Skip to main content
Log in

Problems posed by natural environments for monitoring microorganisms

  • Review
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Microorganisms in natural environments have evolved to withstand fluctuations in physical and chemical conditions. This means that they often manifest very different biochemical and morphological features compared with those seen during laboratory culture. A major limitation in natural ecosystems is nutrient limitation under which microorganisms are exposed to starvation conditions and grow slowly or not at all. This review identifies the role of inimical processes on microbial properties such as the responses to starvation that may result in the adoption of viable but nonculturable (VBNC) states, discusses the problems that altered physiological states pose for detection and identification and highlights novel methods that have been developed to circumvent these difficulties. These factors dictate that to survive and respond to environmental stimuli, a cell must have evolved sophisticated programs of gene expression. These include the sigma factor rpoS that directs RNA polymerase to transcribe genes whose expression aids survival during severe nutrient limitation or cell-cell communication systems that promote a concerted population response termed quorum sensing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gottschal, J. C. (1990) Phenotypic responses to environmental changes. FEMS Microbiol. Ecol. 74, 93–102.

    Article  CAS  Google Scholar 

  2. Edwards, C. (1999) Some problems posed by natural environments for monitoring microorganisms. In Environmental monitoring of bacteria (Edwards, C., ed.) Humana, Totowa, NJ, pp. 1–13.

    Chapter  Google Scholar 

  3. McDougald, D., Rice, S. A., Weichart, D., and Kjelleberg, S. (1998) Nonculturability: adaptation or debilitation? FEMS Microbiol. Ecol. 25, 1–9.

    Article  CAS  Google Scholar 

  4. Edwards, C. (1996) Assessment of viability of bacteria by flow cytometry. In Flow cytometry: Applications in Cell Culture (Al-Rubeai, M. and Emery, A. N., eds.), Marcel Dekker, New York, pp. 291–310.

    Google Scholar 

  5. Head, I. M. (1999) Recovery and analysis of ribosomal RNA sequences from the environment. In Environmental monitoring of bacteria (Edwards, C., ed.) Humana, Totowa, NJ, pp. 139–174.

    Chapter  Google Scholar 

  6. Pickup, R. (1991) Development of methods for the detection of specific bacteria in the environment. J. Gen. Microbiol. 137, 1009–1019.

    CAS  Google Scholar 

  7. Cappelier, J. M., Minet, J., Magras, C., Colwell, R. R., and Federighi, M. (1999) Recovery in embryonated eggs of viable but nonculturable Campylobacter jejuni cells and maintenance of ability to adhere to Hela cells after resuscitation. Appl. Environ. Microbiol. 65, 5154–5157.

    PubMed  CAS  Google Scholar 

  8. Alexander, E., Pham, D., and Steck, T. R. (1999) The viable but nonculturable condition is induced by copper in Agrobacterium tumefaciens and Rhizobium leguminosarum. Appl. Environ. Microbiol. 65, 3754–3756.

    PubMed  CAS  Google Scholar 

  9. Caro, A., Got, P., Lesne, J., Binard, S., and Baleux, B. (1999) Viability and virulence of experimentally stressed nonculturable Salmonella typhimurium. Appl. Environ. Microbiol. 65, 3229–3232.

    PubMed  CAS  Google Scholar 

  10. Warner, J. M. and Oliver, J. D. (1998) Randomly amplified polymorphic DNA analysis of starved and viable but nonculturable Vibrio vulnificus cells. Appl. Environ. Microbiol. 64, 3025–3038.

    PubMed  CAS  Google Scholar 

  11. Yamamoto, H., Hashimoto, Y., and Ezaki, T. (1996) Study of nonculturable Legionella pneumophila cells during multiple nutrient starvation. FEMS Microbiol. Ecol. 20, 149–154.

    Article  CAS  Google Scholar 

  12. Collwell, R. R., Brayton, P., Herrington, D., Tall, B., Huq, A., and Levine, M. M. (1996) Viable but nonculturable Vibrio cholerae 01 revert to a cultivable state in the human intestine. World J. Microbiol. Biotechnol. 12, 28–31.

