Skip to main content
Log in

Animal models of inherited complement deficiency

  • Review
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

The initial description of murine strains deficient in complement component C5 has been followed by the recognition in a range of animal species of a variety of natural complement component deficiencies, many of which have been characterized at the molecular level. The use of such species in inflammatory and infectious experimental models has led to significant progress in understanding the role of specific complement factors (and pathways) in disease pathogenesis. Deficiencies of early complement factors are characterized by impairment of immune response, possibly due to defective processing of immune complexes. Complete (but not partial) deficiency of the central component C3 predisposes affected animals to significant risk of infection and renal disease. Studies in species deficient in the terminal pathway component C6 are particularly relevant for investigating the pathogenetic role of the terminal membrane attack complex (MAC), implicating it as a causative agent in diverse inflammatory insults such as reperfusion injury, glomerular damage, and xenograft hyperacute rejection. Further investigations in such naturally deficient strains, added to results derived from studies in knockout animals, are likely to expand our understanding of the role of the activated complement system in experimental inflammatory disease, with significant potential implications for the treatment of human disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arroyave, C. M., Levy, R. M., and Johnson, J. S. (1977) Genetic deficiency of the fourth component of complement (C4) in Wistar rats. Immunology 33, 453–459.

    PubMed  CAS  Google Scholar 

  2. Bitter-Suermann, D., Hoffmamn, T., Burger, R., et al. (1981) Linkage of total deficiency of the second component (C2) of the complement system and of genetic C2-polymorphism to the major histocompatibility complex of the guinea pig. J. Immunol. 127, 608–612.

    PubMed  CAS  Google Scholar 

  3. Ellman, L., Green, I., and Frank, M. (1970) Genetically controlled total deficiency of the fourth component of complement in the guinea pig. Science 170, 74,75.

    Article  PubMed  CAS  Google Scholar 

  4. Frank, M. M., May, J., Gaither, T., et al. (1971) In vitro studies of complement function in sera of C4-deficient guinea pigs. J. Exp. Med. 134, 176–187.

    Article  PubMed  CAS  Google Scholar 

  5. Colten, H. R. Biosynthesis of the MHC-linked complement proteins (C2, C4 and factor B) by mononuclear phagocytes. Mol. Immunol. 19, 1279–1285.

  6. Bitter-Suermann, D. and Burger, R. (1986) Guinea pigs deficient in C2, C4, C3 or the C3a receptor. Progr. Allergy 39, 134–158.

    CAS  Google Scholar 

  7. Bottger, E. C., Hoffmann, T., Hadding, U., et al. (1985) Influence of genetically inherited complement deficiencies on humoral immune response in guinea pigs. J. Immunol. 135, 4100–4107.

    PubMed  CAS  Google Scholar 

  8. Bottger, E. C., Hoffmann, T., Hadding, U., et al. (1986) Guinea pigs with inherited deficiencies of complement components C2 or C4 have characteristics of immune complex disease. J. Clin. Invest. 78, 689–695.

    PubMed  CAS  Google Scholar 

  9. Wagner, E., Plat, J. L., Howell, D. N., et al. (1999) IgG and complement-mediated tissue damage in the absence of C2: evidence of a functionally active C2-bypass pathway in a guinea pig model. J. Immunol. 163, 3549–3558.

    PubMed  CAS  Google Scholar 

  10. Wicher, K., Wicher, V., and Gruhn, R. F. (1985) Differences in susceptibility to infection with Treponema pallidum Nichols between five strains of guinea pigs. Genitourin. Med. 61, 21–26.

    PubMed  CAS  Google Scholar 

  11. Wicher, V., Wicher, K., Abbruscato, F., et al. (1999) The time-dependent clearance of virulent Treponema pallidum in susceptible and resistant strains of guinea pigs is significantly different. Clin. Immunol. 91, 77–83.

    Article  PubMed  CAS  Google Scholar 

  12. Singer, L., Colten, H. R., and Wetsel, R. A. (1994) Complement C3 deficiency: Human, animal and experimental models. Pathobiology 62, 14–28.

