Skip to main content
Log in

Protein-protein interactions in signaling cascades

  • Review
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

The process of signal transduction is dependent on specific protein-protein interactions. In many cases these interactions are mediated by modular protein domains that confer specific binding activity to the proteins in which they are found. Rapid progress has been made in the biochemical characterization of binding interactions, the identification of binding partners, and determination of the three-dimensional structures of binding modules and their ligands. The resulting information establishes the logical framework for our current understanding of the signal transduction machinery. In this overview a variety of protein interaction modules are discussed, and issues relating to binding specificity and the significance of a particular interaction are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cohen, G. B. and Baltimore, D. (1995) Modular binding domains in signal transduction proteins. Cell 80, 237–248.

    Article  PubMed  CAS  Google Scholar 

  2. Pawson, T. (1995) Protein modules and signalling networks. Nature 373, 573–579.

    Article  PubMed  CAS  Google Scholar 

  3. Pawson, T. (1997) Signaling through scaffold, anchoring, and adaptor proteins. Science 278, 2075–2080.

    Article  PubMed  CAS  Google Scholar 

  4. Neer, E. J. (1995) Heterotrimeric G proteins: organizers of transmembrane signals. Cell 80, 249–257.

    Article  PubMed  CAS  Google Scholar 

  5. Finan, P., Shimizu, Y., Gout, I., Hsuan, J., Truong, O., Butcher, C., Bennet, P., Waterfield, M. D., and Kellie, S. (1994) An SH3 domain and proline-rich sequence mediate an interaction between two components of the phagocyte NADPH oxidase complex. J. Biol. Chem. 269, 13,752–13,755.

    CAS  Google Scholar 

  6. Sumimoto, H., Kage, Y., Nunoi, H., Sasaki, H., Nose, T., Fukumaki, Y., Ohno, M., Minakami, S., and Takeshige, K. (1994) Role of src homology 3 domains in assembly and activation of the phagocyte NADPH oxidase. Proc. Natl Acad. Sci. USA. 91, 5345–5349.

    Article  PubMed  CAS  Google Scholar 

  7. Sadowski, I., Stone, J. C., and Pawson, T. (1986) A noncatalytic domain conserved among cytoplasmic protein-tyrosine kinases modifies the kinase function and transforming activity of fujinami sarcoma virus P130gag-fps. Mol. Cell. Biol. 6, 4396–4408.

    PubMed  CAS  Google Scholar 

  8. Anderson, D., Koch, C. A., Grey, L., Ellis, C., Moran, M. F., and Pawson, T. (1990) Binding of SH2 domains of phospholipase Cγ1, GAP, and src to activated growth factor receptors. Science 250, 979–982.

    Article  PubMed  CAS  Google Scholar 

  9. Margolis, B., Li, N., Koch, A., Mohammadi, M., Hurwitz, D. R., Zilberstein, A., Ullrich, A., Pawson, T., and Schlessinger, J. (1990) The tyrosine-phosphorylated carboxyterminus of the EGF receptor is a binding site for GAP and PLC-γ. EMBO J. 9, 4375–4380.

    PubMed  CAS  Google Scholar 

  10. Matsuda, M., Mayer, B. J., Fukui, Y., and Hanafusa, H. (1990) Binding of transforming protein, P47gagcrk, to a broad range of phosphotyrosine-containing proteins. Science 248, 1537–1539.

    Article  PubMed  CAS  Google Scholar 

  11. Mayer, B. J., Jackson, P. K., and Baltimore, D. (1991) The noncatalytic src homology region 2 segment of abl tyrosine kinase binds to tyrosine-phosphorylated cellular proteins with high affinity. Proc. Natl. Acad. Sci. USA 88, 627–631.

    Article  PubMed  CAS  Google Scholar 

  12. Moran, M. F., Koch, C. A., Anderson, D., Ellis, C., England, L., Martin, G. S., and Pawson, T. (1990) Src homology region 2 domains direct protein-protein interactions in signal transduction. Proc. Natl. Acad. Sci. USA 87, 8622–8626.