    Article  Google Scholar 

  13. Lleo, M. D., Tafi, M. C., and Canepari, P. (1998) Nonculturable Enterococcus faecalis cells are metabolically active and capable of resuming active growth. Syst. Appl. Microbiol. 21, 333–339.

    PubMed  CAS  Google Scholar 

  14. Lazaro, B., Carcamo, J., Audicana, A., Perales, I., and FernandezAstorga, A. (1999) Viability and DNA maintenance in nonculturable spiral Campylobacter jejuni cells after long term exposure to low temperatures. Appl. Environ. Microbiol. 65, 4677–4681.

    PubMed  CAS  Google Scholar 

  15. Tholozan, J. L., Cappelier, J. M., Tissier, J. P., Delattre, G., and Federighi, M. (1999) Physiological characterization of viable but nonculturable Campylobacter jejuni cells. Appl. Environ. Microbiol. 65, 1110–1116.

    PubMed  CAS  Google Scholar 

  16. Weichart, D., McDougald, D., Jacobs, D., and Kjelleberg, S. (1997) In situ analysis of nucleic acids in cold-induced nonculturable Vibrio vulnificus. Appl. Environ. Microbiol. 63, 2754–2758.

    PubMed  CAS  Google Scholar 

  17. Rigsbee, W., Simpson, L. M., and Oliver, J. D. (1997) Detection of viable but nonculturable state in Escherichia coli O157:H7. J. Food Safety 16, 255–262.

    Article  Google Scholar 

  18. Porter, J., Deere, D., Pickup, R., and Edwards, C. (1996) Fluorescent probes and flow cytometry: new insights into environmental bacteriology. Cytometry 23, 91–96.

    Article  PubMed  CAS  Google Scholar 

  19. Porter, J., Deere, D., Pickup, R., and Edwards, C. (1997) Going with the flow — flow cytometry in environmental microbiology. FEMS Microbiol. Ecol. 24, 93–101.

    Article  CAS  Google Scholar 

  20. Lloyd, D., Thomas, K. L., Hayes, A., Hill, B., Hales, B. A., Edwards, C., et al. (1998) Micro-ecology of peat: minimally-invasive analysis using confocal microscopy, membrane inlet mass spectrometry and PCR amplification of metanogen-specific gene sequences. FEMS Microbiol. Ecol. 25, 179–188.

    Article  CAS  Google Scholar 

  21. Porter, J., Pickup, R. W., and Edwards, C. (1997) Evaluation of flow cytometric methods for the detection and viability assessment of bacteria from soil. Soil Biol. and Biochem. 29, 91–100.

    Article  CAS  Google Scholar 

  22. Deere, D., Porter, J., Pickup, R., and Edwards, C. (1996) Dircet analysis of starved. Acromonas salmonioida. J Fish Diseases 19, 459–467.

    Article  Google Scholar 

  23. Porter, J., Pickup, R., and Edwards, C. (1995) Membrane hyperpolarisation by valinomycin and its limitations for bacterial viability assessment using rhodamine 123 and flow cytometry. FEMS Microbiol. Lett, 132, 259–262.

    Article  PubMed  CAS  Google Scholar 

  24. Porter, J., Edwards, C., and Pickup, R. (1995) Rapid assessment of physiological status in Escherichia coli using fluorescent probes. J. Appl. Bacteriol. 79, 399–408.

    PubMed  CAS  Google Scholar 

  25. Barer, M. R., Kaprelyants, A. S., Weichert, D. H., Harwood, C. R., and Kell, D. B. (1998) Microbial stress and culturability: conceptual and operational domains. Microbiol. 144, 2009–2010.

    CAS  Google Scholar 

  26. Bloomfield, S. F., Stewart, G. S. A., Dodd, C. E. R., Booth, I. R., and Power, E. G. M. (1998) The viable but nonculturable phenomenon explained? Microbiol. 144, 1–3.

    CAS  Google Scholar 

  27. Nystrom, T., Flardh, K., and Kjelleberg, S. (1990) Responses to multiple nutrient starvation in the marine Vibrio sp. strain CCUG 15956. J. Bacteriol. 172, 7085–7097.