    Article  PubMed  CAS  Google Scholar 

  13. Schurman, S. J., McAdams, A. J., Beischel, L., et al. (1995) C3-independent glomerulonephritis in guinea pigs: dependence upon primary humoral response. Clin. Immunol. Immunopath. 74, 51–58.

    Article  CAS  Google Scholar 

  14. Braidley, P. C., Dunning, J. J., Wallwork, J., et al. (1994) Prolongation of survival of rat heart xenografts in C3 deficient guinea pigs. Trans. Proc. 26, 1259–1260.

    CAS  Google Scholar 

  15. Winkelstein, J. A., Cork, L. C., Griffin, D. E., et al. (1981) Genetically determined deficiency of the third component of complement in the dog. Science 212, 1169–1170.

    Article  PubMed  CAS  Google Scholar 

  16. Ameratunga, R., Winkelstein, J. A., Brody, L., et al. (1998) Molecular analysis of the third component of canine complement (C3) and identification of the mutation responsible for hereditary canine C3 deficiency. J. Immunol. 160, 2824–2830.

    PubMed  CAS  Google Scholar 

  17. Cork, L. C., Morris, R. M., Olson, J. L., et al. (1991) Membranoproliferative glomerulonephritis in dogs with a genetically determined deficiency of the third component of complement. Clin. Immunol. Immunopath. 60, 455–470.

    Article  CAS  Google Scholar 

  18. Quezado, Z. M. N., Hoffmann, W. D., Winkelstein, J. A., et al. (1994) The third component of complement protects against Eschericia Coli endotoxin-induced shock and multiple organ failure. J. Exp. Med. 179, 569–578.

    Article  PubMed  CAS  Google Scholar 

  19. Gillinov, A. M., Redmond, J. M., Winkelstein, J. A., et al. (1994) Complement and neutrophil activation during cardioplumonary bypass: A study in the complement-deficient dog. Ann. Thorac. Surg. 57, 345–352.

    Article  PubMed  CAS  Google Scholar 

  20. Komatsu, M., Yamamoto, K., Nakano, Y., et al. (1988) Hereditary C3 hypocomplementemia in the rabbit. Immunology 64, 363–368.

    PubMed  CAS  Google Scholar 

  21. Cinader, B., Dubiski, S., and Wardlaw, A. C. (1964) Distribution, inheritance and properties of an antigen, MuB1, and its relation to haemolytic complement. J. Exp. Med. 120, 897–924.

    Article  PubMed  CAS  Google Scholar 

  22. Nilsson, U. R. and Müller-Eberhard, H. J. (1967) Deficiency of the fifth component of complement in mice with an inherited complement defect. J. Exp. Med. 125, 1–16.

    Article  PubMed  CAS  Google Scholar 

  23. Rosenberg, L. T. and Tachibana, D. K. (1986) Mice deficient in C5. Progr. Allergy 39, 169–191.

    CAS  Google Scholar 

  24. Wheat, W. H., Wetsel, R., Falus, A., et al. (1987) The fifth component of complement (C5) in the mouse. J. Exp. Med. 165, 1442–1447.

    Article  PubMed  CAS  Google Scholar 

  25. Wetsel, R. A., Fleischer, D. T., and Haviland, D. L. (1990) Deficiency of the murine fifth complement component (C5). J. Biol. Chem. 265, 2435–2440.

    PubMed  CAS  Google Scholar 

  26. Toyka, K. V., Drachman, D. B., Griffin, D. E., et al. (1977) Myasthenia gravis: Study of humoral immune mechanisms by passive transfer to mice. N. E. J. M. 296, 125–131.

    Article  CAS  Google Scholar 

  27. Christadoss, P. (1988) C5 gene influences the development of murine myasthenia gravis. J. Immunol. 140, 2589–2592.

    PubMed  CAS  Google Scholar 

  28. Liu, L., Lioudyno, M., Tao, R., et al. (1999) Hereditary absence of complement C5 in adult mice influences Wallerian degeneration, but not retrograde responses, following injury to peripheral nerve. J. Peripher. Nerv. Syst. 4, 123–133.

