial delta-endotoxin Cry3Bb1 of Bacillus thuringiensis. Acta Crystallogr. [D. Biol. Crystallogr.] 57, 1101–1109.

    Article  CAS  Google Scholar 

  10. Uawithya, P., Krittanai, C., Katzenmeier, G., Leetachewa, S., Panyim, S., and Angsuthanasombat, C. (1999). Abstract. 32nd Meeting of the Society for Invertebrate Pathology, p. 75.

  11. Von Tersch, M. A., Slatin, S. L., Kulesza, C. A., and English, L. H. (1994). Membrane-permeabilizing activities of Bacillus thuringiensis coleopteran-active toxin CryIIIB2 and CryIIIB2 domain I peptide. Appl. Environ. Microbiol. 60, 3711–3717.

    Google Scholar 

  12. Walters, F. S., Slatin, S. L., Kulesza, C. A., and English, L. H. (1993). Ion channel activity of N-terminal fragments from CryIA(c) delta-endotoxin. Biochem. Biophys. Res. Commun. 196, 921–926.

    Article  PubMed  CAS  Google Scholar 

  13. Puntheeranurak, T., Leetachewa, S., Katzenmeier, G., Krittanai, C., Panyim, S., and Angsuthanasombat, C. (2001). Expression and biochemical characterization of the Bacillus thuringiensis Cry4B alpha1–alpha5 poreforming fragment. J. Biochem. Mol. Biol. 34, 293–298.

    CAS  Google Scholar 

  14. Gazit, E., La Rocca, P., Sansom, M. S., and Shai, Y. (1998). The structure and organization within the membrane of the helices composing the pore-forming domain of Bacillus thuringiensis delta-endotoxin are consistent with an “umbrella-like” structure of the pore. Proc. Natl. Acad. Sci. USA 95, 12289–12294.

    Article  PubMed  CAS  Google Scholar 

  15. Schwartz, J. L., Juteau, M., Grochulski, P., Cygler, M., Prefontaine, G., Brousseau, R., et al. (1997) Restriction of intramolecular movements within the Cryl1Aa toxin molecule of Bacillus thuringiensis through disulfide bond engineering. FEBS Lett. 410, 397–402.

    Article  PubMed  CAS  Google Scholar 

  16. Masson, L., Tabashnik, B. E., Liu, Y. B., Brousseau, R., and Schwartz, J. L. (1999). Helix 4 of the Bacillus thuringiensis Cry1Aa toxin lines the lumen of the ion channel. J. Biol. Chem. 274, 31996–32000.

    Article  PubMed  CAS  Google Scholar 

  17. Nunez-Valdez, M.-E., Sanchez, J., Lina, L., Guereca, L., and Bravo, A. (2001) Structural and functional studies of α-helix 5 region from Bacillus thruingiensis Cry1Ab δ-endotoxins. Biochim. Biophys. Acta. 1546, 122–133.

    PubMed  CAS  Google Scholar 

  18. Gerber, D. and Shai, Y. (2000). Insertion and organization within membranes of the delta-endotoxin poreforming domain, helix 4-loop-helix 5, and inhibition of its activity by a mutant helix 4 peptide. J. Biol. Chem. 275, 23, 602-23607.

    Google Scholar 

  19. Uawithya, P., Tuntitippawan, T., Katzenmeier, G., Panyim, S., and Angsuthanasombat, C. (1998). Effects on larvicidal activity of single proline substitutions in alpha 3 or alpha 4 of the Bacillus thuringiensis Cry4B toxin. Biochem. Mol. Biol. Int. 44, 825–832.

    PubMed  CAS  Google Scholar 

  20. Sramala, I., Leetachewa, S., Krittanai, C., Katzenmeier, G., Panyim, S., and Angsuthanasombat, C. (2001). Charged residues screening in helix 4 of the Bacillus thuringiensis Cry4B toxin reveals one critical residue for larvicidal activity. J. Biochem. Mol. Biol. Biophys. 5, 219–225.

    CAS  Google Scholar 

  21. Sramala, I., Uawithya, P., Chanama, U., Leetachewa, S., Krittanai, C., Katzenmeier, G., et al. (2000). Single proline substitutions of selected helices of the Bacillus thuringiensis Cry4B toxin affect inclusion solubility and larvicidal activity. J. Biochem. Mol. Biol. Biophys. 4, 187–193.

    CAS  Google Scholar 

  22. Angsuthanasombat, C., Chungjatupornchai, W., Kertbundit, S., Luxananil, P., Settasatian, C., Wilairat, P., et al. (1987). Cloning and expression of 130-kd mosquito-larvicidal delta-endotoxin gene of Bacillus thuringiensis var. israelensis in Escherichia coli. Mol. Gen. Genet. 208, 384–389.

    Article  PubMed  CAS  Google Scholar 

  23. Doyle, D. A., Morais, C. J., Pfuetzner, R. A., Kuo, A., Gulbis, J. M., Cohen, S. L., et al. (1998). The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science 280, 69–77.

    Article  PubMed  CAS  Google Scholar 

  24. Yuen, C. T., Davidson, A. R., and Deber, C. M. (2000). Role of aromatic residues at the lipid-water interface in micelle-bound bacteriophage M13 major coat protein. Biochemistry 39, 16155–16162.

    Article  PubMed  CAS  Google Scholar 

  25. Landolt-Marticorena, C., Williams, K. A., Deber, C. M. and Reithmeier, R. A. (1993). Non-random distribution of amino acids in the transmembrane segments of human type I single span membrane proteins. J. Mol. Biol. 229, 602–608.

    Article  PubMed  CAS  Google Scholar 

  26. Schiffer, M., Chang, C. H., and Stevens, F. J. (1992). The functions of tryptophan residues in membrane proteins. Protein Eng. 5, 213–214.

    Article  PubMed  CAS  Google Scholar 

  27. Tsang, S. and Saier, M. H., Jr. (1996). A simple flexible program for the computational analysis of amino acyl residue distribution in proteins: application to the distribution of aromatic versus aliphatic hydrophobic amino acids in transmembrane alpha-helical spanners of integral membrane transport proteins. J. Comput. Biol. 3, 185–190.

    Article  PubMed  CAS  Google Scholar 

  28. Pawagi, A. B. and Deber, C. M. (1990). Ligand-dependent quenching of tryptophan fluorescence in human erythrocyte hexose transport protein. Biochemistry 29, 950–955.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chanan Angsuthanasombat.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kanintronkul, Y., Sramala, I., Katzenmeier, G. et al. Specific mutations within the α4–α5 loop of the bacillus thuringiensis Cry4B toxin reveal a crucial role for Asn-166 and Tyr-170. Mol Biotechnol 24, 11–19 (2003). https://doi.org/10.1385/MB:24:1:11

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/MB:24:1:11

Index Entries

Navigation