    PubMed  CAS  Google Scholar 

  28. Nystrom, T., Olsson, R. M., and Kjelleberg, S. (1992) Survival, stress resistance and alterations in protein expression in the marine Vibrio dp. S14 during starvation for different individual nutrients. Appl. Environ. Microbiol. 58, 55–65.

    PubMed  CAS  Google Scholar 

  29. Nystrom, T. (1998) To be or not to be: the ultimate decision of the growth-arrested cell. FEMS Microbiol. Rev. 21, 283–290.

    Article  CAS  Google Scholar 

  30. VanBogelen, R. A., Greis, K. D., Blumenthal, R. M., Tani, T. T., and Matthews, R. G. (1999) Mapping regulatory networks in microbial cells. Trends Microbiol. 7, 320–328.

    Article  PubMed  CAS  Google Scholar 

  31. Weichart, D. and Kjelleberg, S. (1996) Stress resistance and recovery potential of culturable and viable but nonculturable cells of Vibrio vulnificus. Microbiol. 142, 845–853.

    CAS  Google Scholar 

  32. Oliver, J. D. and Bockian, R. (1995) In vivo resuscitation and virulence towards mice of viable but nonculturable cells of Vibrio vulnificus. Appl. Environ. Microbiol. 61, 2620–2623.

    PubMed  CAS  Google Scholar 

  33. Loewen, P. C. and Hengge-Aronis, R. (1994) The role of the sigma factor σS (KatF) in bacterial global cell regulation. Ann. Rev. Microbiol. 48, 53–80.

    Article  CAS  Google Scholar 

  34. Foster, J. W. and Spector, M. P. (1995) How Salmonella survive against the odds. Ann. Rev. Microbiol. 49, 145–174.

    Article  CAS  Google Scholar 

  35. Schellhorn, H. E., Audia, J. P., Wei, L. I. C., and Chang, L. (1998) Identification of conserved RpoS-dependent stationary phase genes of Escherichia coli. J. Bacteriol. 180, 6283–6291.

    PubMed  CAS  Google Scholar 

  36. Huisman, G. W. and Kolter, R. (1994) Sensing starvation: A homoserine lactone-dependent signaling pathway in Escherichia coli. Science 265, 537–539.

    Article  PubMed  CAS  Google Scholar 

  37. Rinas, U., Hellmuth, K., Kang, R., Seegar, A., and Schlieker, H. (1995) Entry of Escherichia coli into stationary phase is indicated by endogenous and exogenous accumulation of nucloobasos, App. Environ. Microbiol 61, 4147–4151.

    CAS  Google Scholar 

  38. Huisman, G. W., Siegele, D. A., Zambrano, M. M., and Kolter, R. (1996) Morphological and physiological changes during stationary phase. In Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology. (Neidhardt, F. C., et al. eds.) American Society for Microbiology, Washington, DC, pp. 1672–1682.

    Google Scholar 

  39. Kolter, R., Siegele, D. A., and Tormo, A. (1993) The stationary phase of the bacterial life cycle. Ann. Rev. Microbiol. 47, 855–874.

    Article  CAS  Google Scholar 

  40. Zambrano, M. M., Siegele, D. A., Almiron, M., Tormo, A., and Kolter, R. (1993) Microbial competition: Escherichia coli mutants that take over stationary phase cultures. Science 259, 1757–1760.

    Article  PubMed  CAS  Google Scholar 

  41. Shapiro, J. A. (1997) Genome organisation, natural genetic engineering and adaptive mutation. Trends Genet. 13, 98–104.

    Article  PubMed  CAS  Google Scholar 

  42. Foster P. L. (1993) Adaptive mutation: The uses of adversity. Ann. Rev. Microbiol. 47, 467–504.

    Article  CAS  Google Scholar 

  43. Chang, L., Wei, L. L. C., Audia, J. P., Morton, R. A., and Schellhorn, H. H. (1999) Expression of the Escherichia coli NRZ nitrate reductase is highly growth phase dependent and is controlled by RpoS, the alternative vegetative sigma factor. Mol. Microbiol. 34, 756–766.