    PubMed  CAS  Google Scholar 

  29. Kyriakides, C., Austen, W. Jr., Wang Y., et al. (1999) Membrane attack complex of complement and neutrophils mediate the injury of acid aspiration. J. Appl. Physiol. 87, 2357–2361.

    PubMed  CAS  Google Scholar 

  30. Sakakibara, N., Wolf, P., Kriett, J., et al. (1996) Cardiac xenotransplantation into complement-5-deficient mice. Trans. Proc. 28, 689,690.

    CAS  Google Scholar 

  31. Liu, Z., Giudice, G. J., Zhou, X., et al. (1997) A major role for neutrophils in experimental bullous pemphigoid. J. Clin. Invest. 100, 1256–1263.

    PubMed  CAS  Google Scholar 

  32. Nieuwenhuizen, G. A. P., Meyer, M. P. D., Hendriks, T., et al. (1995) Deficiency of complement factor C5 reduces early mortality but does not prevent organ damage in an animal model of multiple organ dysfunction syndrome. Crit. Care Med. 23, 1686–1693.

    Article  Google Scholar 

  33. Miller, C. G., Cook, D. N., and Kotwal, G. J. (1997) Two chemotactic factors, C5a and MIP-1α, dramatically alter the mortality from zymosan-induced multiple organ dysfunction syndrome (MODS): C5a contributes to MODS while MIP-1α has a protective role. Mol. Immunol. 33, 1135–1137.

    Article  Google Scholar 

  34. Kyriakides, C., Austen, W. G. Jr., Wang, Y., et al. (2000) Neutrophil mediated remote organ injury after lower torso ischaemia and reperfusion is selectin and complement dependent. J. Trauma 48, 32–38.

    PubMed  CAS  Google Scholar 

  35. Hsueh, W., Sun, X., Rioja, L. N., et al. (1990) The role of the complement system in shock and tissue injury induced by tumour necrosis factor and endotoxin. Immunology 70, 309–314.

    PubMed  CAS  Google Scholar 

  36. Barton, P. A. and Warren, J. S. (1993) Complement component C5 modulates the systemic tumor necrosis factor response in murine endotoxic shock. Infect. Immun. 61, 1474–1481.

    PubMed  CAS  Google Scholar 

  37. Mori, L. and de Libero, G. (1998) Genetic control of susceptibility to collagen-induced arthritis in T-cell receptor β-chain transgenic mice. Arthritis Rheum. 41, 256–262.

    Article  PubMed  CAS  Google Scholar 

  38. Wang, Y., Kristan, J., Hao, L., et al. (2000) A role for complement in antibody-mediated inflammation: C5-deficient DBA/1 mice are resistant to collagen-induced arthritis. J. Immunol. 164, 4340–4347.

    PubMed  CAS  Google Scholar 

  39. Cerquetti, M. C., Sordelli, D. O., Bellanti, J. A., et al. (1986) Lung defenses against Pseudomonas aeruginosa in C5-deficient mice with different genetic backgrounds. Infect. Immun. 52, 853–857.

    PubMed  CAS  Google Scholar 

  40. Jagannath, C., Hoffmann, H., Sepulveda, E., et al. (2000) Hypersusceptibility of A/J mice to tuberculosis is in part due to deficiency of the fifth complement component. Scand. J. Immunol. 52, 369–379.

    Article  PubMed  CAS  Google Scholar 

  41. Miller, C. G., Justus, D. E., Jayaraman, S., et al. (1995) Severe and prolonged inflammatory response to localized cowpox virus infection in footpads of C5-deficient mice: Investigation of the role of host complement in poxvirus pathogenesis. Cell. Immunol. 162, 326–332.

    Article  PubMed  CAS  Google Scholar 

  42. Byron, J. K., Clemons, K. V., McCusker, J. H., et al. (1995) Pathogenicity of Saccharomyces cerevisiae in complement factor five-deficient mice. Infect. Immun. 63, 478–485.