    Article  PubMed  CAS  Google Scholar 

  13. Ladbury, J. E., Lemmon, M. A., Zhou, M., Green, J., Botfield, M. C., and Schlessinger, J. (1995) Measurement of binding of tyrosyl phosphopeptides to SH2 domains: a reappraisal. Proc. Natl. Acad. Sci. USA 92, 3199–3202.

    Article  PubMed  CAS  Google Scholar 

  14. Songyang, Z., Shoelson, S. E., Chaudhuri, M., Gish, G., Pawson, T., Haser, W. G., King, F., Roberts, T., Ratnofsky, S., Lechleider, R. J., Neel, B. G., Birge, R. B., Fajardo, J. E., Chou, M. M., Hanafusa, H., Shaffhausen, B., and Cantley, L. C. (1993) SH2 domains recognize specific phosphopeptide sequences. Cell 72, 767–778.

    Article  PubMed  CAS  Google Scholar 

  15. Songyang, Z., Shoelson, S. E., McGlade, J., Olivier, P., Pawson, T., Bustelo, X. R., Barbacid, M., Sabe, H., Hanafusa, H., Yi, T., Ren, R., Baltimore, D., Ratnovsky, S., Feldman, R. A., and Cantley, L. C. (1994) Specific motifs recognized by the SH2 domains of Csk, 3BP2, fps/fes, GRB-2, HCP, SHC, Syk, and Vav. Mol. Cell. Biol. 14, 2777–2785.

    PubMed  CAS  Google Scholar 

  16. Rameh, L. E., Chen, C.-S., and Cantley, L. C. (1995) Phosphatidylinositol (3,4,5)P3 interacts with SH2 domains and modulates PI 3-kinase association with tyrosine-phosphorylated proteins. Cell 83, 821–830.

    Article  PubMed  CAS  Google Scholar 

  17. Kavanaugh, W. M., and Williams, L. T. (1994) An alternative to SH2 domains for binding tyrosinephosphorylated proteins. Science 266, 1862–1865.

    Article  PubMed  CAS  Google Scholar 

  18. Blaikie, P., Immanuel, D., Wu, J., Li, N., Yajnik, V., and Margolis, B. (1994) A region in Shc distinct from the SH2 domain can bind tyrosine-phosphorylated growth factor receptors. J. Biol. Chem. 269, 32,031–32,034.

    CAS  Google Scholar 

  19. Gustafson, T. A., He, W., Craparo, A., Schaub, C. D., and O’Neill, T. J. (1995) Phosphotyrosine-dependent interaction of SHC and insulin receptor substrate 1 with the NPEY motif of the insulin receptor via a novel non-SH2 domain. Mol. Cell. Biol. 15, 2500–2508.

    PubMed  CAS  Google Scholar 

  20. van der Geer, P., Wiley, S., Ka-Man Lai, V., Olivier, J. P., Gish, G. D., Stephens, R., Kaplan, D., Shoelson, S., and Pawson, T. (1995) A conserved amino-terminal Shc domain binds to phosphotyrosine motifs in activated receptors and phosphopeptides. Curr. Biol. 5, 404–412.

    Article  PubMed  Google Scholar 

  21. Wolf, G., Trub, T., Ottinger, E., Groninga, L., Lynch, A., White, M. F., Miyazaki, M., Lee, J., and Shoelson, S. E. (1995) PTB domains of IRS-1 and Shc have distinct but overlapping binding specificities. J. Biol. Chem. 270, 27,407–27,410.

    CAS  Google Scholar 

  22. Dho, S. E., Jacob, S., Wolting, C. D., French, M. B., Rohrschneider, L. R., and McGlade, C. J. (1998) The mammalian numb phosphotyrosine-binding domain: Characterization of binding specificity and identification of a novel PDZ domain-containing numb binding protein, LNX. J. Biol. Chem. 273, 9179–9187.

