Skip to main content
Log in

Detecting and minimizing glycosidase activities that can hydrolyze sugars from cell culture-produced glycoproteins

  • Protocol
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Heterogeneity of cell culture-produced glycoproteins often results from the presence or absence of a few sugars found on the terminus of glycoprotein oligosaccharides. Variability in bioprocess factors can potentially lead to variability in this oligosaccharide heterogeneity (1). Although stochastic events in the intracellular biosynthetic process have long been recognized as a cause of oligosaccharide heterogeneity (2), more recent data has demonstrated that extracellular degradation by glycosidases can also contribute to oligosaccharide heterogeneity (3,4). The purpose of this chapter is to introduce the concept and consequence of glycosidase degradation, to discuss methods for evaluating whether glycosidase degradation is significant for a particular process, and to provide some potential remedies to alleviate undesirable degradation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andersen, D. C. and Goochee, C. F. (1994) The effect of cell-culture conditions on the oligosaccharide structures of secreted glycoproteins. Curr. Opin. Biotechnol. 5, 546–549.

    Article  PubMed  CAS  Google Scholar 

  2. Kornfeld, R. and Kornfeld, S. (1985) Assembly of asparagine-linked oligosaccharides. Annu. Rev. Biochem. 54, 631–664.

    Article  PubMed  CAS  Google Scholar 

  3. Gramer, M. J., Goochee, C. F., Chock, V. Y., Brousseau, D. T., and Sliwkowski, M. B. (1995) Removal of sialic acid from a glycoprotein in CHO cell culture supernatant by action of an extracellular CHO cell sialidase. Bio/Technology 13, 692–698.

    Article  PubMed  CAS  Google Scholar 

  4. Munzert, E., Muthing, J., Buntemeyer, H., and Lehmann, J. (1996) Sialidase activity in culture fluid of Chinese hamster ovary cells during batch culture and its effect on recombinant human antithrombin III integrity. Biotechnol. Prog. 12, 559–563.

    Article  PubMed  CAS  Google Scholar 

  5. Conzelmann, E. and Sandhoff, K. (1987) Glycolipid and glycoprotein degradation. Adv. Enzymol. 60, 89–216.

    PubMed  CAS  Google Scholar 

  6. Goochee, C. F., Gramer, M. J., Andersen, D. C., Bahr, J. B., and Rasmussen, J. R. (1992) The oligosaccharides of glycoproteins: factors affecting their synthesis and their effect on glycoprotein properties, in Frontiers in Bioprocessing H (Todd, P., Sikdar, S. L., and Bier, M., eds.), American Chemical Society, Washington, DC, pp. 199–240.

    Google Scholar 

  7. Varki, A. (1993) Biological roles of oligosaccharides: all of the theories are correct. Glycobiology 3, 97–130.

    Article  PubMed  CAS  Google Scholar 

  8. Furbish, F. S., Steer, C. J., Krett, N. L., and Barranger, J. A. (1981) Uptake and distribution of placental glucocerebrosidase in rat hepatic cells and effects of sequential deglycosylation. Biochim. Biophys. Acta 673, 425–434.

    PubMed  CAS  Google Scholar 

  9. Steer, C. J. and Clarenburg, R. (1979) Unique distribution of glycoprotein receptors on parenchymal and sinusoidal cells of rat liver. J. Biol. Chem. 265, 874–881.

    Google Scholar 

  10. Stockert, R. J., Morell, A. G., and Scheinberg, I. H. (1976) The existence of a second route for the transfer of certain glycoproteins from the circulation into the liver. Biochem. Biophys. Res. Commun. 265, 68, 988–993.

    Article  Google Scholar 

  11. Winkelhake, J. L. and Nicolson, G. L. (1976) Aglycosylantibody: effects of exoglycosidase treatments on autochthonous antibody survival time in the circulation. J. Biol. Chem. 251, 1074–1080.

    PubMed  CAS  Google Scholar 

  12. Donahue, R. E., Wang, E. A., Kaufman, R. J., Foutch, L., Leary, A. C., Witek-Giannetti, J. S., et al (1986) Effects of N-linked carbohydrate on the in vivo properties of human GM-CSF, Cold Spring Harbor Symp. Quant. Biol. 51, 685–692.

    PubMed  CAS  Google Scholar 

  13. Murray, G. J. (1987) Lectin-specific targeting of lysosomal enzymes to reticuloendothelial cells. Methods Enzymol. 149, 25–42.

    Article  PubMed  CAS  Google Scholar 

  14. Fukuda, M. N., Sasaki, H., Lopez, L., and Fukuda, M. (1989) Survival of recombinant erythropoietin in the circulation: the role of carbohydrates. Blood 73, 84–89.