    PubMed  CAS  Google Scholar 

  43. Rother, K., Rother, U., Muller-Eberhared, H. J., et al. (1966) Deficiency of the sixth component of complement in rabbits with an inherited complement defect. J. Exp. Med. 124, 773.

    Article  PubMed  CAS  Google Scholar 

  44. Leenaerts, P. L., Stad, R. K., Hall, B. M., et al. (1994) Hereditary C6 deficiency in a strain of PVG/c rats. Clin. Exp. Immunol. 97, 478–482.

    Article  PubMed  CAS  Google Scholar 

  45. Goldman, M. B., Cohen, C., Stronski, K., et al. (1982) Genetic control of C6 polymorphism and C6 deficiency in rabbits. J. Immunol. 128, 43–48.

    PubMed  CAS  Google Scholar 

  46. Parra, G., Takekoshi, Y., Striegel, J., et al. (1992) Acute serum sickness in normal and C6 deficient rabbits: role of membrane attack complex. Int. J. Exp. Path. 73, 299–312.

    CAS  Google Scholar 

  47. Ito, W., Schafer, H. J., Bhadki, S., et al. (1996) Influence of the terminal complement-complex on reperfusion injury, no-reflow and arrythmias: a comparison between C6-competent and C6-deficient rabbits. Cardiovasc. Res. 32, 294–305.

    Article  PubMed  CAS  Google Scholar 

  48. Kilgore, K. S., Park, J. L., Tanhehco, E. J., et al. (1998) Attenuation of interleukin-8 expression in C6-deficient rabbits after myocardial ischaemia/reperfusion. J. Mol. Cell. Cardiol. 30, 75–85.

    Article  PubMed  CAS  Google Scholar 

  49. Schmiedt, W., Kinscherf, R., Deigner, H. P., et al. (1998) Complement C6-deficiency protects against diet-induced atherosclerosis in rabbits. Arterioscler. Thromb. Vasc. Biol. 18, 1790–1795.

    PubMed  CAS  Google Scholar 

  50. Inoue, K., Niesen, N., Biesecker, G., et al. (1993) Role of late complement components in experimental auto-immune thyroiditis. Clin. Immunol. Immunopath. 66, 1–10.

    Article  CAS  Google Scholar 

  51. Groggel, G. C. and Terreros, D. A. (1990) Role of complement pathway in accelerated autologous antiglomerular basement membrane nephritis. Am. J. Path. 136, 533–540.

    PubMed  CAS  Google Scholar 

  52. van Dixhoorn, M. G. A., Timmerman, J. J., van Gijlswijk-Janssen, D. J., et al. (1997) Characterisation of complement C6 deficiency in a PVG/c rat strain. Clin. Exp. Immunol. 109, 387–396.

    Article  PubMed  Google Scholar 

  53. Brauer, R. B., Gegenfurtner, C., Neumann, B., et al. (2000) Endotoxin-induced lung inflammation is independent of the complement membrane-attack complex. Infect. Immun. 68, 1626–1632.

    Article  PubMed  CAS  Google Scholar 

  54. Brandt, J., Pippin, J., Schulze, M., et al. (1996) Role of the complement membrane attack complex (C5b-9) in mediating experimental mesangioproliferative glomerulonephritis. Kidney Int. 49, 335–343.

    Article  PubMed  CAS  Google Scholar 

  55. Timmerman, J. J., Mieneke, G. A., van Dixhoorn, G. A., et al. (1997) Extrahepatic C6 is as effective as hepatic C6 in the generation of renal C5b-9 complexes. Kidney Int. 51, 1788–1796.

    Article  PubMed  CAS  Google Scholar 

  56. Brauer, R. B., Baldwin, III, W. M., Ibrahim S., et al. (1995) The contribution of terminal complement components to acute and hyperacute allograft rejection in the rat. Transplantation 59, 288–293.

    PubMed  CAS  Google Scholar 

  57. Qian, Z., Jakobs, F.M., Pfaff-Amesse, T., et al. (1998) Complement contributes to the rejection of complete and class I major histocompatibility complex- incompatible cardiac allografts. J. Heart Lung Transplant. 17, 470–478.