    Article  PubMed  CAS  Google Scholar 

  23. Zhang, Z., Lee, C.-H., Mandiyan, V., Borg, J.-P., Margolis, B., Schlessinger, J., and Kuriyan, J. (1997) Sequence-specific recognition of the internalization motif of the Alzheimer’s amyloid precursor protein by the X11 PTB domain. EMBO J. 16, 6141–6150.

    Article  PubMed  CAS  Google Scholar 

  24. Eck, M. J., Dhe-Paganon, S., Trub, T., Nolte, R. T., and Shoelson, S. E. (1996) Structure of the IRS-1 PTP domain bound to the juxtamembrane region of the insulin receptor. Cell 85, 695–705.

    Article  PubMed  CAS  Google Scholar 

  25. Zhou, M.-M., Ravichandran, K. S., Olejniczak, E. T., Petros, A. M., Meadows, R. P., Harlan, J. E., Wade, W. S., Burakoff, S. J., and Fesik, S. W. (1995) Structure and ligand recognition of the phosphotyrosine binding domain of Shc. Nature (London) 92, 7784–7788.

    CAS  Google Scholar 

  26. Musacchio, A., Gibson, T., Lehto, V.-P., and Saraste, M. (1992) SH3-an abundant protein domain in search of a function. FEBS Lett. 307, 55–61.

    Article  PubMed  CAS  Google Scholar 

  27. Gout, I., Dhand, R., Hiles, I. D., Fry, M. J., Panayotou, Z. G., Das, P., Truong, O., Totty, N. F., Hsuan, J., Booker, G. W., Campbell, I. D., and Waterfield, M. D. (1993) The GTPase dynamin binds to and is activated by a subset of SH3 domains. Cell 75, 25–36.

    PubMed  CAS  Google Scholar 

  28. Ren, R., Mayer, B. J., Cicchetti, P., and Baltimore, D. (1993) Identification of a 10-amino acid prolinerich SH3 binding site. Science 259, 1157–1161.

    Article  PubMed  CAS  Google Scholar 

  29. Yu, H., Chen, J. K., Feng, S., Dalgarno, D. C., Brauer, A. W., and Schreiber, S. L. (1994) Structural basis for the binding of proline-rich peptides to SH3 domains. Cell 76, 933–945.

    Article  PubMed  CAS  Google Scholar 

  30. Mayer, B. J. and Eck, M. J. (1995) Minding your p’s and q’s. Curr. Biol. 5, 364–367.

    Article  PubMed  CAS  Google Scholar 

  31. McCormick, F. (1993) How receptors turn ras on. Nature 363, 15–16.

    Article  PubMed  CAS  Google Scholar 

  32. Rotin, D. (1998) WW (WWP) domains: from structure to function, in Protein Modules in Signal Transduction (Pawson, T., ed.), Springer-Verlag, Berlin, pp. 115–133.

    Google Scholar 

  33. Sudol, M. (1996) Structure and function of the WW domain. Prog. Biophys. Molec. Biol. 65, 113–132.

    Article  CAS  Google Scholar 

  34. Chan, D. C., Bedford, M. T., and Leder, P. (1996) Formin binding proteins bear WWP/WW domains that bind proline-rich peptides and functionally resemble SH3 domains. EMBO J. 15, 1045–1054.

    PubMed  CAS  Google Scholar 

  35. Macias, M. J., Hyvonen, M., Baraldi, E., Schultz, J., Sudol, M., Saraste, M., and Oschkinat, H. (1996) Structure of the WW domain of a kinase-associated protein complexed with a proline-rich peptide. Nature 382, 646–649.

    Article  PubMed  CAS  Google Scholar 

  36. Chen, H. I. and Sudol, M. (1995) The WW domain of Yes-associated protein binds a proline-rich ligand that differs from the consensus established for Src homolgy 3-binding modules. Proc. Natl. Acad. Sci. USA 92.

  37. Ranganathan, R. and Ross, E. M. (1997) PDZ domain proteins: Scaffolds for signaling complexes. Curr. Biol. 7, R770–773.