    PubMed  CAS  Google Scholar 

  15. Gramer, M. J. and Goochee, C. F. (1991) Potential for degradation of glycoprotein oligosaccharides by extracellular glycosidases. AICHE National Meeting, Los Angeles, CA.

  16. Gramer, M. J. and Goochee, C. F. (1993) Glycosidase activities in Chinese hamster ovary cell lysate and cell culture supernatant. Biotechnol. Prog. 9, 366–373.

    Article  PubMed  CAS  Google Scholar 

  17. Gramer, M. J., Schaffer, D. V., and Sliwkowski, M. B. (1994) Purification and characterization of α-l-fucosidase from Chinese hamster ovary cell culture supernatant. Glycobiology 4, 611–616.

    Article  PubMed  CAS  Google Scholar 

  18. Gramer, M. J. and Goochee, C. F. (1994) Glycosidase activities of the 293 and NS0 cell lines, and of an antibody-producing hybridoma cell line. Biotechnol. Bioeng. 43, 423–428.

    Article  CAS  PubMed  Google Scholar 

  19. Warner, T. G., Chang, J., Ferrari, J., Harris, R., McNerney, T., Bennett, G., et al. (1993) Isolation and properties of a soluble sialidase from the culture fluid of Chinese hamster ovary cells. Glycobiology 3, 455–463.

    Article  PubMed  CAS  Google Scholar 

  20. Licari, P. J., Jarvis, D. L., and Bailey, J. E. (1993) Insect cell hosts for baculovirus expression vectors contain endogenous exoglycosidase activity. Biotechnol. Prog. 9, 146–152.

    Article  PubMed  CAS  Google Scholar 

  21. Sliwkowski, M. B., Gunson, J. V., and Warner, T. G. (1992) Sialylation and phosphorylation as a function of culture conditions for recombinant human deoxyribonuclease produced by CHO cells. J. Cell. Biochem. 16(Suppl.), 150.

    Google Scholar 

  22. Warner, T. G. and O’Brien, J. S. (1979) Synthesis of 2′-(4-methylumbelliferyl-α-d-N-acetylneuraminic acid and detection of skin fibroblast neuraminidase in normal humans and in sialidosis. Biochemistry 18, 2783–2787.

    Article  PubMed  CAS  Google Scholar 

  23. Hardy, M. R., Townsend, R. R., and Lee, Y. C. (1988) Monosaccharide analysis of glycoconjugates by anion-exchange chromatography with pulsed amperometric detection. Anal. Biochem. 170, 54–62.

    Article  PubMed  CAS  Google Scholar 

  24. Starr, C., Masada, R. I., Hauge, C., Skop, E., and Kock, J. (1996) Fluorophore-assisted-carbohydrate-electrophoresis, FACE, in the separation, analysis, and sequencing of carbohydrates. J. Chromatogr. 720, 295–321.

    Article  CAS  Google Scholar 

  25. Skoza, L. and Mohos, S. (1976) Stable thiobarbituric acid chromaphore with dimethyl sulphoxide. Biochem J. 158, 457–321.

    Google Scholar 

  26. Urbanowski, J. C., Wunz, T. M., and Dain, J. A. (1980) A colorimetric procedure for measuring the enzymatic hydrolysis of terminal galactose from GM1 ganglioside. Anal. Biochem. 105, 461–467.

    Article  PubMed  CAS  Google Scholar 

  27. Cohenford, M. A., Abraham, A., Abraham, J., and Dain, J. A. (1989) Colorimetric assay for free and bound l-fucose. Anal. Biochem. 177, 172–177.

    Article  PubMed  CAS  Google Scholar 

  28. Minch, S. L., Kallo, P. T., and Balley, J. E. (1995) Tissue plasminogen activator expressed in Chinese hamster ovary cells with α(2,6)Galβ(1,4)GlcNAc-R linkages. Biotechnol. Prog. 11, 348–351.

    Article  PubMed  CAS  Google Scholar 

  29. Sato, K. and Miyagi, T. (1996) Involvement of an endogenous sialidase in skeletal muscle cell differentiation. Biochem. Biophys. Res. Commun. 221, 826–830.

    Article  PubMed  CAS  Google Scholar 

  30. Ferrari, J., Lofgren, G. J., Krummen, L., T. G. (1998) Chinese hamster ovary cells with constitutively expressed sialidase antisense RNA produce recombinant DNase in batch culture with increased sialic acid. Biotechnol. Bioeng 60, 589–595.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael J. Gramer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gramer, M.J. Detecting and minimizing glycosidase activities that can hydrolyze sugars from cell culture-produced glycoproteins. Mol Biotechnol 15, 69–75 (2000). https://doi.org/10.1385/MB:15:1:69

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/MB:15:1:69

Index Entries

Navigation