    PubMed  CAS  Google Scholar 

  58. Merten, S., Chen, J. C., Ha, H., et al. (1998) The cellular basis of cardiac allograft rejection: VIII. Mechanisms underlying delayed allograft rejection in PVG C6-deficient rats. Transplantation 65, 1152–1158.

    Article  PubMed  CAS  Google Scholar 

  59. Brauer, R. B., Baldwin, III, W. M., Wang, D., et al. (1994) Hepatic and extrahepatic biosynthesis of complement factor C6 in the rat. J. Immunol. 153, 3168–3176.

    PubMed  CAS  Google Scholar 

  60. Brauer, R. B., Baldwin, III, W. M., Daha, M. R., et al. (1993) Use of C6-deficient rats to evaluate the mechanism of hyperacute rejection of discordant cardiac xenografts. J. Immunol. 151, 7240–7248.

    PubMed  CAS  Google Scholar 

  61. Lin, Y., Sobis, H., Vandeputte, M., et al. (1995) Natural killer cells, antibody-dependent cellular cytotoxicity and complement synthesis by the xenograft itself play a role in xenograft rejection. Trans. Proc. 27, 286–287.

    CAS  Google Scholar 

  62. Jakobs, F. M., Davis, E. A., Qian, Z. P., et al. (1997) The role of CD11b/CD18 mediated neutrophil adhesion in complement deficient xenograft recipients. Clin. Transplantation 11, 516–521.

    CAS  Google Scholar 

  63. Kronson, J. W., Hering, B. J., Sutherland, D. E., et al. (1998) Posttransplant nonfunction of canine islets in PVG rats deficient in complement component C6. Transplantation 65, 1549–1554.

    Article  PubMed  CAS  Google Scholar 

  64. Jakobs, F. M., Davis, E. A., White, T., et al. (1998) Prolonged discordant xenograft survival by inhibition of the intrinsic coagulation pathway in complement C6-deficient recipients. J. Heart and Lung Trans. 17, 306–311.

    CAS  Google Scholar 

  65. Alwayn, I. P., van Bockel, H. J., Daha, M. R., et al. (1999) Hyperacute rejection in the guinea pig-to-rat model without formation of the membrane attack complex. Transpl. Immunol. 7, 177–182.

    Article  PubMed  CAS  Google Scholar 

  66. Kerr, S. R., Dalmasso, A. P., Apasova, E. V., et al. (1999) Mouse-to-rabbit xenotransplantation: a new small animal model of hyperacute rejection mediated by the classical complement pathway. Transplantation 67, 360–365.

    Article  PubMed  CAS  Google Scholar 

  67. Wu, G. S., Korsgren, O., Wennberg, L., et al. (1999) Deoxyspergualin delays xenograft rejection in the guinea pig-to-C6-deficient rat heart transplantation model. Transpl. Int. 12, 415–422.

    Article  PubMed  CAS  Google Scholar 

  68. Wu, G. S., Korsgren, O., van Rooijen, N., et al. (1999) The effect of macrophage depletion on delayed xenograft rejection studies in the guinea pig-to-C6-deficient rat heart transplantation model. Xenotransplantation 6, 262–270.

    Article  PubMed  CAS  Google Scholar 

  69. Wu, G. S., Korsgren, O., Tibell, A. (2000) Cyclosporine induces long-term xenograft survival in the mouse-to-C6-deficient rat heart transplantation model. Transplant. Proc. 32, 1015.

    Article  PubMed  CAS  Google Scholar 

  70. Suhr, B. D., Guzman-Paz, M., Apasova, E. P., et al. (2000) Induction of accommodation in the hamster-to-rat model requires inhibition of the membrane attack complex of complement. Transplant. Proc. 32, 976.

    Article  PubMed  CAS  Google Scholar 

  71. Ji, P., Xia, G. L., and Waer, M. (2000) Complement-and xenoantibody-independent discordant xenograft rejection in a guinea pig to rat model. Transplant. Proc. 32, 935.