    Article  PubMed  CAS  Google Scholar 

  38. Fanning, A. S. and Anderson, J. M. (1998) PDZ domains and the formation of protein networks at the plasma membrane, in Protein modules in signal transduction (Pawson, A. J., ed.), Springer-Verlag, Berlin, pp. 209–233.

    Google Scholar 

  39. Songyang, Z., Fanning, A. S., Fu, C., Xu, J., Marfatia, S. M., Chishti, A. H., Crompton, A., Chan, A. C., Anderson, J. M., and Cantley, L. C. (1997) Recognition of unique carboxyl-terminal motifs by distinct PDZ domains. Science 275, 73–77.

    Article  PubMed  CAS  Google Scholar 

  40. Doyle, D. A., Lee, A., Lewis, J., Kim, E., Sheng, M., and MacKinnon, R. (1996) Crystal structures of a complexed and peptide-free membrane proteinbinding domain: Molecular basis of peptide recognition by PDZ. Cell 85, 1067–1076.

    Article  PubMed  CAS  Google Scholar 

  41. Shieh, B. H. and Zhu, M. Y. (1996) Regulation of the TRP channel by INAD in Drosophila photoreceptors. Neuron 16, 991–998.

    Article  PubMed  CAS  Google Scholar 

  42. Marfatia, S. M., Morais Cabral, J. H., Lin, L., Hough, C., Bryant, P. J., Stolz, L., and Chishti, A. H. (1996) Modular organization of the PDZ domains in the human discs-large protein suggests a mechanism for coupling PDZ domain-binding proteins to ATP and the membrane cytoskeleton. J. Cell Biol. 135, 753–766.

    Article  PubMed  CAS  Google Scholar 

  43. Brenman, J. E., Chao, D. S., Gee, S. H., McGee, A. W., Craven, S. E., Santillano, D. R., Wu, Z., Huang, F., Xia, H., Peters, M. F., Froehner, S. C., and Bredt, D. S. (1996) Interaction of nitric oxide synthase with the postsynaptic density protein PSD-95 and α1-syntrophin mediated by PDZ domains. Cell 84, 757–767.

    Article  PubMed  CAS  Google Scholar 

  44. Tsunoda, S., Sierralta, J., Sun, Y., Bodner, R., Suzuki, E., Becker, A., Socolich, M., and Zuker, C. S. (1997) A multivalent PDZ-domain protein assembles signalling complexes in a G-protein-coupled cascade. Nature 388, 243–249.

    Article  PubMed  CAS  Google Scholar 

  45. Mayer, B. J., Ren, R., Clark, K. L., and Baltimore, D. (1993) A putative modular domain present in diverse signaling proteins. Cell 73, 629–630.

    Article  PubMed  CAS  Google Scholar 

  46. Haslam, R. J., Koide, H. B., and Hemmings, B. A. (1993) Pleckstrin homology domain. Nature 363, 309–310.

    Article  PubMed  CAS  Google Scholar 

  47. Musacchio, A., Gibson, T., Rice, P., Thompson, J., and Saraste, M. (1993) The PH domain: a common piece in the structural patchwork of signalling proteins. Trends Biochem. Sci. 18, 343–348.

    Article  PubMed  CAS  Google Scholar 

  48. Ferguson, K. M., Lemmon, M. A., Sigler, P. B., and Schlessinger, J. (1995) Scratching the surface with the PH domain. Nature Struct. Biol. 2, 715–718.

    Article  PubMed  CAS  Google Scholar 

  49. Lemmon, M. A., and Ferguson, K. M. (1998) Pleckstrin homology domains, in Protein modules in signal transduction (Pawson, A. J., ed.), Springer-Verlag, Berlin, pp. 39–74.

    Google Scholar 

  50. Touhara, K., Inglese, J., Pitcher, J. A., SHaw, G., and Lefkowitz, R. J. (1994) Binding of G protein beta gamma subunits to pleckstrin homology domains. J. Biol. Chem. 269, 10,217–10,220.