    Article  PubMed  CAS  Google Scholar 

  44. Spector, M. P., del Portillo, F. G., Bearson, S. M. D., Mahmud, A., Finlay, B. B., Dougan, G., et al. (1999) The rpoS-dependent starvation stress response locus stiA encodes a nitrate reductase (narZYWV) required for carbon starvation inducible thermotolerance and acid tolerance in Salmonella typhimurium. Microbiol. 145, 3035–3045.

    CAS  Google Scholar 

  45. Adams, J. L. and McLean, R. J. C. (1999) Impact of rpoS deletion on Escherichia coli biofilms. Appl. Environ. Microbiol. 65, 4285–4287.

    PubMed  CAS  Google Scholar 

  46. Hales, L. M. and Shuman, H. A. (1999) The Legionella penumophila rpoS gene is required for growth within Acanthamoeba castellanii. J. Bacteriol. 181, 4879–4889.

    PubMed  CAS  Google Scholar 

  47. Cognault, C. and Norel, F. (1999) Comparison of the abilities of Salmonella typhimurium rpoS, aroA and rpoS aroA strains to elicit humoral immune reponses in BALB c mice and to cause lethal infection in athymic BALB c mice. Microbiol. Path. 26, 299–305.

    Article  Google Scholar 

  48. Aldsworth, T. G., Dodd, C. E. R., and Stewart, G. S. A. B. (1999) Induction of rpoS in Salmonella typhimurium by nutrient poor and depleted media is slower than that achieved by competitive microflora. Lett. Appl. Microbiol. 28, 255–257.

    Article  PubMed  CAS  Google Scholar 

  49. Hales, B. A., Edwards, C., Ritchie, D. A., Hall, G., Pickup, R. W., and Saunders, J. R. (1996) Isolation and identification of methanogen-specific DNA from blanket peat bog using PCR amplification and sequence analysis. Appl. Environ. Microbiol. 61, 668–675.

    Google Scholar 

  50. Matin, A., Little, C. D., Fraley, C. D., and Keyhan, M. (1995) Use of starvation promoters to limit growth and select for trichloroethylene and phenol transformation activity in recombinant Escherichia, coli. Appl. Environ. Microbiol. 61, 3323–3328.

    PubMed  CAS  Google Scholar 

  51. Whiteley, A. S., O’Donnell, A. G., MacNaughton, S. J., and Barer, M. R. (1996) Cytochemical co-localisation and quantitation of phenotypic and genotypic characteriztsics of individual bacterial cells. Appl. Environ. Microbiol. 62, 1873–1879.

    PubMed  CAS  Google Scholar 

  52. Fuqua, C., Winans, S. C., and Greenberg, P. R. (1997) Census and cosensus in bacterial ecosystems: the LuxR-LuxI family of quorum sensing transcriptional regulators. Ann. Rev. Microbiol. 50, 727–751.

    Article  Google Scholar 

  53. Shaw, P. D., Ping, G., Daly, S. L., Cha, C., Cronan, J. E., Reinhart, K. L., et al. (1997) Detecting and characterizing N-acyl-homoserine lactone signal molecules by thin layer chromatography. Proc. Natl. Acad. Sci. USA 94, 6036–6041.

    Article  PubMed  CAS  Google Scholar 

  54. Whiteley, M., Lee, K. M., and Greenberg, E. P. (1999) Identification of genes controlled by quorum sensing in Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. USA 96, 13,904–13,909.

    Article  CAS  Google Scholar 

  55. Rumbaugh, K. P., Griswold, J. A., Iglewski, B. H., and Hamood, A. N. (1999) Contribution of quorum sensing to the virulence of Pseudomonas aeruginosa in burn wound infections. Infect. Immunol. 67, 5854–5862.

    CAS  Google Scholar 

  56. Stintzi, A., Evans, K., Meyer, J. M., and Poole, K. (1998) Quorum sensing and siderophore biosynthesis in Pseudomonas aeruginosa: lasR/lasI mutants exhibit reduced pyoverdine biosynthesis. FEMS Microbiol. Letts. 166, 341–345.