    Article  PubMed  CAS  Google Scholar 

  72. Meyer zu Vilsendorf, A., Nagel, E., Link, C., et al. (2000) Prolonged survival of guinea pig-to-rat heart xenografts following complement depletion and B-cell-directed immunosuppression by malononitrilamide. Transplant. Proc. 32, 864,865.

    Article  PubMed  CAS  Google Scholar 

  73. Nangaku, M., Alpers, C. E., Pippin, J., et al. (1997) Renal microvascular injury induced by antibody to glomerular endothelial cells is mediated by C5b-9. Kidney Int. 52, 1570–1578.

    Article  PubMed  CAS  Google Scholar 

  74. Hughes, J., Nangaku, M., Alpers, C. F., et al. (2000) C5b-9 membrane attack complex mediates endothelial cell apoptosis in experimental glomerulonephritis. Am. J. Physiol. Renal Physiol. 278, F747-F757.

    PubMed  CAS  Google Scholar 

  75. Nangaku, M., Pippin, J., and Couser, W. G. (1999) Complement membrane attack complex (C5b-9) mediates interstitial disease in experimental nephrotic syndrome. J. Am. Soc. Nephrol. 10, 2323–2331.

    PubMed  CAS  Google Scholar 

  76. Orren, A., Wallace, M. E., Hobart, M.J., et al. (1996) C6 polymorphism and C6 deficiency in site strains of the mutation-prone Peru-Coppock mice. Complement Inflamm. 6, 295–296 (Abstr.).

    Google Scholar 

  77. Zhou, W., Farrar, C. A., Abe, K., et al. (2000) Predominant role for C5b-9 in renal ischaemia/reperfusion injury. J. Clin. Invest. 105, 1363–1371.

    PubMed  CAS  Google Scholar 

  78. Komatsu, M., Yamamoto, K.-I., Kawashima, T., et al. (1985) Genetic deficiency of the α-γ subunit of the eighth complement component in the rabbit. J. Immunol. 134, 2607–2609.

    PubMed  CAS  Google Scholar 

  79. Komatsu, M., Yamamoto, K.-I., Mikami, H., et al. (1991) Genetic deficiency of complement component C8 in the rabbit: Evidence of a translational defect in expression of the α-γ subunit. Biochem. Genet. 29, 271–274.

    Article  PubMed  CAS  Google Scholar 

  80. Tanaka, S., Suzuki, T., Sakaizumi, M., et al. (1991) Gene responsible for deficient activity of the β subunit of C8, the eighth component of complement, is located on mouse chromosome 4. Immunogenetics 33, 18–23.

    Article  PubMed  CAS  Google Scholar 

  81. Hogasen, K., Jansen, J. H., Mollnes, T. E., et al. (1995) Hereditary porcine membranoproliferative glomerulonephritis type II is caused by Factor H deficiency. J. Clin. Invest. 95, 1054–1061.

    Article  PubMed  CAS  Google Scholar 

  82. Gerardy-Schahn, R., Ambrosius, D., Saunders, D., et al. (1989) Characterisation of C3a receptor-proteins on guinea pig platelets and human polymorphonuclear leukocytes. Eur. J. Immunol. 19, 1095–1102.

    Article  PubMed  CAS  Google Scholar 

  83. Regal, J. F. and Klos, A. (2000) Minor role of the C3a receptor in systemic anaphylaxis in the guinea pig. Immunopharm. 46, 15–28.

    Article  CAS  Google Scholar 

  84. Pruitt, S. K., Baldwin, III, W. M., and Sanfilippo, F. (1996) The role of C3a and C5a in hyperacute rejection of guinea pig-to-rat cardiac xenografts. Trans. Proc. 28, 596.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stuart Linton.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Linton, S. Animal models of inherited complement deficiency. Mol Biotechnol 18, 135–148 (2001). https://doi.org/10.1385/MB:18:2:135

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/MB:18:2:135

Index Entries

Navigation