    CAS  Google Scholar 

  51. Harlan, J. E., Hajduk, P. J., Yoon, H. S., and Fesik, S. W. (1994) Pleckstrin homology domains bind to phosphatidylinositol 4,5-bisphosphate. Nature (London) 371, 168–170.

    Article  CAS  Google Scholar 

  52. Lemmon, M. A., Ferguson, K. M., Sigler, P. B., and Schlessinger, J. (1995) Specific and high-affinity binding of inositol phosphates to an isolated pleckstrin homology domain. Proc. Natl. Acad. Sci. USA 92, 10,472–10,476.

    Article  CAS  Google Scholar 

  53. Bork, P. (1993) Hundreds of ankyrin-like repeats in functionally diverse proteins: mobile modules that cross phyla horizontally? Proteins 17, 363–374.

    Article  PubMed  CAS  Google Scholar 

  54. Gorina, S., and Pavletich, N. P. (1996) Structure of the p53 tumor suppressor bound to the ankyrin and SH3 domains of 53BP2. Science 274, 1001–1005.

    Article  PubMed  CAS  Google Scholar 

  55. Batchelor, A. H., Piper, D. E., de la Brousse, F. C., McKnight, S. L., and Wolberger, C. (1998) The structure of GABPα/β: An ETS domain-ankyrin repeat heterodimer bound to DNA. Science 279, 1037–1041.

    Article  PubMed  CAS  Google Scholar 

  56. Lambert, S., and Bennett, V. (1993) From anemia to cerebellar dysfunction: a review of the ankyrin gene family. Eur. J. Biochem. 211, 1–6.

    Article  PubMed  CAS  Google Scholar 

  57. Liou, H. C. and Baltimore, D. (1993) Regulation of the NK-κB/rel transcription factor and IκB inhibitor system. Curr. Opin. Cell Biol. 5, 477–487.

    Article  PubMed  CAS  Google Scholar 

  58. Ghosh, S. and Baltimore, D. (1990) Activation in vitro of NF-κB by phosphorylation of its inhibitor IkB. Nature (London) 344, 678–682.

    Article  CAS  Google Scholar 

  59. Neer, E. J., Schmidt, C. J., Nambudripad, R., and Smith, T. F. (1994) The ancient regulatory-protein family of WD-repeat proteins. Nature (London) 371, 297–300.

    Article  CAS  Google Scholar 

  60. Sondek, J., Bohm, A., Lambright, D. G., Hamm, H. E., and Sigler, P. B. (1996) Crystal structure of a GA protein βγ dimer at 2.1 Å resolution. Nature (London) 379, 369–379.

    Article  CAS  Google Scholar 

  61. Wall, M. A., Coleman, D. E., Lee, E., Iniguez-Lluhi, J. A., Posner, B. A., Gilman, A. G., and Sprang, S. R. (1995) The structure of the G protein heterotrimer Gi alpha1beta1gamma2. Cell 83, 1047–1058.

    Article  PubMed  CAS  Google Scholar 

  62. Lambright, D. G., Sondek, J., Bohm, A., Skiba, N. P., Hamm, H. E., and Sigler, P. B. (1996) The 2.0 Å crystal structure of a heterotrimeric G-protein. Nature (London) 379, 311–319.

    Article  CAS  Google Scholar 

  63. Riggleman, B., Wieschaus, E., and Schedl, P. (1989) Molecular analysis of the armadillo locus: uniformly distributed transcripts and a proteins with novel internal repeats are associated with a Drosophila segment polarity gene. Genes Dev. 3, 96–113.

    Article  PubMed  CAS  Google Scholar 

  64. Peifer, M., Berg, S., and Reynolds, A. B. (1994) A repeating amino acid motif shared by proteins with diverse cellular roles. Cell 76, 789–791.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruce J. Mayer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mayer, B.J. Protein-protein interactions in signaling cascades. Mol Biotechnol 13, 201–213 (1999). https://doi.org/10.1385/MB:13:3:201

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/MB:13:3:201

Index Entries

Navigation