    Article  CAS  Google Scholar 

  57. Hwang, I. Y., Smyth, A. J., Luo, Z. Q., and Farrand, S. K. (1999) Modulating quorum sensing by antiactivation: TraM interacts with TraR to inhibit activation of the Ti plasmid conjugal transfer genes. Molec. Microbiol. 34, 282–294.

    Article  CAS  Google Scholar 

  58. Swift, S., Karlyshev, A. V., Fish, L., Durant, E. L., Winson, M. K., Chhabra, S. R., et al. (1997) Quorum sensing in Aeromonas hydrophila and Aeromonas salmonicida: Identification of the LuxRI homologues AhyRI and AsaRI and their cognate N-acylhomoserine lactone signal molecules. J. Bacteriol. 179, 5271–5281.

    PubMed  CAS  Google Scholar 

  59. Atkinson, S., Throup, J. P., Stewart, G. S. A. B., and Williams, P. (1999) A hierarchical quorum sensing system in Yersinia pseudotuberculosis is involved in the regulation of motility and clumping. Molec. Microbiol. 33, 1267–1277.

    Article  CAS  Google Scholar 

  60. Rodelas, B., Lithgow, J. K., Wisniewskidye, F., Hardman, A., Wilkinson, A., Economou, A., et al. (1999) Analysis of quorum sensing dependent control of the rhizospere expressed (rhi) genes in Rhizobium leguminosarum bv. viciae. J. Bacteriol. 181, 3816–3823.

    PubMed  CAS  Google Scholar 

  61. Egland, K. A. and Greenberg, E. P. (1999) Quorum sensing in Vibrio fischeri: elements of the luxI promoter. Mol. Microbiol. 31, 1197–1204.

    Article  PubMed  CAS  Google Scholar 

  62. Withers, H. L. and Nordstrom, K. (1998) Quorum sensing acts at initiation of chromosome replication in Esccherichia coli. Proc. Natl. Acad. Sci. USA 95, 15,694–15,699.

    Article  CAS  Google Scholar 

  63. Reverchon, S., Bouillant, M. L., Salmond, G., and Nasser, W. (1998) Integration of the quorum sensing system in the regulatory networks controlling virulence factor synthesis in Erwinia chrysanthemi. Mol. Microbiol. 29, 1407–1418.

    Article  PubMed  CAS  Google Scholar 

  64. Surette, M. G. and Bassler, B. L. (1998) Quorum sensing in Escherichia coli and Salmonella typhimurium. Proc. Natl. Acad. Sci. USA 95, 7046–7050.

    Article  PubMed  CAS  Google Scholar 

  65. McClean, K. H., Winson, M. K., Fish, L., Taylor, A., Chhabra, S. R., Camara, M., et al. (1997) Quorum sensing and Chromatium violaceum: exploitation of violacein production and inhibition for the detection of N-acyl homoserine lactones. Microbiol. 143, 3703–3711.

    Article  CAS  Google Scholar 

  66. Votyakova, T. V., Kaprelyants, A. S., and Kell, D. B. (1994) Influence of viable cells on the resuscitation of dormant cells of Micrococcus luteus cultures held in an extended stationary phase. The population effect. Appl. Environ. Microbiol. 60, 3284–3291.

    PubMed  CAS  Google Scholar 

  67. Shapiro, J. A. (1998) Thinking about bacterial populations as multicellular organisms. Ann. Rev. Microbiol. 52, 81–104.

    Article  CAS  Google Scholar 

  68. Dunny, G. M. and Leonard, B. A. B. (1997) Cell-cell communication in Gram-positive bacteria. Ann. Rev. Microbiol. 51, 527–564.

    Article  CAS  Google Scholar 

  69. Pace, N. R. (1996) New perspectives on the natural microbial world: molecular microbial ecology. ASM News 62, 463–470.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clive Edwards.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Edwards, C. Problems posed by natural environments for monitoring microorganisms. Mol Biotechnol 15, 211–223 (2000). https://doi.org/10.1385/MB:15:3:211

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/MB:15:3:211

Index Entries

Navigation